劉 楊,閆志英,姬高升,許力山,房俊楠, 曾 勇,宦臣臣,佟欣宇
?
水稻秸稈序批式干發(fā)酵產(chǎn)沼氣中試及其動力學(xué)研究
劉 楊1,2,3,閆志英1,2※,姬高升1,2,許力山1,2,房俊楠1,2,3, 曾 勇1,2,宦臣臣1,2,佟欣宇1,2
(1.中國科學(xué)院環(huán)境與應(yīng)用微生物重點實驗室,成都 610041;2. 環(huán)境微生物四川省重點實驗室,成都 610041; 3. 中國科學(xué)院大學(xué),北京 100049)
干發(fā)酵處理有機廢棄物或生物質(zhì)廢棄物等具有處理量大,用水量少,處理周期短等優(yōu)勢。該試驗以水稻秸稈為原料(269 kg,TS為89.19% ±0.24%),用沼液(500 kg)調(diào)節(jié)水稻秸稈含水率至67.58%,覆膜堆漚3 d,并以運行良好沼氣池污泥為接種物(300 kg,接種量為28.06%,TS為1.88±0.07%),室溫(30~35 ℃)條件下進行周期為55 d的干發(fā)酵中試試驗。試驗結(jié)果表明:反應(yīng)55 d后,秸稈累積產(chǎn)氣量為308.20 m3/t,累積產(chǎn)甲烷量為167.44 m3/t,最高甲烷體積分數(shù)達57.88%,最大日產(chǎn)氣量為2.33 m3。通過Gompertz 模型對水稻秸稈產(chǎn)甲烷曲線進行擬合,擬合出的產(chǎn)甲烷潛力值和實際的產(chǎn)甲烷潛力值很接近,2為0.990 7,顯示出較高的準確性。該研究可為序批式干發(fā)酵法處理水稻秸稈提供理論依據(jù)和指導(dǎo)。
秸稈;沼氣;動力學(xué);干發(fā)酵;降解
中國是農(nóng)業(yè)生產(chǎn)大國,農(nóng)作物秸稈資源非常豐富,但資源化利用率卻很低。通過中國主要作物產(chǎn)量和谷草比計算[1],2014年中國農(nóng)作物秸稈理論總產(chǎn)量為8.97億t,可收集部分為7.69億t,可資源化利用部分為1.86億t,僅占秸稈總產(chǎn)量的20.74%。中國農(nóng)作物秸稈主要包括水稻秸稈、玉米秸稈和小麥秸稈,占秸稈總量的75%[2-3]。這些作物秸稈富含木質(zhì)纖維素,不易被降解,大部分被直接丟棄或焚燒,不僅造成資源浪費,而且對環(huán)境造成極大破壞[4]。近年來,隨著社會的發(fā)展和進步,環(huán)境問題和能源問題越來越受到國家關(guān)注,秸稈的無害化處理和資源化利用迫在眉睫,有效秸稈處理技術(shù)的開發(fā)不僅有重大生態(tài)效益,也有較大經(jīng)濟效益[5]。
目前中國對作物秸稈資源利用和開發(fā)的方式多種多樣,其中厭氧消化產(chǎn)沼氣是一種清潔且高效的資源化利用方式[6-7]。秸稈厭氧消化產(chǎn)沼氣可將作物秸稈轉(zhuǎn)變?yōu)榍鍧嵉?、便于利用的甲烷,產(chǎn)生的副產(chǎn)物沼渣和沼液,因其富含氮和磷等植物營養(yǎng)元素,是優(yōu)質(zhì)的有機肥料,可用于農(nóng)業(yè)生產(chǎn),能有效地提高作物產(chǎn)量[8]。厭氧消化可分為濕發(fā)酵和干發(fā)酵,現(xiàn)階段中國處理作物秸稈的方式主要為濕發(fā)酵,但濕法酵處理秸稈,存在裝置規(guī)模較大、秸稈易結(jié)殼、攪拌耗能大、沼液量大難處理等問題[9]。而干發(fā)酵,以作物秸稈、畜禽糞便或是垃圾等有機物為原料(干物質(zhì)TS質(zhì)量分數(shù)為20%~40%),通過厭氧菌降解利用,轉(zhuǎn)變?yōu)榧淄椤⒍趸嫉葰怏w的過程[10]。