国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

植物工廠水蓄能型地下水源熱泵供熱系統(tǒng)節(jié)能運(yùn)行特性研究

2018-11-23 07:06:14石惠嫻任亦可孟祥真陳慧子歐陽(yáng)三川
關(guān)鍵詞:水蓄源熱泵熱泵

石惠嫻,任亦可,孟祥真,陳慧子,歐陽(yáng)三川,周 強(qiáng)

?

植物工廠水蓄能型地下水源熱泵供熱系統(tǒng)節(jié)能運(yùn)行特性研究

石惠嫻,任亦可,孟祥真,陳慧子,歐陽(yáng)三川,周 強(qiáng)

(同濟(jì)大學(xué)新農(nóng)村發(fā)展研究院國(guó)家設(shè)施農(nóng)業(yè)工程技術(shù)研究中心,上海 200092)

植物工廠供熱系統(tǒng)中,采用傳統(tǒng)能源存在一次能源利用率低且污染嚴(yán)重的問(wèn)題。地下水源熱泵節(jié)能環(huán)保,如果結(jié)合蓄能技術(shù)可進(jìn)一步降低運(yùn)行能耗。該文以上海崇明自然光植物工廠為例,對(duì)水蓄能型地下水源熱泵供能系統(tǒng)進(jìn)行節(jié)能運(yùn)行特性研究。結(jié)果表明:水蓄能型地下水源熱泵供能系統(tǒng)在冬季運(yùn)行時(shí),采用基于分時(shí)電價(jià)政策的間歇運(yùn)行模式,即在電價(jià)低谷時(shí),熱泵機(jī)組邊供熱邊蓄熱;在電價(jià)高峰期,充分利用蓄熱水箱供熱。典型周內(nèi)供能系統(tǒng)按照間歇模式運(yùn)行可以維持室內(nèi)溫度17~26℃之間,系統(tǒng)穩(wěn)定運(yùn)行時(shí),熱泵機(jī)組制熱功率與耗電功率的比值(coefficient of performance,COP)穩(wěn)定在4.2左右。其中計(jì)算典型日水蓄能型地下水源熱泵系統(tǒng)比不蓄能系統(tǒng)節(jié)省30.34%的費(fèi)用,供能系統(tǒng)COP為3.17,進(jìn)一步說(shuō)明系統(tǒng)較為高效平穩(wěn)。系統(tǒng)冬季運(yùn)行一次能源利用系數(shù)0.99,相對(duì)于冷水機(jī)組與燃煤鍋爐配套系統(tǒng),節(jié)能率達(dá)到81.05%。計(jì)算不同能源冬季加熱成本,燃煤、燃?xì)夂腿加头绞椒謩e是該系統(tǒng)運(yùn)行成本的1.25、2.93和5.08倍。實(shí)踐表明,水蓄能型地下水源熱泵式供熱系統(tǒng)不僅能夠移峰填谷,降低運(yùn)行費(fèi)用,而且充分合理地利用地?zé)崮埽?jié)能減排,具有良好的經(jīng)濟(jì)和環(huán)保效益。

熱能;泵;節(jié)能;自然光植物工廠;地下水源熱泵;水蓄能;供熱系統(tǒng)

0 引 言

地下水源熱泵系統(tǒng)高效穩(wěn)定、節(jié)能環(huán)保。與空氣源熱泵相比,以地下水作為冷熱源,全年溫度相對(duì)穩(wěn)定,冬季比環(huán)境溫度高,夏季比環(huán)境溫度低,且冬季不存在結(jié)霜問(wèn)題,運(yùn)行穩(wěn)定性好;與土壤源熱泵相比,地下水源熱泵的初投資較低,不需要敷設(shè)埋管而占據(jù)很大的土地資源,運(yùn)行費(fèi)用較低;與地表水源熱泵相比,系統(tǒng)更為高效,地表水溫度受氣候影響較大,而且水質(zhì)不好時(shí)換熱器易結(jié)垢。所以在政策和地下水水質(zhì)開發(fā)技術(shù)允許的情況下,可利用地下水源熱泵系統(tǒng)對(duì)植物工廠供能。

地下水源熱泵技術(shù)在植物工廠領(lǐng)域的應(yīng)用研究比較廣泛。主要集中在系統(tǒng)設(shè)計(jì)[1-2]、系統(tǒng)性能[3-6]和技術(shù)經(jīng)濟(jì)可行性[7-12],系統(tǒng)運(yùn)行效果[13-15]、系統(tǒng)熱力學(xué)分析[16-17]和結(jié)合作物產(chǎn)量系統(tǒng)評(píng)價(jià)[18]以及控制系統(tǒng)研究[19-20]幾個(gè)方面。其中有研究者嘗試各種蓄能型地源熱泵應(yīng)用于植物工廠中的運(yùn)行特性[21-25]。左睿等[26]在常州15 000 m2的植物工廠中采用地源熱泵供熱進(jìn)行經(jīng)濟(jì)性能分析,結(jié)果表明,地源熱泵能耗僅為傳統(tǒng)供熱方式的20%~30%,采用地下蓄能裝置可使其費(fèi)用相對(duì)又降低40%~50%,直接能耗費(fèi)用只有傳統(tǒng)的10%~20%。Edward Foulds等[27]研究與光伏板和土壤儲(chǔ)能系統(tǒng)結(jié)合的地源熱泵機(jī)組,利用數(shù)學(xué)模型研究能源系統(tǒng)的運(yùn)行特性;Emanuele Bonamente等[28]分別以水和相變材料為儲(chǔ)熱材料對(duì)原地源熱泵蓄能系統(tǒng)進(jìn)行優(yōu)化,優(yōu)化設(shè)計(jì)后系統(tǒng)性能系數(shù)可提高20%;Hüseyin Benli[29]設(shè)計(jì)了一個(gè)具有潛熱儲(chǔ)熱水箱的地源熱泵供熱系統(tǒng)為玻璃溫室加熱,并研究了其熱儲(chǔ)能性能。

