陸仕信 劉國榮
摘 要:為研究雙饋風(fēng)力發(fā)電機的低電壓穿越特性,建立了磁鏈狀態(tài)方程并求解其特征根。對幾種典型的改進勵磁電流控制方法進行分析,得出此類方法均是通過控制轉(zhuǎn)子電流指令值來加快磁鏈的暫態(tài)衰減,從而提出在電流環(huán)參考值的基礎(chǔ)上添加定子磁鏈暫態(tài)分量的補償項,來改善系統(tǒng)欠阻尼特性,針對PI控制器對交流量調(diào)節(jié)能力有限,引入電流前饋補償項,對其進行修正。仿真表明,改進的阻尼控制方法加速了暫態(tài)磁鏈的衰減,提高了故障穿越能力。
關(guān)鍵詞:雙饋感應(yīng)電機;欠阻尼特性;前饋補償;低電壓穿越
中圖分類號:TM315 文獻(xiàn)標(biāo)識碼:A
Abstract:In order to research the low voltage ride through characteristics of doubly-fed induction generators, the equation of state is established and the characteristic roots is solved. By analyzing several typical improved excitation current control strategies, it is concluded that these methods used to control the rotor current reference value to accelerate the transient decay of flux. Consequently, the compensation term of the stator flux transient component is added on the basis of the reference value of the current loop, in order to optimize the system under-damping characteristics. Because the PI controller has limited capacity to adjust the AC reference,the feed forward current compensation term is introduced to correct it.Simulation results show that the improved damping control method can accelerate the decay of transient flux linkage and improve the low voltage ride through capability.
Key words:doubly fed induction generator;under-damping characteristics;feed forward compensation;low voltage ride through
1 引 言
近年來,隨著風(fēng)電的裝機容量不斷增加,對電網(wǎng)的影響逐年加重,為了適應(yīng)日益嚴(yán)格的并網(wǎng)要求,風(fēng)力發(fā)電必須具有低電壓穿越(Low Voltage Ride Through,LVRT)能力保障在電網(wǎng)故障條件下不脫網(wǎng)運行。目前,風(fēng)電機組中雙饋感應(yīng)發(fā)電機(doubly fed induction generator,DFIG)[1]已成為主流機型,其優(yōu)點是可通過對轉(zhuǎn)子側(cè)變流器的控制來實現(xiàn)有功和無功功率的獨立調(diào)節(jié)、具有良好的動態(tài)調(diào)速性能,此外,轉(zhuǎn)子側(cè)變流器容量較小僅為發(fā)電機額定容量的30%左右且成本低。但由于雙饋電機的定子繞組與電網(wǎng)直接相連及其特殊的拓?fù)浣Y(jié)構(gòu),當(dāng)電網(wǎng)電壓發(fā)生驟降故障時極易引起轉(zhuǎn)子側(cè)變流器過電流和直流側(cè)過電壓等現(xiàn)象,危害變流器的穩(wěn)定運行。
針對電網(wǎng)電壓故障,文獻(xiàn)[2]采用的是撬棒
(Crowbar)保護電路,雖能有效地抑制轉(zhuǎn)子側(cè)變流器過電流和直流側(cè)過電壓,但此時DFIG類似于籠型異步電機,需從電網(wǎng)中吸收大量的無功功率。也有些學(xué)者提出添加動態(tài)電壓恢復(fù)器(DVR)[3]、靜止同步補償器(STATCOM)、無功補償器(SVC)[4]、串聯(lián)網(wǎng)側(cè)變流器(SGSC)[5]等裝置來實現(xiàn)低電壓穿越,該類方案能對變流器起到有效保護并在電網(wǎng)電壓恢復(fù)過程中提供無功支撐,但其成本較高、控制復(fù)雜,致使這些控制方案都難以得到大規(guī)模的應(yīng)用。
文獻(xiàn)[6]轉(zhuǎn)子電流參考指令中僅含正序分量,而故障狀態(tài)下引入了較大定子磁鏈暫態(tài)分量、負(fù)序分量進行補償控制,能對轉(zhuǎn)子端電壓起到抑制作用,但需要磁鏈觀測及分離模塊。文獻(xiàn)[7]提出虛擬電阻控制技術(shù),并對電阻值進行了整定和優(yōu)化,改善了欠阻尼性能,但并未對轉(zhuǎn)子端電壓進行分析。文獻(xiàn)[8]采用虛擬磁鏈的方法改變系統(tǒng)的欠阻尼特性,并抑制了轉(zhuǎn)矩脈動,卻存在明顯的動態(tài)切換問題。文獻(xiàn)[9]提出了反向電流跟蹤控制方法,無需磁鏈觀測和相序分離,但需要故障檢測及切換裝置。文獻(xiàn)[10]為了改善電網(wǎng)電壓故障時DFIG的暫態(tài)過程,采樣前饋補償控制,但轉(zhuǎn)子電流、電磁轉(zhuǎn)矩的振蕩時間較長。
