張望喜 陳寶 肖龍杰 劉精巾 鄧曦
摘要:基于Pasternak地基模型的基本理論,利用能量法建立雙參數(shù)地基剛性板系統(tǒng)的能量方程;根據(jù)最小勢能原理,建立雙參數(shù)地基基床系數(shù)、承載板尺寸、荷載和沉降變形之間的關(guān)系式.基于此關(guān)系式和已有基床系數(shù)確定規(guī)則,通過不同尺寸承載板的荷載試驗,可以建立以雙參數(shù)地基基床系數(shù)為未知數(shù)的方程組,從而解得雙參數(shù)地基基床系數(shù)表達式.通過4塊不同形狀和尺寸剛性板(直徑0.3 m、0.6 m圓板和邊長0.54 m、0.71 m方板)的實測試驗獲取實際場地下砂性地基土的雙參數(shù)基床系數(shù)值,驗證了上述方法的可行性;結(jié)合基礎(chǔ)沉降和相鄰基礎(chǔ)相互影響的算例說明了雙參數(shù)地基的工程意義;結(jié)合已有研究成果給出了不同狀態(tài)的黏性土和砂性土的雙參數(shù)基床系數(shù)的建議值.本文方法為雙參數(shù)地基模型的推廣及工程應(yīng)用提供一定的借鑒與參考.
關(guān)鍵詞:土結(jié)構(gòu)相互作用;雙參數(shù)地基模型;基床系數(shù);能量方程;承載板載荷試驗
中圖分類號:TU470文獻標志碼:A
Experimental Study and Evaluation Methodology
of Foundation Coefficients for Twoparameter Foundation
Model Based on Rigid Plate Loading Tests
ZHANG Wangxi1,2, CHEN Bao1, XIAO Longjie1, LIU Jingjin1, DENG Xi1
(1.College of Civil Engineering, Hunan University, Changsha410082, China;
2.Hunan Provincial Key Lab on Diagnosis for Engineering Structures, Hunan University, Changsha410082, China)
Abstract:Energy equation of twoparameter foundation rigid plate system was established by using energy method based on the basic theory of Pasternak model. In the principle of the minimum potential energy, the relationships of foundation coefficient, foundation size, load and surface displacement of soil were obtained. The foundation coefficient expression was obtained by solving the equation system which was established with two rigid plates loading test of different size based on the above relationships and the existing determining rules of foundation coefficient. Four sandy soilrigid plate loading tests were performed to verify the validity of this method, where the circular plates with diameter of 0.3 m and 0.6 m, and square plates with the size of 0.54 m × 0.54 m and 0.71 m ×0.71 m were used. Examples of calculating foundation settlement and considering the influence of adjacent foundation were given to illustrate the engineering significance of the twoparameter foundation model, and empirical values of twoparameter foundation coefficient for clayey soil and sandy soil were estimated for the popularization and application of the twoparameter foundation model.
Key words:soilstructure interaction; twoparameter foundation model; foundation coefficient; energy equation; plate loading test
地基土模型是分析土與基礎(chǔ)相互作用問題中十分重要的因素.由于實際土體所固有的復(fù)雜性,理想化彈性模型被應(yīng)用于模擬分析土結(jié)構(gòu)相互作用時土介質(zhì)的反應(yīng).Selvadurai(1979)闡述了各種地基理想化模型[1],Dutta等(2002)分析總結(jié)了各地基模型的優(yōu)勢和局限性[2].Winkler(1867)最早提出的理想化地基模型假設(shè)地基由一系列各自獨立且互不影響的彈簧組成,彈簧常數(shù)k稱為基床系數(shù).由于Winkler地基模型忽視了土的黏性和連續(xù)性,改進的雙參數(shù)的連續(xù)彈性地基模型被提出.FilonenkoBoorodich(1940)、Hetényi(1946)、Pasternak(1954)以及Kerr(1964)等地基力學(xué)模型基于Winkler地基模型并假設(shè)其各彈簧間有力的相互作用以消除其不連續(xù)性,其彈簧單元間是由彈性薄膜、彈性梁或只有剪切變形的彈性層提供相互作用的[1];Reissner(1958)[3]和Vlasov(1966)[4]等提出的連續(xù)介質(zhì)模型是通過引入約束或簡化的位移分布與應(yīng)力的某些假設(shè)簡化彈性連續(xù)介質(zhì)模型得到的.由于力學(xué)模型難以獲取準確度模型參數(shù),連續(xù)介質(zhì)模型理論較為復(fù)雜,難以直接應(yīng)用于工程實際,Horvath和Colasanti (2011)結(jié)合其優(yōu)缺點提出了一種混合的改進的KerrReissner(MKR)模型[5].