以上關(guān)于蓄能式地源熱泵的研究主要集中在儲(chǔ)能方式的改進(jìn),而對(duì)植物工廠蓄能式地源熱泵供熱系統(tǒng)運(yùn)行研究較少[30-34],因此,本文將地下水式地源熱泵技術(shù)和水蓄能技術(shù)結(jié)合,以上海崇明自然光植物工廠為例,進(jìn)行水蓄能型地下水源熱泵式供熱系統(tǒng)節(jié)能運(yùn)行特性研究。

1 植物工廠水蓄能型地下水源熱泵式供熱系統(tǒng)

上海市崇明國(guó)家設(shè)施農(nóng)業(yè)工程技術(shù)研究中心共有面積為21 000 m2的大型自然光植物工廠,分為A、B、C三區(qū),如圖1所示。A區(qū)的7小棟植物工廠采用水蓄能型地下水源熱泵空調(diào)系統(tǒng),面積5 880 m2,每1小棟植物工廠長(zhǎng)35 m,寬24 m,共6跨,每跨4 m,肩高6.5 m,頂高7.5 m,外圍護(hù)結(jié)構(gòu)為單層浮法玻璃,厚5 mm,以金屬框架支撐。水蓄能型地下水源熱泵系統(tǒng)冬季典型運(yùn)行流程如圖2所示。

圖2為冬季熱泵機(jī)組和儲(chǔ)熱罐聯(lián)合供熱工況下系統(tǒng)運(yùn)行流程圖,圖中箭頭表示工質(zhì)的流向。圖2中,植物工廠水蓄能型地下水源熱泵式供熱系統(tǒng)包括地下水換熱系統(tǒng)、熱泵機(jī)組、空氣處理機(jī)組和蓄能系統(tǒng),根據(jù)該系統(tǒng)產(chǎn)能和需能的匹配和當(dāng)?shù)仉妰r(jià)峰谷時(shí)段通過(guò)閥門控制,確定系統(tǒng)有5種運(yùn)行模式。當(dāng)處于電價(jià)低谷段并且熱泵機(jī)組制熱(冷)量大于植物工廠所需負(fù)荷時(shí),采用機(jī)組邊儲(chǔ)熱(冷)邊供熱(冷)模式;當(dāng)熱泵機(jī)組制熱(冷)量和蓄熱(冷)水箱可供熱(冷)量均小于植物工廠所需負(fù)荷時(shí),采用蓄熱(冷)水箱和機(jī)組供熱(冷)模式;當(dāng)處于電價(jià)高峰值時(shí)段,采用蓄熱(冷)水箱供熱(冷)模式;當(dāng)熱泵機(jī)組停止運(yùn)行時(shí),采用冷水井儲(chǔ)冷模式;夏季,當(dāng)冷水井地下水溫度小于12 ℃時(shí),采用冷水井直供冷模式。供能設(shè)備主要采用地下水源熱泵和蓄能罐,如圖3所示。

圖1 自然光植物工廠外觀圖

注:箭頭表示工質(zhì)的流向。

1. 400 m3蓄熱水箱2. 600 m3蓄冷水箱

2 植物工廠水蓄能型地下水源熱泵式供熱系統(tǒng)基本運(yùn)行特性

至2018年4月,位于上海市崇明國(guó)家設(shè)施農(nóng)業(yè)工程技術(shù)研究中心的自然光植物工廠,已成功運(yùn)行5個(gè)冬天。本文只針對(duì)系統(tǒng)冬季供熱特性進(jìn)行研究,因此選取2017年冬季2月8日-15日典型周運(yùn)行數(shù)據(jù)進(jìn)行分析。

由植物工廠自動(dòng)監(jiān)控系統(tǒng)測(cè)量分別獲得室外溫度、太陽(yáng)輻射強(qiáng)度、植物工廠內(nèi)溫度、相對(duì)濕度以及熱泵機(jī)組制熱功率與耗電功率的比值(coefficient of performance,COP)。2月8日-15日各參數(shù)變化如圖4所示,橫坐標(biāo)0時(shí)表示2月8日0時(shí)。