干發(fā)酵原料的干物質(zhì)濃度高而導(dǎo)致的進出料難、傳熱傳質(zhì)不均勻、易酸中毒等問題,是限制沼氣干發(fā)酵的技術(shù)難點,對此國內(nèi)外都在進行深入研究[11]。Mustafa等[12]用蕈菌和里氏木霉預(yù)處理稻草后進行厭氧消化,發(fā)現(xiàn)2種方式預(yù)處理后的稻草甲烷產(chǎn)率分別提高120%和78.3%。Guendouz等[13]設(shè)計了漿式混合厭氧消化反應(yīng)器,進行實驗室試驗和現(xiàn)場試驗,發(fā)現(xiàn)實驗室試驗?zāi)軠蚀_地模擬現(xiàn)場試驗,并指出微生物對發(fā)酵原料的適應(yīng)性和干發(fā)酵反應(yīng)的操作條件。于佳動等[14]以玉米秸稈和牛糞為原料進行干發(fā)酵,研究不同含固率、物料配比、接種物濃度、秸稈粒徑,以及噴淋頻率、噴淋量等因素對厭氧干發(fā)酵的影響,發(fā)現(xiàn)噴淋頻率、接種物濃度對厭氧干發(fā)酵產(chǎn)沼氣有關(guān)鍵作用。何榮玉等[15]研究復(fù)合菌劑預(yù)處理秸稈和添加沼氣發(fā)酵促進劑對秸稈干發(fā)酵的影響,發(fā)現(xiàn)預(yù)處理的同時添加沼氣發(fā)酵促進劑,能明顯提高沼氣產(chǎn)氣量。本研究以水稻秸稈進行序批式干發(fā)酵產(chǎn)沼氣試驗,探究秸稈干發(fā)酵產(chǎn)氣效果并對其進行動力學(xué)分析。根據(jù)實驗室預(yù)試驗結(jié)果,進行中試規(guī)模放大試驗,為水稻秸稈干發(fā)酵處理技術(shù)的推廣和使用提供試驗基礎(chǔ)。
供試發(fā)酵原料為水稻秸稈,取自成都市雙流區(qū)永安鎮(zhèn)農(nóng)戶。水稻秸稈為陳放秸稈,經(jīng)粉碎機粉碎,粒徑為1~2 cm,裝袋備用。接種物為沼氣池污泥,取自成都市雙流區(qū)永安鎮(zhèn)沼氣站內(nèi)正常產(chǎn)氣的戶用沼氣池,產(chǎn)沼氣中甲烷體積分數(shù)達60%以上。水稻秸稈和接種物理化性質(zhì)如表1所示。
表1 水稻秸稈和接種物的特性
中試試驗為鐵質(zhì)車庫式反應(yīng)器(圖1),有效體積 6 m3,裝料體積2 m3,裝置底部中央鋪設(shè)濾板,濾孔孔徑為0.5 cm,頂部設(shè)有工字型噴淋裝置,外部有保溫層;反應(yīng)裝置還包括濾液池,有效體積為3 m3的密閉容器,位于反應(yīng)器底面下方,濾液在重力作用下從反應(yīng)器中流入濾液池,濾液經(jīng)循環(huán)泵可進入反應(yīng)器噴淋物料,達到循環(huán)噴淋的效果;反應(yīng)器和濾液池產(chǎn)生的沼氣用不同的氣袋收集,并用沼氣流量計計量。
圖1 中試試驗裝置圖
基于實驗室預(yù)試驗結(jié)果確定中試試驗條件。由于現(xiàn)場條件受限,難以精準控制35 ℃恒溫條件,因此試驗在室溫30~35 ℃條件下進行,反應(yīng)裝置設(shè)有加熱和保溫裝置,可保證試驗在相對穩(wěn)定條件下進行[16]。現(xiàn)場試驗以水稻秸稈為原料(269 kg,TS為89.19% ±0.24%),用沼液(500 kg)調(diào)節(jié)水稻秸稈含水率至67.58%,覆膜堆漚3 d,并以運行良好沼氣池污泥為接種物(300 kg,接種量為28.06%,TS為1.88%±0.07%),混勻,裝填至反應(yīng)器中并密封反應(yīng)器。發(fā)酵第2天起進行濾液噴淋,每天3次,試驗周期為55 d。
每天定時用100 mL氣袋采集氣體樣品和50 mL離心管采集滲濾液樣品。通過測量產(chǎn)氣量、產(chǎn)氣濃度、pH值、氨氮濃度、揮發(fā)性有機酸(volatile fatty acid,VFA)以及纖維素、半纖維素、木質(zhì)素等物質(zhì)的變化,探究水稻秸稈干發(fā)酵產(chǎn)沼氣的效果,并對試驗結(jié)果進行動力學(xué)分析。