針對電磁暫態(tài)過程較長,首先分析了電網(wǎng)對稱故障下DFIG的電磁特性,建立定子磁鏈狀態(tài)方程并求解其特征根,對幾種典型的LVRT方案進行歸納總結(jié),得出此類方法實質(zhì)上均是通過控制轉(zhuǎn)子電流指令值來改善電網(wǎng)電壓對稱故障下雙饋電機的欠阻尼特性,針對PI控制對交流量的跟蹤性能較差的缺點,引入電流前饋項對其進行修正,從而提出了改進阻尼控制方法。最后,仿真驗證,所提方法改善了系統(tǒng)的欠阻尼特性,提高了系統(tǒng)LVRT能力。
2 DFIG的數(shù)學(xué)模型和暫態(tài)分析
2.1 DFIG模型
改進阻尼控制方法的結(jié)構(gòu)圖如圖4所示,首先檢測定,轉(zhuǎn)子電流Isdq與Irdq,通過磁鏈觀測模型得到定子磁鏈ψsdq,并提取暫態(tài)磁鏈ψsdc。由式(17)可以得到暫態(tài)轉(zhuǎn)子電流Irdqn,Irdqn與常規(guī)矢量控制下的穩(wěn)態(tài)電流相加,得到轉(zhuǎn)子dq軸電流指令。轉(zhuǎn)子dq軸電流指令通過PI控制,電流前饋項與耦合項及反電動勢項相加得到等效轉(zhuǎn)子電壓參考量,然后經(jīng)過坐標(biāo)變換得到轉(zhuǎn)子電壓控制指令Ur α β,經(jīng)SVPWM算法調(diào)制后,控制轉(zhuǎn)子變流器完成整個過程。矢量控制方法在正常運行條件下能提供良好的動、靜態(tài)特性,本文采用定子電壓定向的矢量控制方法,采用PI控制器,DFIG的轉(zhuǎn)子電流能實現(xiàn)精確的解耦,且可以獨立的調(diào)節(jié)有功功率與無功功率。
其中電網(wǎng)電壓正常情況下,在兩相dq同步旋轉(zhuǎn)坐標(biāo)系下,定子磁鏈只含有穩(wěn)態(tài)分量,暫態(tài)分量為0,即補償項在穩(wěn)態(tài)工況下為0,不影響系統(tǒng)穩(wěn)態(tài)工況下控制系統(tǒng)的性能。然而在電網(wǎng)電壓對稱跌落故障狀態(tài)下,定子磁鏈在兩相dq同步旋轉(zhuǎn)坐標(biāo)系下,其穩(wěn)態(tài)分量和暫態(tài)分量分別為0 Hz、50 Hz,暫態(tài)分量可通過50 Hz的帶通濾波器進行提取,無需故障切換模塊,針對PI控制器只能對直流量實現(xiàn)無靜差跟蹤,故引入電流前饋項來修正PI控制器,對交流量實現(xiàn)較好的跟蹤。
5 仿真分析
為了驗證改進的勵磁電流控制方法的有效性,采用繞線式異步電機,并搭建仿真模型,使用電機參數(shù)如下:額定功率11 KW,定子電壓額定值為380 V,定子電阻1.435,定子漏感5.839 mH,轉(zhuǎn)子電阻1.395,轉(zhuǎn)子漏感5.839 mH,互感0.1722 H,直流電壓500 V,極對數(shù)3。該仿真中基準(zhǔn)值如下:定子電壓UsN = 220 V,有功功率PN = 10 KW,無功功率QN = 0 W,定子電流IsN = 24.9 A,轉(zhuǎn)子電流IrN = 27.6 A。轉(zhuǎn)子側(cè)變流器所允許的最大電流為兩倍額定電流,轉(zhuǎn)子電流限幅為最大電流,轉(zhuǎn)子電壓的最大值不能超過變流器允許流過的最大電壓。
圖5,圖6,圖7為電網(wǎng)電壓在0.8 s開始發(fā)生三相對稱跌落,跌落深度為50%,故障持續(xù)時間600 ms,轉(zhuǎn)子側(cè)變流器分別采用常規(guī)的矢量控制策略[16]及改進的阻尼控制未加電流前饋項和添加電流前饋項方法。圖5為采用常規(guī)矢量控制策略在故障狀態(tài)下DFIG的仿真波形圖,圖5(a)、(b)表明,在兩相dq同步旋轉(zhuǎn)坐標(biāo)系下定子磁鏈的波動幅值較大,衰減緩慢,振蕩持續(xù)時間較長。由圖5(c)知,電磁轉(zhuǎn)矩波動的持續(xù)時間也較長。定子磁鏈波動也引起了轉(zhuǎn)子感應(yīng)電動勢增大,進而引起轉(zhuǎn)子側(cè)電壓幅值增大,由圖5(d)知,轉(zhuǎn)子側(cè)電壓幅值為220 V左右,危害變流器的安全運行。
6 結(jié)論
針對電網(wǎng)電壓對稱驟降故障下DFIG的欠阻尼特性,對幾種典型的低電壓穿越方法進行了分析,并歸納該類方法的共性,進而提出一種改進的阻尼控制方法。該方法無需增加額外的硬件裝置及故障切換模塊,改善了DFIG的欠阻尼特性,加速了電磁暫態(tài)衰減過程,同時抑制了暫態(tài)電磁沖擊,降低了轉(zhuǎn)子端電壓,保護了轉(zhuǎn)子側(cè)變流器,另外,引入的電流前饋項,對PI控制器進行了修正,進一步拓寬了低電壓穿越性能。
參考文獻(xiàn)
[1] CARDENAS R,PENA R, ALEPUZ S,et al.Overview of control systems for the operation of DFIGs in wind energy applications[J]. IEEE Transactions on Industrial Electronics, 2013,60(7):2776—2798.