注:橫坐標(biāo)0時(shí)表示2月8日0時(shí); COP:制熱功率與耗電功率的比值。

如圖4c所示,利用水蓄能型地下水源熱泵空調(diào)系統(tǒng)為植物工廠加溫,可以將室內(nèi)溫度較好的維持在17~26 ℃之間,圖上太陽(yáng)輻射強(qiáng)度為0的時(shí)段即為夜間,與室內(nèi)溫度低谷段對(duì)應(yīng),溫度相對(duì)較低,但能夠滿足作物在夜間的生長(zhǎng)需求;白天受到太陽(yáng)輻射影響,室內(nèi)溫度基本都在22 ℃以上,甚至能達(dá)到28 ℃。由圖4d可知,室內(nèi)相對(duì)濕度基本在60%~88%之間,能夠避免室內(nèi)高溫高濕現(xiàn)象。由圖4e可知,在系統(tǒng)穩(wěn)定運(yùn)行時(shí),熱泵機(jī)組COP在4.2上下浮動(dòng),運(yùn)行較為高效平穩(wěn)。

3 植物工廠水蓄能型地下水源熱泵供熱系統(tǒng)間歇節(jié)能運(yùn)行特性分析

3.1 基于分時(shí)電價(jià)政策的系統(tǒng)間歇運(yùn)行模式

選用系統(tǒng)正式運(yùn)行期間具有代表性的2017年2月9日對(duì)試驗(yàn)系統(tǒng)進(jìn)行具體分析。室外溫度和太陽(yáng)輻射強(qiáng)度如圖5所示,從圖5中可以看出,當(dāng)日天氣陰,全天 氣溫在4 ℃以下;太陽(yáng)輻射強(qiáng)度在0~160 W/m2,平均 太陽(yáng)輻射強(qiáng)度為62 W/m2。上海各時(shí)段電價(jià)分別為低谷段0.364元/(kW·h),平價(jià)段0.752元/(kW·h),高峰段1.222元/(kW·h)。根據(jù)上海市分時(shí)電價(jià)政策,抽水泵與熱泵機(jī)組的啟停狀態(tài)及熱泵系統(tǒng)運(yùn)行模式如表1所示。

圖5 2017年2月9日室外環(huán)境參數(shù)變化圖

從表1可知,系統(tǒng)運(yùn)行模式基本為:在電力低谷時(shí)刻,熱泵機(jī)組全開,邊供熱邊儲(chǔ)熱,在電力高峰時(shí)刻,熱泵機(jī)組停開,利用蓄熱水箱供熱,在用電平段時(shí)刻,根據(jù)蓄熱水箱儲(chǔ)能量和植物工廠負(fù)荷需求進(jìn)行合理調(diào)控。

3.2 冬季典型日系統(tǒng)間歇運(yùn)行特性及熱性能系數(shù)

基于分時(shí)電價(jià)政策的植物工廠水蓄能型地下水源熱泵供能系統(tǒng)制熱性能系數(shù)(COPsys)計(jì)算如公式(1)所示。

式中為系統(tǒng)供熱量,kJ;comp為壓縮機(jī)輸入功率,kW;pumps為各水泵的輸入功率之和,kW;f為空氣處理機(jī)組風(fēng)機(jī)的輸入功率,kW;1、2、3分別為壓縮機(jī)、水泵和空氣處理機(jī)組風(fēng)機(jī)的運(yùn)行時(shí)間,s。

植物工廠得熱量為太陽(yáng)輻射和人工加熱,散熱量為貫流放熱量、空氣交換散熱量、土壤導(dǎo)熱量,考慮作物蒸騰作用、土壤蓄熱作用等影響因素[35],通過(guò)熱負(fù)荷計(jì)算得到系統(tǒng)2017年2月9日全天供熱量為32 185.8 MJ;得到熱泵機(jī)組運(yùn)行13.92 h耗電量為8 024.65 MJ;得到空氣處理機(jī)組的全天耗電量1 075.77 MJ;潛水泵運(yùn)行5.67 h,耗電量為489.89 MJ,水源側(cè)循環(huán)水泵運(yùn)行13.92 h,耗電量為160.36 MJ,儲(chǔ)熱泵運(yùn)行13.75 h,耗電量為59.4 MJ,用戶側(cè)循環(huán)水泵運(yùn)行24 h,耗電量為332.64 MJ,水泵耗電量共為1 042.29 MJ,系統(tǒng)全天總耗電量為10 142.71 MJ,得到該系統(tǒng)COP(全天供熱量與耗電量比值)為3.17,表明水蓄能型地下水源熱泵式植物工廠空調(diào)系統(tǒng)運(yùn)行高效穩(wěn)定。

3.3 與不采用蓄能裝置的地下水源熱泵系統(tǒng)典型日運(yùn)行費(fèi)用比較

上海電力高峰時(shí)段電價(jià)1.222元/(kW·h),平段電價(jià)0.752元/(kW·h),低谷時(shí)段電價(jià)0.364元/(kW·h),根據(jù)2017年2月9日運(yùn)行模式和分時(shí)電價(jià)計(jì)算全天系統(tǒng)運(yùn)行費(fèi)用,結(jié)果見(jiàn)表2。