總固體、揮發(fā)性固體:烘干法;pH值:METTLER FE28型酸度計;氨氮濃度:TU-1810SPC紫外可見分光度計[17];半纖維素、纖維素、木質(zhì)素:范氏法[18];甲烷濃度:安捷倫7890A氣相色譜分析儀;揮發(fā)性有機酸:安捷倫6890N氣相色譜分析儀[19];采用掃描電子顯微鏡對發(fā)酵前后的水稻秸稈結(jié)構(gòu)進行分析,發(fā)酵前后的水稻秸稈 70 ℃烘干12 h,粉碎機粉碎后過0.18 mm篩子,取少量固定于載物臺上,然后在VEGE TS5136XM掃描電子顯微鏡下觀察和拍照。
對水稻秸稈干發(fā)酵產(chǎn)沼氣試驗過程進行動力學(xué)分析,采用修正Gompertz方程擬合累計甲烷產(chǎn)甲烷曲線[20-21]。
exp{-exp[R×e()1]}
式中為時刻的累計甲烷產(chǎn)氣量,L/kg;為最終甲烷產(chǎn)氣量,L/kg;R為最大產(chǎn)甲烷速率,L/(kg·d);為延滯期,d。、和R通過干發(fā)酵試驗數(shù)據(jù)擬合得到。
水稻秸稈富含各種有機物,主要為木質(zhì)纖維素類物質(zhì),微生物能將其中木質(zhì)纖維素等有機物降解消化,生成氫、有機酸等物質(zhì),這些物質(zhì)被產(chǎn)甲烷菌轉(zhuǎn)化利用,生成CH4、CO2、H2S、氫等氣體。干發(fā)酵前后水稻秸稈木質(zhì)纖維素的變化見表2。
從表2中可以看出,水稻原料中木質(zhì)纖維素總質(zhì)量分數(shù)達74.64%,經(jīng)堆漚預(yù)處理和厭氧消化后,木質(zhì)纖維素含量明顯降低,秸稈預(yù)處理后,木質(zhì)纖維素降解了31.27%,厭氧消化后,水稻秸稈木質(zhì)纖維素降解了66.39%。半纖維素和纖維素變化較大,秸稈中半纖維素降解了83.06%,纖維素降解69.23%。秸稈中木質(zhì)素變化不大,降解的是半纖維素和纖維素,這由其物質(zhì)結(jié)構(gòu)決定。半纖維素由2種或2種以上糖基通過糖苷鍵而形成的側(cè)鏈或支鏈結(jié)構(gòu)的非均一高聚糖,纖維素由D-葡萄糖基通過糖苷鍵連接聚合而成的多糖,這2種成分結(jié)構(gòu)相對簡單,易被細菌利用,而木質(zhì)素含多種芳香環(huán)類物質(zhì),結(jié)構(gòu)復(fù)雜多樣,對微生物腐蝕具有較強抗性,不易被降解利用[22]。
表2 水稻秸稈木質(zhì)纖維素變化
對水稻秸稈原料、堆漚預(yù)處理后和發(fā)酵后秸稈進行電鏡掃描,結(jié)果如圖2所示。
圖2 水稻秸稈木質(zhì)纖維素變化電鏡圖(×1000)
由圖2a可以看出,水稻秸稈原料未經(jīng)過任何處理,秸稈表面光滑平整、結(jié)構(gòu)規(guī)整致密;堆漚后秸稈蠟質(zhì)層遭到部分破壞,表面變得粗糙、致密結(jié)構(gòu)被破壞,變得疏松(圖2b);由圖2c看出,發(fā)酵后水稻秸稈蠟質(zhì)層被完全破壞,內(nèi)部纖維結(jié)構(gòu)也被破壞,出現(xiàn)很多的斷層,比堆漚預(yù)處理后水稻秸稈破壞的更徹底[19]。說明堆漚預(yù)處理破壞了水稻秸稈阻礙微生物腐蝕的蠟質(zhì)層和致密的纖維結(jié)構(gòu),為厭氧微生物創(chuàng)造利用秸稈內(nèi)部纖維類有機物的條件,使后續(xù)發(fā)酵試驗快速進入產(chǎn)氣階段[23]。