在地基力學(xué)模型中,基床系數(shù)作為地基模型的重要參數(shù),在模型分析和工程設(shè)計中具有重要的實際意義[6],其獲取方法得到了工程師的重視.Hayashi(1921)首先提出通過荷載板試驗測定基床系數(shù)[7];Terzaghi(1955)采用1ft2方形載荷實驗板測量基床系數(shù),并根據(jù)土體類別進行基礎(chǔ)形狀和尺寸修正[8].Biot(1937)[9]和Vesic(1961)[10]通過理論分析擬合出基床系數(shù)的經(jīng)驗公式,國外一些學(xué)者認為Biot公式為基床系數(shù)下限值,Vesic公式為基床系數(shù)上限值.張祖賢(1993)采用砂槽中5種尺寸的剛性壓塊試驗,并根據(jù)收集的黏性土地基的試驗結(jié)果獲取基床系數(shù)經(jīng)驗公式,結(jié)果表明實測基床系數(shù)隨基礎(chǔ)尺寸增大而減小[11];張望喜等(2003)利用位移反分析和遺傳算法,根據(jù)地基板撓度實測結(jié)果對地基參數(shù)進行反分析,識別出原位狀態(tài)下的地基參數(shù)[12];Farouk等(2014)采用有限元分析土結(jié)構(gòu)相互作用,結(jié)果表明基礎(chǔ)底部基床系數(shù)不均勻,其取值與基礎(chǔ)形狀有關(guān),基礎(chǔ)中間較低而邊界較高[13].
現(xiàn)階段對于單參數(shù)地基基床系數(shù)的獲取,比較常用的測試方法有:K30荷載板試驗、室內(nèi)三軸試驗、旁壓試驗和扁鏟側(cè)脹試驗等[14].中國參照日本《公路的平板載荷載試驗方法》(JISA 1215-1995修訂版)和德國《平板載荷載試驗》(DIN 18314-1993修訂版)[15],并結(jié)合了近年來的科研成果和施工經(jīng)驗,同時針對實際應(yīng)用中存在的問題,制訂了K30平板載荷載試驗方法,該方法正式納入我國國家標準《地下鐵道、輕軌交通巖土工程勘察規(guī)范》(GB 50307-1999)及其更新替換標準《城市軌道交通巖土工程勘察規(guī)范》(GB 50307-2012)[16]、《巖土工程勘察規(guī)范[2009版]》(GB 50021-2001)[17]以及行業(yè)標準《鐵路工程土工試驗規(guī)程》(TB 10102-2010)[18].雙參數(shù)地基模型可以考慮土體的部分連續(xù)性,可以解決單參數(shù)地基模型不能分析相鄰基礎(chǔ)間的相互影響問題,但雙參數(shù)地基模型中基床系數(shù)的確定目前存在很多困難,業(yè)內(nèi)尚無成熟或較普遍認可的方法,更沒有可行的實地測量方法,成為了阻礙其應(yīng)用和推廣的障礙.本文基于Pasternak地基模型理論[1],在能量分析的基礎(chǔ)上,提出了一種利用剛性板靜力荷載試驗獲取雙參數(shù)地基基床系數(shù)的方法;結(jié)合已有研究成果,給出了雙參數(shù)地基基床系數(shù)的建議值,為雙參數(shù)地基的推廣和工程應(yīng)用提供了基礎(chǔ).
1基于矩形剛性板的地基雙參數(shù)表達式
1.1雙參數(shù)地基土矩形剛性板系統(tǒng)能量方程
如圖1所示,剛性板尺寸為a×b,板中心受集中荷載P作用.根據(jù)雙參數(shù)地基模型特性,可將剛性板作用下的地基區(qū)域劃分為板內(nèi)區(qū)域、板邊區(qū)域(A2、A4、A5、A7)和板角區(qū)域(A1、A3、A6、A8).荷載P作用下板內(nèi)區(qū)域撓度為w,板外區(qū)域撓度為.根據(jù)Pasternak地基模型理論[1],地基表面的沉降變形(即撓度)表達式如下:
6結(jié)論
在雙參數(shù)地基模型的基本理論下,利用能量法建立雙參數(shù)地基剛性板系統(tǒng)的能量方程,利用最小勢能原理,建立雙參數(shù)地基基床系數(shù)、承載板尺寸、荷載和沉降變形之間的關(guān)系式.基于此關(guān)系式和已有基床系數(shù)確定規(guī)則,通過不同尺寸承載板的荷載試驗,可以建立以雙參數(shù)地基基床系數(shù)為未知數(shù)的方程組,從而解得雙參數(shù)地基的基床系數(shù).
推導(dǎo)了黏性土地基、砂性土地基、矩形板和圓形板不同情況下,獲取雙參數(shù)地基模型基床系數(shù)的基本公式,基于現(xiàn)行規(guī)范的研究成果,給出雙參數(shù)地基基床系數(shù)的建議值.
通過地基承載板試驗實測和結(jié)果分析,驗證了本文方法的可行性.通過算例分析,證明了用雙參數(shù)地基模型分析相鄰基礎(chǔ)相互影響的必要性和本文方法的適用性.
本文方法為雙參數(shù)地基模型的推廣及工程應(yīng)用提供一定的借鑒與參考.
參考文獻
[1]SELVADURAI A P S. Elastic analysis of soilfoundation interaction[M]. Amsterdam: Elsevier Scientific Pub Co, 1979:7-26.