表2 水蓄能型地下水源熱泵供能系統(tǒng)2017年2月9日運(yùn)行費(fèi)用

將A試驗(yàn)系統(tǒng)與B不采用蓄能裝置的地下水源熱泵空調(diào)系統(tǒng)運(yùn)行費(fèi)用進(jìn)行比較:

蓄熱水箱的能量變化計(jì)算公式為=cmD,計(jì)算全天蓄能量時(shí),D為蓄熱水箱0時(shí)與全天最高溫度的溫度差;計(jì)算全天供能量時(shí),D為最高溫度與24時(shí)的溫度差,得到蓄熱水箱全天蓄能量為14 313.76 MJ,全天供能量為17 046.10 MJ。A系統(tǒng)蓄熱水箱全天蓄能量為B系統(tǒng)熱泵機(jī)組減少產(chǎn)熱的部分,則熱泵機(jī)組在原儲(chǔ)熱階段減少產(chǎn)熱14 313.76 MJ,平均少耗電3 408.04 MJ,即946.68 kW·h,各電價(jià)期減少運(yùn)行費(fèi)用總和為502.74 元;A系統(tǒng)的蓄熱水箱全天供能量為B系統(tǒng)熱泵機(jī)組增加產(chǎn)熱的部分,則熱泵機(jī)組在原蓄熱水箱供熱階段多產(chǎn)熱17 046.10 MJ,平均多耗電4 058.60 MJ,即1 127.39 kW·h,各電價(jià)期增加運(yùn)行費(fèi)用總和為1 163.20元;各水泵運(yùn)行時(shí)間為24 h,水泵運(yùn)行費(fèi)用為217.72元。則不采用蓄能裝置的地下水源熱泵空調(diào)系統(tǒng)共增加運(yùn)行費(fèi)用689.85 元,全天總計(jì)為2 273.74 元。

以2017年2月9日為代表,水蓄能型地下水源熱泵空調(diào)系統(tǒng)與不采用蓄能裝置的地下水源熱泵空調(diào)系統(tǒng)運(yùn)行費(fèi)用降低了689.85元,節(jié)省了約30.34%的費(fèi)用,經(jīng)濟(jì)效益顯著。

4 植物工廠水蓄能型地下水源熱泵供熱系統(tǒng)周年運(yùn)行的節(jié)能、經(jīng)濟(jì)和環(huán)保效益

4.1 植物工廠水蓄能型地下水源熱泵供熱系統(tǒng)年運(yùn)行節(jié)能特性

將系統(tǒng)與可能適合的冷水機(jī)組與燃煤鍋爐配套和冷水機(jī)組與燃?xì)忮仩t配套2個(gè)方案進(jìn)行冬季運(yùn)行節(jié)能性分析和比較,進(jìn)一步探討水蓄能型地下水源熱泵式空調(diào)系統(tǒng)的優(yōu)越性。

1)系統(tǒng)一次能源消耗

式中¢為系統(tǒng)實(shí)際功耗,kJ;1為發(fā)電效率,2為輸配電效率,本文根據(jù)中國(guó)現(xiàn)有發(fā)電和輸配電平均水平進(jìn)行估算,1、2分別取35%和90%。

2)一次能源利用系數(shù)

供熱季節(jié),不論何種加溫方式均消耗一次能源,用能源利用系數(shù)來(lái)反映不同加溫方式的能量轉(zhuǎn)化效率具有可比性。計(jì)算公式如下

3)節(jié)能率

節(jié)能率又稱系統(tǒng)一次能耗節(jié)能率,根據(jù)要比較的2種系統(tǒng)的一次能耗,以另一種系統(tǒng)的一次能耗為基礎(chǔ),可以算出節(jié)能率E

式中1為水蓄能型地下水源熱泵空調(diào)系統(tǒng)一次能耗,kJ;2為待比較系統(tǒng)的一次能耗,kJ。

通過(guò)上述計(jì)算公式,分別計(jì)算3種不同供能方式一年內(nèi)的一次能源消耗、一次能源利用系數(shù)和節(jié)能率,計(jì)算結(jié)果見(jiàn)表3。

表3 系統(tǒng)節(jié)能性分析(年)

從表3可以看出,水蓄能型地下水源熱泵空調(diào)系統(tǒng)一次能源利用系數(shù)0.99,相對(duì)于冷水機(jī)組與燃煤鍋爐配套系統(tǒng)和冷水機(jī)組與燃?xì)忮仩t配套系統(tǒng)的節(jié)能率分別為81.05%和74.83%。

4.2 與傳統(tǒng)供熱方式比較加溫期系統(tǒng)運(yùn)行能耗、CO2排放量和成本

為進(jìn)一步研究水蓄能型地下水源熱泵供熱系統(tǒng)運(yùn)行能耗優(yōu)勢(shì),以崇明21 000 m2自然光植物工程工廠為例,分別采用水源熱泵、燃煤、柴油、天然氣和電鍋爐的方式為植物工廠供熱,維持加溫期持續(xù)運(yùn)行,從加溫期運(yùn)行成本和CO2排放量進(jìn)行對(duì)比分析;經(jīng)運(yùn)行統(tǒng)計(jì),加熱耗電量195 kW·h/(m2·a)。不同供熱方式的運(yùn)行能耗、成本與CO2排放量計(jì)算結(jié)果見(jiàn)表4。