試驗共運行55 d,產(chǎn)氣效果如圖3a~3c所示。從圖3a中看出,甲烷體積分數(shù)先迅速上升至30%,稍微波動后達到50%,并逐漸上升,第31天達到最大59.22%,隨后在55%左右波動。由圖3b可知,日產(chǎn)氣量在第4天達到最大產(chǎn)量2.33 m3,下降后在第18天達到第2峰值1.7 m3,之后逐漸下降。整個試驗累積產(chǎn)氣量為308.20 m3/t,累積產(chǎn)甲烷量為167.44 m3/t(圖3c)。
甲烷體積分數(shù)和日產(chǎn)氣量是厭氧消化過程運行中的重要參數(shù)[24]。此試驗甲烷體積分數(shù)較高且日產(chǎn)氣量迅速達到產(chǎn)氣高峰,說明厭氧消化過程良好運行。水稻原料經(jīng)預(yù)處理后,秸稈完整、致密結(jié)構(gòu)變疏松,其纖維中的碳水化合物迅速轉(zhuǎn)化為單糖類物質(zhì),易被厭氧消化菌及產(chǎn)甲烷菌利用,快速產(chǎn)生沼氣且甲烷體積分數(shù)較 高[2,4,16,24]。實際沼氣工程應(yīng)用中,為保證優(yōu)質(zhì)接種活性污泥和工程穩(wěn)定運行,需花費大量時間培養(yǎng)馴化接種物,導(dǎo)致工程啟動時間較長[25]。而此試驗對接種物要求低,僅需預(yù)處理原料,就能快速啟動、到達產(chǎn)氣高峰,具有較強的實際應(yīng)用價值。
圖3 水稻秸稈序批式干發(fā)酵特性
發(fā)酵過程中的pH值、氨氮質(zhì)量濃度和總揮發(fā)性有機酸濃度變化如圖3d~3f所示。發(fā)酵過程的pH值變化如圖3d,由圖3d可看出 pH值呈現(xiàn)出先下降后上升再穩(wěn)定的變化。在第10天下降至最低6.52,之后逐漸上升,最后在7.0左右波動。畢少杰等[26]的研究表明,厭氧消化反應(yīng)過程pH值在6.5~8.5范圍內(nèi)是正常的,因為產(chǎn)酸菌生長的最適pH值為5.5~8.5,產(chǎn)甲烷菌生長的最適pH值為6.5~7.5。試驗pH值在6.52~7.54范圍內(nèi)波動,這與厭氧消化過程中微生物的最適pH值相一致,在此狀態(tài)下微生物狀態(tài)較好[27]。
氨氮質(zhì)量濃度一直處于波動的變化,變化范圍為0.92~1.76 g/L(圖3e)。雖然波動變化大,但可以看出氨氮質(zhì)量濃度開始在1.2 g/L左右波動,第10天開始上升,升到最大值1.76 g/L后再下降,最終在1.2 g/L左右波動。Wiegant[28]和曹先艷等[29]認為氨氮質(zhì)量濃度在6 g/L以下,不會出現(xiàn)氨抑制。試驗的氨氮濃度遠低于此閾值,屬正常范圍,未形成氨抑制。
圖3f為總揮發(fā)性有機酸含量變化圖。試驗初期總揮發(fā)性有機酸含量迅速上升,第3天出現(xiàn)最大峰值6.43 g/L,再逐漸下降,第45天后基本沒有揮發(fā)性有機酸。任南琪[30]的研究表明,厭氧消化反應(yīng)酸化階段產(chǎn)生總揮發(fā)性有機酸質(zhì)量濃度大于4.5 g/L時,會造成pH值降低,形成酸性環(huán)境,抑制產(chǎn)甲烷菌活性,反應(yīng)過程易崩潰。試驗中總揮發(fā)性有機酸酸質(zhì)量濃度最高超過4.5 g/L,但迅速降至4.5 g/L以下,時間較短,未造成酸抑制[23]。
pH值、氨氮質(zhì)量濃度和總揮發(fā)性有機酸是厭氧消化過程中重要參數(shù),相互之間有著密切聯(lián)系[29]。試驗初期,總揮發(fā)性有機酸迅速累積,反應(yīng)體系的pH值逐漸下降,直至最低點;反應(yīng)繼續(xù)進行,氨氮質(zhì)量濃度上升,改變酸性環(huán)境,反應(yīng)體系pH值上升,并逐漸保持穩(wěn)定。這是因為試驗初期,有機物快速分解,迅速產(chǎn)生大量揮發(fā)性有機酸并逐漸累積,影響反應(yīng)體系的pH值,而體系中存在一定濃度氨氮,能提供弱堿性環(huán)境,增強體系緩沖能力,避免反應(yīng)崩潰[31-32]。結(jié)果表明試驗日產(chǎn)氣量規(guī)律,pH值、氨氮質(zhì)量濃度適合微生物生長,總揮發(fā)性脂肪酸超過4.5 g/L,但快速下降,說明試驗穩(wěn)定運行。