[2]DUTTA S C, ROY R. A critical review on idealization and modeling for interaction among soilfoundationstructure system[J]. Computers & Structures, 2002, 80(20): 1579-1594.
[3]REISSNER E. A note on deflections of plates on a viscoelastic foundation[J]. Journal of Applied Mechanics, 1958, 25(1): 144-145.
[4]VLASOV V Z. Beams, plates and shells on elastic foundations [M]. Jerusalem: Israel Program for Scientific Translations, 1966:347-353.
[5]HORVATH J S, COLASANTI R J. Practical subgrade model for improved soilstructure interaction analysis: model development [J]. International Journal of Geomechanics, 2011, 11(1): 59-64.
[6]張望喜,占鑫杰,易偉建,等. 雙參數(shù)層狀地基受水平荷載長樁的水平位移計算[J]. 湖南大學(xué)學(xué)報(自然科學(xué)版),2011,38(3):17-21.
ZHANG W X, ZHAN X J, YI W J,et al. Solution to the lateral displacement of lateral loaded longpiles under doubleparameter layeredfoundation[J]. Journal of Hunan University (Natural Sciences), 2011,38(3):17-21.(In Chinese)
[7]HAYASHI K. Theory of beams on elastic foundation [M]. Berlin, German:Springer, 1921:79-106.
[8]TERZAGHI K. Evaluation of coefficient of subgrade reaction[J]. Geotechnique, 1955, 5(4): 297-326.
[9]BIOT M A. Bending of an infinite beam on an elastic foundation[J]. J Appl Mech, 1937,59:A1-A7.
[10]VESIC A B. Beams on elastic subgrade and the Winkler's hypothesis [C]//Proceedings of 5th International Conference of Soil Mechanics and Foundation Engineering. Paris, 1961:845-850.
[11]張祖賢. 文克爾地基基床系數(shù)取值的新途徑——(干船塢設(shè)計規(guī)范水工結(jié)構(gòu)篇附錄二方法—說明及建議)[J]. 水運工程, 1993(8):42-46.
ZHANG Z X. A new way to obtain the value of foundation coefficient in winkler model——(Code for design of dry dock, hydraulic structure, Appendix Ⅱ— introduction and suggestion)[J]. Waterway Engineering, 1993(8):42-46. (In Chinese)
[12]張望喜, 易偉建. 雙參數(shù)地基上厚薄板通用元與地基參數(shù)識別的撓度反分析[J].工程力學(xué),2003,20(6): 46-51.
ZHANG W X, YI W J. A generalized conforming element for thickthin slabs on doubleparameter foundation and inverse analysis of deflection for foundation parameter identification[J]. Engineering Mechanics, 2003,20(6):46-51.(In Chinese)
[13]FAROUK H, FAROUK M. Effect of elastic soil structure interaction on modulus of subgrade reaction[C]//LIAO W, CHANG J,ZHAN G, et al. Proc GeoHubei 2014: Recent Advances in Material, Analysis, Monitoring, and Evaluation in Foundation and Bridge Engineering.ASCE, Reston, VA, 2014: 111-118.
[14]仲鎖慶, 張西平, 潘海利. 地基土基床系數(shù)研究[J]. 地下空間與工程學(xué)報, 2005, 1(S1): 131-134.
ZHONG S Q, ZHANG X P, PAN H L. Study on foundation soil coefficient of subgrade reaction[J]. Chinese Journal of Underground Space and Engineering,2005,1(S1):131-134. (In Chinese)
[15]DIN 18134:2001-09Determining the deformation and strength characteristics of soil by the plate loading test[S]. Berlin, Germany:Deutsches Institut fur Normunge,2001:1-13.
[16]GB 50307-2012城市軌道交通巖土工程勘察規(guī)范[S].北京:中國計劃出版社, 2012:88-90,126-127.
GB 50307-2012Code for geotechnical investigations of urban rail transit[S].Beijing: China Planning Press,2012:88-90,126-127. (In Chinese)
[17] GB 50021-2001巖土工程勘察規(guī)范(2009版)[S].北京:中國建筑工業(yè)出版社,2002:101-104.
GB 50021-2001Code for investigation of geotechnical engineering (2009) [S].Beijing:China Architecture & Building Press, 2002:101-104. (In Chinese)
[18] TB 10102-2010鐵路工程土工試驗規(guī)程[S].北京:中國鐵道出版社, 2010:273-280.
TB 10102-2010Code for soil test of railway engineering[S]. Beijing: China Railway Publishing House,2010:273-280.(In Chinese)
[19]JGJ 72-2004高層建筑巖土工程勘察規(guī)程[S].北京:中國建筑工業(yè)出版社,2004:75-76.
JGJ 72-2004Specification for geotechnical investigation of tall buildings[S].Beijing: China Architecture & Building Press, 2004:75-76.(In Chinese)
[20]GB/T 50123-1999土工試驗方法標準[S].北京:中國計劃出版社, 1999:16-25,119-122.
GB/T 50123-1999Standard for soil test method[S].Beijing:China Planning Press,1999:16-25,119-122.(In Chinese)