與水蓄能型地下水源熱泵系統(tǒng)相比,冬季以燃煤(700元/t)、燃?xì)猓?.6元/m3)、燃油(8.8元/kg)方式為植物工廠加熱的成本分別是水蓄能型地下水源熱泵系統(tǒng)的1.25倍、2.93倍、5.08倍,而CO2排放量分別是水蓄能型地下水源熱泵系統(tǒng)2.32、1.19、0.88倍。

表4 崇明自然光植物工廠加溫期不同供熱方式的運(yùn)行能耗、成本與CO2排放量

5 結(jié) 論

本文研究對(duì)象水蓄能型地下水源熱泵式供能系統(tǒng),為植物工廠加溫的實(shí)際運(yùn)行穩(wěn)定,具有良好的經(jīng)濟(jì)和環(huán)保效益。

1)冬季利用水蓄能型地下水源熱泵式供熱系統(tǒng)加溫可以維持室內(nèi)溫度在17~26 ℃之間,白天受太陽(yáng)輻射影響,甚至可以達(dá)到28 ℃;系統(tǒng)穩(wěn)定運(yùn)行時(shí),熱泵機(jī)組全天供熱量與耗電量比值在4.2左右,說(shuō)明系統(tǒng)運(yùn)行高效平穩(wěn)。

2)系統(tǒng)連續(xù)運(yùn)行階段,在電價(jià)低谷時(shí),熱泵機(jī)組邊供熱邊蓄熱,在電價(jià)高峰期,充分利用蓄熱水箱供熱,在電價(jià)平端時(shí),根據(jù)蓄能水箱蓄能量和植物工廠負(fù)荷調(diào)控。水蓄能型地下水源熱泵式供熱系統(tǒng)典型日全天供熱量與耗電量比值為3.17;系統(tǒng)比不蓄能地下水源熱泵系統(tǒng)可以節(jié)省30.34%的費(fèi)用。說(shuō)明此系統(tǒng)可以移峰填谷,避免電價(jià)高峰期高負(fù)荷運(yùn)行,大大降低運(yùn)行費(fèi)用。

3)水蓄能型地下水源熱泵式供熱系統(tǒng)一次能源利用系數(shù)0.99,相對(duì)于燃煤鍋爐系統(tǒng)和燃?xì)忮仩t系統(tǒng),節(jié)能率分別為81.05%和74.83%;計(jì)算不同能源冬季加熱成本和CO2排放量,燃煤、燃?xì)夂腿加偷倪\(yùn)行成本分別是該系統(tǒng)的1.25、2.93和5.08倍,CO2排放量分別是該系統(tǒng)的2.32、1.19、0.88倍,說(shuō)明該系統(tǒng)具有很好的節(jié)能減排效益。

[1] 曲云霞,張林華,方肇洪,等. 地下水源熱泵及其設(shè)計(jì)方法[J]. 可再生能源,2002(6):11-14. Qu Yunxia, Zhang Linhua, Fang Zhaohong, et al. The study and design on ground water heat pumps[J]. Renewable Energy Resouce, 2002(6): 11-14. (in Chinese with English abstract)

[2] 王吉慶. 水源熱泵調(diào)溫溫室研制及試驗(yàn)研究[D]. 鄭州:河南農(nóng)業(yè)大學(xué),2003.

Wang Jiqing. Development and Experimental Study of Water Source Heat Pump Temperature Control Greenhouse[D]. Zhengzhou: Henan Agricultural University, 2003.

[3] Van Ooteghem R J C. Optimal Control Design for a Solar Greenhouse[D]. Wageningen:Wageningen University, 2007.

[4] Chai L, Ma C, Ni J. Performance evaluation of ground source heat pump system for greenhouse heating in northern China[J]. Biosystems Engineering, 2012, 111(1): 107-117.

[5] 王吉慶,張百良. 水源熱泵在溫室加溫中的應(yīng)用研究[J]. 中國(guó)農(nóng)學(xué)通報(bào),2005,21(6):415-419. Wang Jiqing, Zhang Bailiang. Experiment of water heat pump in greenhouse heating[J]. Chinese Agricultural Science Bulletin, 2005, 21(6): 415-419. (in Chinese with English abstract)

[6] Andrew Chiasson, Design P E. Installation of a new down hole heat exchanger for direct use space heating[R]. Ghc Bulletin, 2005: 20-24.