厭氧消化過程中,一定程度上甲烷產(chǎn)量與微生物生長呈函數(shù)關(guān)系。Wang等[24]用修正Gompertz方程對秸稈、豬糞原料單發(fā)酵和共發(fā)酵的產(chǎn)沼氣動力學(xué)進行了分析。王渝昆等[33]采用修正Gompertz方程對接種產(chǎn)甲烷復(fù)合菌劑試驗組和接種活性污泥試驗組進行動力學(xué)分析。本試驗采用修正Gompertz方程模擬和分析水稻秸稈厭氧消化產(chǎn)沼氣動力學(xué)過程。試驗累積產(chǎn)甲烷量擬合結(jié)果如圖4所示。
圖4 水稻秸稈厭氧消化試驗累積產(chǎn)甲烷曲線
從圖4可以看出,試驗結(jié)果擬合最終產(chǎn)甲烷量為170.6 L/kg。與以前所報道的相比,最終產(chǎn)甲烷量偏低[4]。其原因可能是水稻秸稈經(jīng)過堆漚預(yù)處理后,好氧微生物降解和利用部分有機質(zhì),原料損失,水解微生物和產(chǎn)甲烷菌利用的有機質(zhì)減少,產(chǎn)甲烷少[34]。秸稈厭氧消化依賴厭氧微生物中的纖維素降解菌,其產(chǎn)生酶類物質(zhì)降解纖維結(jié)構(gòu),釋放小分子有機物,促進后續(xù)甲烷發(fā)酵,但此過程緩慢,需較長時間進行[35]。試驗55 d后仍產(chǎn)少量沼氣,試驗還未運行完成,擬合出的最終產(chǎn)甲烷量偏低。試驗結(jié)果擬合的最大產(chǎn)甲烷速率為6.1 L/(kg·d),延滯期為8.0 d。預(yù)處理后,水稻秸稈結(jié)構(gòu)被破壞,易利用的有機物質(zhì)暴露出來,被產(chǎn)氫產(chǎn)酸菌降解利用,而此時甲烷菌活性不高,產(chǎn)生沼氣主要為CO2、H2S等氣體,之后產(chǎn)甲烷菌利用有機酸和氫等物質(zhì)產(chǎn)生甲烷[35]。修正Gompertz方程模擬結(jié)果表明,預(yù)處理會損失部分原料,使甲烷最終產(chǎn)量降低,但其能縮短產(chǎn)沼氣進程,顯著提高厭氧消化產(chǎn)沼氣效率,具有一定實際應(yīng)用價值。
1)試驗運行55 d,原料累積產(chǎn)氣量為308.20 m3/t,累積產(chǎn)甲烷量為167.44 m3/t,最高甲烷體積分數(shù)達57.88%;反應(yīng)過程pH值和氨氮質(zhì)量濃度波動小,沼氣中甲烷體積分數(shù)高,此試驗運行良好。
2)試驗結(jié)果通過修正 Gompertz 方程擬合,進行動力學(xué)分析,得到試驗最終產(chǎn)甲烷量為170.6 L/kg,最大產(chǎn)甲烷速率為6.1 L/(kg·d),延滯期為8.0 d。預(yù)處理會損失部分原料,降低最終甲烷產(chǎn)量,但其能促進厭氧消化進程,提高產(chǎn)沼氣效率。
[1] 李想,趙立欣,韓捷,等. 農(nóng)業(yè)廢棄物資源化利用新方向—沼氣干發(fā)酵技術(shù)[J]. 中國沼氣,2006,24(4):23-27. Li Xiang, Zhao Lixin, Han Jie, et al. New direction of agricultural waste resource utilization-biogas dry fermentation technology[J]. China Biogas, 2006, 24(4): 23-27.