[2] 朱曉東,石磊,陳寧,等.考慮Crowbar阻值和退出時間的雙饋風(fēng)電機組低電壓穿越[J].電力系統(tǒng)自動化,2010,(18):84—89.
[3] 黃偉煌,胡書舉,付勛波,等.DVR在風(fēng)電機組LVRT中的應(yīng)用及其無功補償能力[J].電機與控制學(xué)報,2014,(03):7—13.
[4] 王境彪,晁勤,王一波,等.STATCOM與SVC提高大型異步機風(fēng)電場LVRT能力對比研究[J].電源技術(shù),2016,40(05):1080—1083.
[5] 姚駿,廖勇,李輝,等.電網(wǎng)電壓不平衡下采用串聯(lián)網(wǎng)側(cè)變換器的雙饋感應(yīng)風(fēng)電系統(tǒng)改進控制[J].中國電機工程報,2012,32(06):121—130.
[6] 楊淑英,陳劉偉,孫燈悅,等 基于電磁暫態(tài)控制算法的雙饋風(fēng)電機組低電壓穿越控制策略[J]. 太陽能學(xué)報,2015,36(12):2906—2915.
[7] 程鵬,年珩,諸自強. 電網(wǎng)對稱故障時雙饋電機虛擬電阻控制技術(shù)[J].電機與控制學(xué)報,2014,18(06):1—8.
[8] ZHU R, CHEN Z, WU X, et al. Virtual damping flux-based LVRT control for DFIG-based wind turbine[J].IEEE Transactions on Energy Conversion,2015.30(2):714—725.
[9] 陳鑒慶,鄒旭東,梁宗澤,等.基于反向電流跟蹤的雙饋風(fēng)機低電壓穿越控制策略[J].電工技術(shù)學(xué)報,2016,31(02):221—229.
[10] LIANG J,HOWARD D, RESTREPO J. Feed forward transient compensation control for DFIG wind turbines during both balanced and unbalanced grid disturbances[J]. IEEE Transactions on Industry Applications,2013,49(3):1452—1463.
[11] ZHU R, CHEN Z,WU X.Dynamic performance of doubly-fed induction generator stator flux during consecutive grid voltage variations[J]. IET Renewable Power Generation,2015,9(7):720—728.
[12] XIANG Da-wei, LI Ran, TAVNER P J,et al. Control of a doubly fed induction generator in a wind turbine during grid fault ride-through[J]. IEEE Transactions on Energy Conversion,2006,21(3):652—662.
[13] XIAO Shuai, YANG Geng, ZHOU Hong-lin,et al. An LVRT control strategy based on flux linkage tracking for DFIG-based WECS[J]. IEEE Transactions on Industrial Electronics, 2013, 60(7):2820—2832.
[14] HU Sheng,LIN Xin-chun, KANG Yong,et al. An improved low-voltage ride-through control strategy of doubly fed induction generator during grid faults[J].IEEE Transactions on Power Electronics,2011,26 (12):3653—3665.
[15] HUANG Q,ZOU X,ZHU D,et al.Scaled current tracking control for doubly fed induction generator to ride-through serious grid faults[J]. IEEE Trans. Power Electron,2016,31(03)31:2150—2165.
[16] 吳國祥,陳國呈,蔚蘭. 變速恒頻風(fēng)力發(fā)電柔性并網(wǎng)及解列控制[J].華中科技大學(xué)學(xué)報:自然科學(xué)版,2009(03):94—97.
[17] WANG L,LIU C. Research on virtual inductance control strategy of DFIG during grid voltage dips[J].2016 35th Chinese Control Conference(CCC),2016,Chengdu,China,2016:8738—8742.