[7] 方慧,楊其長(zhǎng),王柟,等. 淺層地?zé)嵩垂?jié)能技術(shù)及其在設(shè)施農(nóng)業(yè)中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(10):286-290. Fang Hui, Yang Qichang, Wang Nan, et al. Geothermal technology and its applications in protected agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2008,24(10): 286-290. (in Chinese with English abstract)

[8] 田豐果,賀榮,孫鐵方,等. 水源熱泵在溫室大棚溫度調(diào)節(jié)中的應(yīng)用[J]. 北方園藝,2008(12):91-93. Tian Fengguo, He Rong, Sun Tiefang, et al. Water source heat pump applied to thermoregulation of greenhouse[J]. Northern Horticulture, 2008(12): 91-93. (in Chinese with English abstract)

[9] 方慧,楊其長(zhǎng),孫驥. 地源熱泵—地板散熱系統(tǒng)在溫室冬季供暖中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(12):145-149. Fang Hui, Yang Qichang, Sun Ji. Application of ground-source heat pump and floor heating system to greenhouse heating in winter[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2008, 24(12): 145-149. (in Chinese with English abstract)

[10] 柴立龍,馬承偉,張曉蕙,等. 地源熱泵溫室降溫系統(tǒng)的試驗(yàn)研究與性能分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(12):150-154.Chai Lilong, Ma Chengwei, Zhang Xiaohui, et al. Experimental investigation and performance analysis on ground source heat pump system for greenhouse cooling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(12): 150-154. (in Chinese with English abstract)

[11] 趙建成,張海濤,安愛(ài)明,等. 地下水地源熱泵與水蓄能設(shè)計(jì)實(shí)例的經(jīng)濟(jì)分析[C]//全國(guó)暖通空調(diào)制冷2006年學(xué)術(shù)年會(huì),合肥,2006.

[12] 柴立龍,馬承偉,張義,等. 北京地區(qū)溫室地源熱泵供暖能耗及經(jīng)濟(jì)性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(3):249-254. Chai Lilong, Ma Chengwei, Zhang Yi, et al. Energy consumption and economic analysis of ground source heat pump used in greenhouse in Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 249-254. (in Chinese with English abstract)

[13] 曹文龍,程希. 水源熱泵系統(tǒng)在日光溫室中的應(yīng)用效益分析[J]. 農(nóng)業(yè)科技與裝備,2010(4):38-39.

Cao Wenlong, Cheng Xi. Beneficial analysis of the application of water source heat pump in sunlight greenhouse[J]. Agriculturl Science & Technology Equipment, 2010(4): 38-39.

[14] 柴立龍,馬承偉,袁小艷,等. 基于Exergy研究的地源熱泵降溫系統(tǒng)性能分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(2):146-150. Chai Lilong, Ma Chengwei, Yuan Xiaoyan, et al. Performance analysis on ground source heat pump cooling system based on energy research[J]. Transactions of The Chinese Society for Agricultural Machinery, 2009, 40(2): 146-150. (in Chinese with English abstract)

[15] Mehmet Esen, Tahsin Yuksel. Experimental evaluation of using various renewable energy sources for heating a greenhouse[J]. Energy and Buildings, 2013, 65: 340-351.

[16] 柴立龍,馬承偉. 玻璃溫室地源熱泵供暖性能與碳排放分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(1): 185-191. Chai Lilong, Ma Chengwei. Performance and carbon emission analysis on glass-covering greenhouse heating with ground source heat pump technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 185-191. (in Chinese with English abstract)

[17] 孫維拓,張義,楊其長(zhǎng),等. 溫室主動(dòng)蓄放熱-熱泵聯(lián)合 加溫系統(tǒng)熱力學(xué)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(14):179-188. Sun Weituo, Zhang Yi, Yang Qichang, et al. Thermodynamic analysis of active heat storage-release associated with heat pump heating system in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 179-188. (in Chinese with English abstract)

[18] Bartzanas T, Tchamitchian M, Kittas C. Influence of the heating method on greenhouse microclimate and energy consumption[J]. Biosystems Engineering, 2005, 91(4): 487-499.

[19] 蔡軍. 基于CFD的溫室水源熱泵控制系統(tǒng)研究[D]. 杭州:浙江工業(yè)大學(xué),2010. Cai Jun. Research on Water-source Heat Pump Control System of Greenhouse based on CFD[D]. Hangzhou: Zhejiang University of Technology, 2010. (in Chinese with English abstract)

[20] 吳曼玲,陳一飛,李琦,等. 基于灰色預(yù)測(cè)的溫室地源熱泵系統(tǒng)溫度變頻調(diào)控及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(16):183-187. Wu Manling, Chen Yifei, Li Qi, et al. Frequency transformation and its validation of ground source heat pump system based on grey predicti[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 183-187. (in Chinese with English abstract)

[21] 錢堃,張欽. 結(jié)合水蓄能的地源熱泵系統(tǒng)經(jīng)濟(jì)性分析[J]. 制冷與空調(diào),2013,13(7):96-102. Qian Kun, Zhang Qin. Economic analysis of ground-source heat pump combined with water energy storage system[J]. Refrigeration and Air-donditioning, 2013, 13(7): 96-102. (in Chinese with English abstract)

[22] 李馳,余岳峰. 地源熱泵與蓄能系統(tǒng)優(yōu)化配置的設(shè)計(jì)[J]. 電力與能源,2011,32(5):413-417. Li Chi, Yu Yuefeng. Design and research on optimum distribution of the system of ground source heat pump and energy storage[J]. Power & Energy, 2011, 32(5): 413-417. (in Chinese with English abstract)