[2] 張崇尚,劉樂,陸岐楠,等. 中國秸稈能源化利用潛力與秸稈能源企業(yè)區(qū)域布局研究[J]. 資源科學(xué),2017,39(3): 473-481. Zhang Chongshang, Liu Le, Lu Qinan, et al. Research on China's straw energy utilization potential and regional distribution of straw energy enterprises[J]. Resources Science, 2017, 39(3): 473-481. (in Chinese with English abstract)
[3] Cui M M, Jiang L L, Yan T W. Potential evaluation and market assessment on crop straw resource utilization based on resource density[J]. Journal of China Agricultural University, 2016, 21(6): 117-131.
[4] Liew L N, Shi J, Li Y. Methane production from solid-state anaerobic digestion of lignocellulosic biomass[J]. Biomass and Bioenergy, 2012(46): 125-132.
[5] Hu H X, Ma Y H, Wang Y F, et al. Resource utilization of returned rapeseed straw and its effect on soil fertility and crop yields[J]. Nature Environment & Pollution Technology, 2013, 12(3): 449-454.
[6] Frigon J C, GuioT S R. Biomethane production from starch and lignocellulosic crops: A comparative review[J]. Biofuels, Bioproducts and Biorefining, 2010, 4(4): 447-458.
[7] Feijoo G, Soto M, Méndez R, et al. Sodium inhibition in the anaerobic digestion process: Antagonism and adaptation phenomena[J]. Enzyme & Microbial Technology, 1995, 17(2): 180-188.
[8] Yong Z, Dong Y, Zhang X, et al. Anaerobic co-digestion of food waste and straw for biogas production[J]. Renewable Energy, 2015(78): 527-530.
[9] Li W, Luo L, Dou Y, et al. Wet and dry coupling anaerobic fermentation process and fermentation characteristic test[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 148-153.
[10] 李強,曲浩麗,承磊,等. 沼氣干發(fā)酵技術(shù)研究進展[J]. 中國沼氣,2010,28(5): 10-14. Li Qiang, Qu Haoli, Cheng Lei, et al. Research progress of biogas dry fermentation technology[J]. China Biogas, 2010, 28(5):10-14. (in Chinese with English abstract)
[11] 韓夢龍,朱繼英,張國康. 接種物種類對玉米秸稈沼氣干發(fā)酵過程的影響 [J]. 環(huán)境科學(xué)學(xué)報,2014,34(10): 2586-2591. Han Menglong, Zhu Jiying, Zhang Guokang. Effects of inoculum species on dry fermentation of corn stalk biogas[J]. Chinese Journal of Environmental Science, 2014, 34 (10): 2586-2591. (in Chinese with English abstract)
[12] Mustafa A M, Poulsen T G, Sheng K. Fungal pretreatment of rice straw withandto enhance methane production under solid-state anaerobic digestion [J]. Applied Energy, 2016, 180: 661-671.
[13] Guendouz J, Buffiere P, Cacho J, et al. Dry anaerobic digestion in batch mode: Design and operation of a laboratory-scale, completely mixed reactor[J]. Waste Management, 2010, 30(10): 1768-1771.
[14] 于佳動,趙立欣,馮晶,等. 序批式秸稈牛糞混合厭氧干發(fā)酵影響因素研究[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(15): 215-221. Yu Jiadong, Zhao Linxin, Feng Jing, et al. Influence factors of batch dry anaerobic digestion for corn stalks-cow dung mixture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 215-221. (in Chinese with English abstract)
[15] 何榮玉,閆志英,劉曉風(fēng),等. 秸稈干發(fā)酵沼氣增產(chǎn)研究 [J]. 應(yīng)用與環(huán)境生物學(xué)報,2007(4):583-585. He Rongyu, Yan Zhiying, Liu Xiaofeng, et al. Study on yield increase of straw dry fermentation biogas[J]. Journal of Applied and Environmental Biology, 2007 (4):583-585. (in Chinese with English abstract)
[16] Akyol ?, Ozbayra M E G, Ince O, et al. Anaerobic co-digestion of cow manure and barley: Effect of cow manure to barley ratio on methane production and digestion stability[J]. Environmental Progress & Sustainable Energy, 2016, 35(2): 589-595.
[17] 朱美華,葛沭鋒,王慶剛,等. 用納氏試劑法測定氨氮時校準曲線的時效性研究[J]. 能源環(huán)境保護,2018,32(4):51-54. Zhu Meihua, Ge Shufeng, Wang Qinggang, et al. Timeliness of calibration curve for determination of ammonia nitrogen by Nessler's reagent method[J]. Energy Conservation, 2018, 32(4): 51-54. (in Chinese with English abstract)
[18] 王金主,王元秀,李峰,等. 玉米秸稈中纖維素、半纖維素和木質(zhì)素的測定[J]. 山東食品發(fā)酵,2010(3):44-47. Wang Jinzhu, Wang Yuanxiu, Li Feng, et al. Determination of cellulose, hemicellulose and lignin in corn stover[J]. Shandong Food Fermentation, 2010(3): 44-47. (in Chinese with English abstract)
[19] Yu L, Bule M, Ma J, et al. Enhancing volatile fatty acid (VFA) and bio-methane production from lawn grass with pretreatment[J]. Bioresource Technology, 2014, 162(6): 243-249.
[20] Ward A J, Hobbs P J, Holliman P J, et al. Optimisation of the anaerobic digestion of agricultural resources[J]. Bioresource Technology, 2008, 99(17): 7928-7940.
[21] Siripatana C, Jijai S, Kongjan P. Analysis and extension of Gompertz-type and Monod-type equations for estimation of design parameters from batch anaerobic digestion experiments[C]. Proceedings of the International Conference on Mathematics, Engineering and Industrial Applications, 2016.
[22] 張曉琰,彭學(xué),政井英司. 木質(zhì)素芳香族化合物降解菌. SYK-6的研究進展[J]. 微生物學(xué)報,2014,54(8):854-867. Zhang Xiaoyan, Peng Xue, Zheng Jingyingsi. Research progress of lignin aromatic compound degrading bacteria. SYK-6[J]. Journal of Microbiology, 2014, 54(8): 854-867. (in Chinese with English abstract)
[23] Wan C, Li Y. Fungal pretreatment of lignocellulosic biomass [J]. Biotechnology Advances, 2012, 30(6): 1447-1457.
[24] Wang M, Zhou J, Yuan Y X, et al. Methane production characteristics and microbial community dynamics of mono-digestion and co-digestion using corn stalk and pig manure[J]. International Journal of Hydrogen Energy, 2017, 42(8): 4893-4901.
[25] 孔維濤,胡棟,馬福民,等. 低溫沼氣發(fā)酵優(yōu)良菌系篩選及優(yōu)勢菌群分析[J]. 微生物學(xué)通報,2013,40(9):1590-1598.
Kong Weitao, Hu Dong, Ma Fumin, et al. Screening and Dominant population analysis of microbial strains in Biogas fermentation under the low temperature[J]. Microbiology China, 2013, 40(9): 1590-1598. (in Chinese with English abstract)
[26] 畢少杰,孫宇,孫志遠,等. 酸化處理對牛糞厭氧發(fā)酵有機酸和細菌多樣性的影響[J]. 中國沼氣,2015,33(4): 18-25.Bi Shaojie, Sun Yu, Sun Zhiyuan, et al. Effects of acidification on anaerobic fermentation of organic acids and bacteria in cattle manure[J]. China Biogas, 2015, 33(4): 18-25. (in Chinese with English abstract)
[27] Luo L N, Li W Z, Dou Y C, et al. Effect of urea pretreatments on solid-state anaerobic digestion of rice straw for improving biogas production[J]. International Agricultural Engineering Journal, 2013, 22(1): 7-13.
[28] Wiegant W M, Zeeman G. The mechanism of ammonia inhibition in the thermophilic digestion of livestock wastes [J]. Agricultural Wastes, 1986, 16(4): 243-253.
[29] 曹先艷,趙由才,袁玉玉,等. 氨氮對餐廚垃圾厭氧發(fā)酵產(chǎn)氫的影響[J]. 太陽能學(xué)報,2008,29(6):751-755. Cao Xianyang, Zhao Youcai, Yuan Yuyu, et al. Effect of Ammonia nitrogen on hydrogen production by anaerobic fermentation of kitchen waste[J]. Acta Energiae Solaris Sinica, 2008, 29(6): 751-755. (in Chinese with English abstract)
[30] 任南琪. 厭氧生物技術(shù)原理與應(yīng)用[M]. 北京:北京化學(xué)工業(yè)出版社環(huán)境科學(xué)與工程出版中心,2004.
[31] Rouches E, Herpo?l-gimbert I, Steyer J P, et al. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review[J]. Renewable and Sustainable Energy Reviews, 2016(59): 179-198.
[32] Sheng K C, Xiang C, Pan J M, et al. Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion[J]. Biosystems Engineering, 2013, 116(2): 205-212.