[23] 孫行健,石惠嫻,陳慧子,等. 蓄能型地源熱泵式植物工廠供能系統(tǒng)[J]. 節(jié)能技術(shù),2015,33(2):125-130. Sun Xingjian, Shi Huixian, Chen Huizi, et al. Ground source heat pump with storage system of the plant factory[J]. Energy Conservation Technology, 2015, 33(2): 125-130. (in Chinese with English abstract)

[24] 盧晗. 地源熱泵與水蓄能復(fù)合系統(tǒng)的研究[D]. 濟(jì)南:山東建筑大學(xué),2012. Lu Han. Study on Ground-Source Heat Pump Combined with Water Storage Air-Conditioning System[D]. Jinan:Shandong University of Architecture,2012. (in Chinese with English abstract)

[25] 齊月松,岳玉亮,劉天一. 地源熱泵結(jié)合水蓄能系統(tǒng)應(yīng)用分析[J]. 暖通空調(diào),2010,40(5):94-97. Qi Yuesong, Yue Yuliang, Liu Yitian. Application analysis of combined ground-source heat pump and water energy srorage systems[J]. Heating Ventilating & Air Conditioning. 2010, 40(5): 94-97. (in Chinese with English abstract)

[26] 左睿,蔣綠林,高偉,等. 地?zé)峒夹g(shù)在溫室供暖中的應(yīng)用[J]. 安徽農(nóng)業(yè)科學(xué),2009,37(13):6139-6140. Zuo Rui, Jiang Lülin, Gao Wei, et al. Application of geothermal technology in greenhouse heating[J]. Journal of Anhui Agricultural Sciences,2009, 37(13): 6139-6140. (in Chinese with English abstract)

[27] Edward Foulds, Muditha Abeysekera, Wu Jianzhong. Modelling and analysis of a ground source heat pump combined with a PV-T and earth energy storage system[J]. Energy Procedia, 2017, 142: 886-891.

[28] Emanuele Bonamente, Andrea Aquino, Franco Cotana. A PCM thermal storage for ground-source heat pumps: Simulating the system performance via CFD approach[J]. Energy Procedia, 2016, 101: 1079-1086.

[29] Hüseyin Benli. Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating[J] Energy Conversion and Management, 2011, 52(1): 581-589.

[30] 胡濤,周群,肖仁政,等. 水蓄能地源熱泵系統(tǒng)的一種在線優(yōu)化運(yùn)行控制[J]. 太陽(yáng)能學(xué)報(bào),2018,39(2):496-503. Hu Tao, Zhou Qun, Xiao Renzheng, et al. An online optimal operation control of ground source heat pump system with water heat storage[J].Acta Energiae Solaris Sinica, 2018, 39(2): 496-503. (in Chinese with English abstract)

[31] 呂藝青,傅允準(zhǔn). 地源熱泵系統(tǒng)夏季制冷間歇運(yùn)行特性實(shí)驗(yàn)研究[J]. 太陽(yáng)能學(xué)報(bào),2018,39(2):453-460. Lü Yiqing, Fu Yunzhun. Experimental research of performance for refrigation intermittent operation in summer of GSHP system[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 453-460. (in Chinese with English abstract)

[32] Li Huai, Xu Wei, Yu Zhen, et al. Discussion of a combined solar thermal and ground source heat pump system operation strategy for office heating[J]. Energy and Buildings, 2018, 162: 42-53.

[33] Yang Weibo, Zhang Heng, Liang Xingfu. Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes[J]. Energy, 2018, 149: 173-189.

[34] Lü Junxin, Wei Zhang, Zhang Jiaqi. Running and economy performance analysis of ground source heat pump with thermal energy storage devices[J]. Energy and Buildings, 2016, 127: 1108-1116.

[35] 劉振,秦朝葵. 上海地區(qū)溫室供暖耗氣量計(jì)算[J]. 城市燃?xì)猓?016(10):9-14. Liu Zhen, Qin Chaokui. Gas consumption of greenhouse heating in Shanghai[J]. Chengshi Ranqi, 2016(10): 9-14. (in Chinese with English abstract)

Research on energy-saving operating characteristics of water storage groundwater source heat pump heating system in plant factory

Shi Huixian, Ren Yike, Meng Xiangzhen, Chen Huizi, Ouyang Sanchuan, Zhou Qiang

(,200092,)

The groundwater source heat pump has high efficiency and environmental protection in greenhouse temperature control. The operating energy consumption can be further reduced if the water storage technology were combined. It was researched which energy-saving operating characteristics a water storage groundwater source heat pump heating system has in this study, taking the example of the natural light plant factory in Shanghai. The total area was 21 000 m2, of which the heating area was 5 880 m2. The heating system included a groundwater heat exchange system, a heat pump unit, an air handling unit, and an energy storage system. Considering the change in electricity price and the change in heat load over time, the operating mode of the heating system is intermittent operation. At the time of power trough, the heat pump unit was fully open and energy was stored in the tank while heating. At the peak of power, the heat pump unit was stopped and the system made full use of the hot water tank for heating. At the time of the level section, reasonable regulation was carried out according to the stored energy of the hot water storage tank and the plant heat load demanded. The typical operating week,F(xiàn)ebruary 8th to 15th in 2017,was selected from the winter heating months. The operation data of the typical week was recorded and analyzed. The outdoor temperature,the solar radiation intensity,the indoor temperature,the indoor relative humidity and the COP(ratio of heat supply to power consumption) of the heat pump were all tested every 5 minutes on the typical week. The result shows that in winter, the groundwater source heat pump with energy storage tank heating system could better maintain the indoor temperature between 17 and 26 ℃. The indoor temperature was relatively low at night, but it could meet the growth demand of the crop at winter. The influence of solar radiation was large, and the indoor temperature was basically above 22 ℃, and even reached 28 ℃. The indoor relative humidity was always between 60% and 88%, which could avoid indoor high temperature with high humidity. When the system was in stable operation, the heat pump unit COP(coefficient of performance)was about 4.2. The day of February 9th, 2017 was selected from the typical week. On the typical day,it was cloudy and the temperature was below 4 ℃ throughout the day; the solar radiation intensity was 0-160 W/m2and the average solar radiation intensity was 62 W/m2. The total power consumption of the system was 10 142.71 MJ, and the COP of the system was 3.17. It was further explained for the system characteristics of high efficiency and good stability. Compared with non-storage ground source heat pump system,the groundwater source heat pump with water energy storage system saved 30.34% of the cost on the typical day. The significant economic benefit of the test system was showed. During the continuous heating period in winter, for the test heating system, the primary energy utilization coefficient was 0.99. And compared with cold water unit and coal-fired boiler supporting system and chiller and gas boiler supporting system, energy saving rate were respectively 81.05% and 74.83%. Different energy heating costs were compared. For the operating cost, the coal, gas and fuel methods are 1.25, 2.93 and 5.08 times of the test heating system. And for the CO2emission, they were 2.32, 1.19, and 0.88 times of the test heating system. Practice shows that the groundwater source heat pump with water energy storage system has good economic and environmental benefit, which can not only reduce the operating costs, but also make full use of geothermal energy and be beneficial to energy conservation.

thermal energy; pumps; energy saving; natural light plant factory; groundwater source heat pump; water storage; heating system

石惠嫻,任亦可,孟祥真,陳慧子,歐陽(yáng)三川,周 強(qiáng).植物工廠水蓄能型地下水源熱泵供熱系統(tǒng)節(jié)能運(yùn)行特性研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(23):157-163. doi:10.11975/j.issn.1002-6819.2018.23.019 http://www.tcsae.org

Shi Huixian, Ren Yike, Meng Xiangzhen, Chen Huizi, Ouyang Sanchuan, Zhou Qiang. Research on energy-saving operating characteristics of water storage groundwater source heat pump heating system in plant factory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 157-163. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.23.019 http://www.tcsae.org

2018-06-22

2018-10-05

國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)項(xiàng)目(2013AA103006-02)

石惠嫻,副教授,博士,主要從事農(nóng)業(yè)設(shè)施領(lǐng)域可再生能源應(yīng)用研究。Email:huixian_shi@#edu.cn

10.11975/j.issn.1002-6819.2018.23.019

S215;S625.4

A

1002-6819(2018)-23-0157-07

猜你喜歡
水蓄源熱泵熱泵
燃?xì)鈾C(jī)熱泵與電驅(qū)動(dòng)熱泵技術(shù)經(jīng)濟(jì)性實(shí)測(cè)對(duì)比
煤氣與熱力(2022年4期)2022-05-23 12:44:44
暖通空調(diào)設(shè)計(jì)中地源熱泵實(shí)踐
空氣源熱泵用于天然氣加熱的經(jīng)濟(jì)環(huán)保性
煤氣與熱力(2021年9期)2021-11-06 05:22:54
空氣源熱泵供暖期耗電量計(jì)算
煤氣與熱力(2021年6期)2021-07-28 07:21:18
面向?qū)ο蠓椒ㄔ谒罾銹LC編程中應(yīng)用分析
電子制作(2019年7期)2019-04-25 13:18:00
水車
地源熱泵系統(tǒng)的研究與應(yīng)用
水循環(huán)高效礦井乏風(fēng)熱泵系統(tǒng)分析與應(yīng)用
同煤科技(2015年4期)2015-08-21 12:51:02
熱泵在熱電聯(lián)產(chǎn)中的應(yīng)用
河南科技(2015年15期)2015-03-11 16:25:52
清潔能源——水蓄能與水源熱泵技術(shù)耦合系統(tǒng)在建筑中應(yīng)用
侯马市| 沙湾县| 肇源县| 永顺县| 湘阴县| 包头市| 桑日县| 安陆市| 衡水市| 宜良县| 高平市| 巫溪县| 东乌珠穆沁旗| 凤庆县| 石城县| 长沙县| 凤山县| 苗栗县| 铁力市| 嘉兴市| 惠东县| 永城市| 桐庐县| 扬州市| 广灵县| 城固县| 平乐县| 磐石市| 昌吉市| 永平县| 临汾市| 和平县| 正定县| 邹平县| 刚察县| 康定县| 乌审旗| 平和县| 会昌县| 浠水县| 兖州市|