[33] 王渝昆,袁月祥,李東,等. 產(chǎn)甲烷復(fù)合菌劑的性能評價及中試試驗產(chǎn)氣效果[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(16): 247-255. Wang Yukun, Yuan Yuexiang, Li Dong, et al. Performance of evaluation of methanogenic microbial inoculant and its effect of biogas production in pilot scale test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 247-255.
[34] Mustafa A M, Poulsen T G, Xia Y, et al. Combinations of fungal and milling pretreatments for enhancing rice straw biogas production during solid-state anaerobic digestion [J]. Bioresource Technology, 2016, 224(174)
[35] Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production[J]. Renewable & Sustainable Energy Reviews, 2012, 16(3): 1462-1476.
Pilot plant test of biogas production by rice straw sequencing batch dry anaerobic digestion and its kinetic analysis
Liu Yang1,2,3, Yan Zhiying1,2※, Ji Gaosheng1,2, Xu Lishan1,2, Fang Junnan1,2,3, Zeng Yong1,2, Huan Chenchen1,2, Tong Xinyu1,2
(1,,610041,; 2.,,610041,; 3.,, 100049,)
The organic waste can be converted by anaerobic digestion into a clean energy source of methane under gentleconditions. Dry anaerobic digestion, one kind of anaerobic digestion, was often used to treat municipal waste and had achieved great results for decades in Europe and America. The dry anaerobic digestion of biogas production technology is a better way than wet fermentation to handle rice straw. It has lots of advantages, such as bigger processing capacity, simpler device, lower energy loss and water consumption. However, dry fermentation of straw is very easy to fail due to heterogeneity of substrate, acid inhibition, etc. There were a few researches on the key technology in exploring the AD efficiency of rice straw based agricultural waste. Therefore, this paper studied the biogas production characteristics of pilot-scale dry anaerobic digestion using rice straw as feedstock. The parameters were determined by the laboratory pre-experiment, rice straw was stacked on the field for 3 days with moisture of 67.58% adjusted by 500 kg biogas slurry, rice straw pretreated (269 kg, TS of 89.19%) was mixed with inoculums (300 kg, 28.06%). The pilot-scale dry anaerobic digestion was conducted under the conditions of constant temperature at 30-35 ℃ for 55 days. The result of the pilot-scale experiment showed that the biogas yield of rice straw was 308.20 m3/t, the methane yield of rice straw was 167.44 m3/t, the maximum methane content reached 57.88% after 55 days of dry anaerobic digestion. According to the results of biogas production, the pilot-scale experiment had excellent daily biogas production and higher methane concentration, and the whole process ran stably. The modified Gompertz equation was commonly used to perform kinetic analysis of anaerobic digestion, so the Gompertz model was used to fit the methane production curve of rice straw. The fitted methanogenic potential value was quite close to the actual methanogenic potential value, and2value is 0.990 7, which indicated that the Gompertz model was also suitable for fitting the methane production in this study. Although the pilot-scale test ran successfully, the conditions could be optimized for a better result. The study can provide theoretical guidance and basis for batch dry anaerobic digestion on the treatment of rice straw.
straw; biogas; kinetic; dry anaerobic digestion; degradation
劉 楊,閆志英,姬高升,許力山,房俊楠,曾 勇,宦臣臣,佟欣宇.水稻秸稈序批式干發(fā)酵產(chǎn)沼氣中試及其動力學(xué)研究[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(23):221-226. doi:10.11975/j.issn.1002-6819.2018.23.028 http://www.tcsae.org
Liu Yang, Yan Zhiying, Ji Gaosheng, Xu Lishan, Fang Junnan, Zeng Yong, Huan Chenchen, Tong Xinyu. Pilot plant test of biogas production by rice straw sequencing batch dry anaerobic digestion and its kinetic analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 221-226. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.23.028 http://www.tcsae.org
2018-09-27
2018-10-28
國家重點研發(fā)計劃(2017YFD0800803-02);環(huán)境微生物四川省重點實驗室開放基金(KLCAS-2017-6)
劉楊,主要從事固體廢棄物方向研究。Email:liuyang3@cib.ac.cn
閆志英,博士,研究員,主要從事生物質(zhì)廢棄物生物轉(zhuǎn)化與資源化利用研究。Email:yanzy@cib.ac.cn
10.11975/j.issn.1002-6819.2018.23.028
X705
A
1002-6819(2018)-23-0221-06