拾 兵, 于 冬, 趙恩金, 趙多蒼
(1.中國(guó)海洋大學(xué)工程學(xué)院,山東 青島 266100; 2.中國(guó)鐵建大橋工程局集團(tuán)有限公司, 天津 300300)
水位變化對(duì)近岸人工沙壩養(yǎng)灘效果影響的試驗(yàn)研究?
拾 兵1, 于 冬1, 趙恩金1, 趙多蒼2
(1.中國(guó)海洋大學(xué)工程學(xué)院,山東 青島 266100; 2.中國(guó)鐵建大橋工程局集團(tuán)有限公司, 天津 300300)
海灘侵蝕已經(jīng)成為全球性的大問(wèn)題,不僅引起了學(xué)術(shù)界廣泛關(guān)注,也引起了民眾的普遍關(guān)心。當(dāng)前防護(hù)海灘侵蝕最有效的措施為海灘喂養(yǎng),即人工補(bǔ)沙。本文采用極端高水位、設(shè)計(jì)高水位和0.00 m水位,進(jìn)行近岸人工沙壩二維斷面試驗(yàn),研究不同水位下人工沙壩以及岸灘的變化,探究不同水位對(duì)人工補(bǔ)沙養(yǎng)灘防護(hù)效果的影響。試驗(yàn)結(jié)果表明:不同水位條件下,水位低時(shí),人工沙壩頂部在形成的沙槽,隨著水位升高,沙槽消失;岸灘受到波浪侵蝕區(qū)域向岸移動(dòng),侵蝕區(qū)域面積在擴(kuò)大,岸灘的淤積區(qū)域也向岸移動(dòng)。本文對(duì)所研究?jī)?nèi)容利用Flow-3D進(jìn)行了數(shù)值模擬研究,其結(jié)果與物理試驗(yàn)吻合,可為近海補(bǔ)沙養(yǎng)灘工程提供理論依據(jù)。
水位;人工沙壩;岸灘;二維斷面試驗(yàn);數(shù)值模擬
日益嚴(yán)重的海灘侵蝕已引起全世界的關(guān)注,并成為海岸工程研究的熱點(diǎn)課題。當(dāng)前防護(hù)海灘侵蝕最有效的措施是海灘喂養(yǎng),即進(jìn)行灘肩補(bǔ)沙和沙壩補(bǔ)沙,并視海岸環(huán)境的特點(diǎn)輔以導(dǎo)堤促淤或外防波堤掩護(hù)。這種措施已為全球廣泛應(yīng)用[1]。
對(duì)于近岸沙壩補(bǔ)沙的研究,一般從理論研究、現(xiàn)場(chǎng)觀測(cè)、物理試驗(yàn)和數(shù)值模型等四個(gè)方面進(jìn)行。而國(guó)內(nèi)外所進(jìn)行的近海沙壩補(bǔ)沙試驗(yàn)研究,則一般研究水下沙壩對(duì)波浪折減效果,或者從研究近岸補(bǔ)沙對(duì)泥沙輸移、沙壩移動(dòng)和剖面演變等方面著手[2]。近年來(lái),科研人員針對(duì)人工補(bǔ)沙,進(jìn)行了很多試驗(yàn)研究,取得了豐碩的成果。Dette等[3]對(duì)寬與窄兩組水下沙壩在相同波浪條件作用下進(jìn)行水槽試驗(yàn),研究其地形變化情況,結(jié)果顯示,窄沙壩與寬沙壩相比,在沙壩高度減小方面速度較快、幅度較大,且有更多的泥沙向岸側(cè)移動(dòng),而寬沙壩則有部分泥沙向海側(cè)輸移。Hoyng[4]通過(guò)試驗(yàn)對(duì)高位、低位兩種近岸補(bǔ)沙方案進(jìn)行了常浪及風(fēng)暴浪下進(jìn)行研究,結(jié)果表明近岸補(bǔ)沙在各工況下都降低離岸輸沙,增強(qiáng)向岸輸沙,人工補(bǔ)沙的高度對(duì)養(yǎng)護(hù)效果起到非常重要的影響。吳建等[5]通過(guò)進(jìn)行二維物理斷面試驗(yàn),研究了近岸人工沙壩補(bǔ)沙對(duì)人工海灘波浪場(chǎng)、流場(chǎng)的影響,以及海灘剖面的演變。馬悅等[6]利用Delft3D軟件對(duì)極限波高作用下的沙壩變形與岸灘演變進(jìn)行了數(shù)值模擬,將物理試驗(yàn)與數(shù)值模擬兩種方法得到的地形結(jié)果進(jìn)行了分析比較。楊燕雄等[7]以北戴河海灘的治理工程為背景,通過(guò)二維及三維模型試驗(yàn)研究了近岸人工沙壩補(bǔ)沙養(yǎng)灘工程中的參數(shù)設(shè)計(jì)和選取問(wèn)題。趙多蒼等[8]進(jìn)行物理模型試驗(yàn),開(kāi)展了極限波高對(duì)近岸人工沙壩及岸灘演變的影響研究,探索了極端條件下人工沙壩達(dá)到動(dòng)態(tài)穩(wěn)定的條件。
而針對(duì)水位變化對(duì)近岸人工沙壩養(yǎng)灘效果影響方面研究則相對(duì)較少。因此,本文擬開(kāi)展近岸人工沙壩對(duì)水位變化的響應(yīng)研究,探索在不同水位下人工沙壩和岸灘的演變情況和對(duì)養(yǎng)灘效果的影響,并利用數(shù)值模型研究結(jié)果作為驗(yàn)證,為近海補(bǔ)沙養(yǎng)灘工程提供理論依據(jù)與技術(shù)支持。
沙壩透射系數(shù)Kt為波浪越過(guò)人工沙壩時(shí),壩后波高與壩前入射波高的比值:
(1)
式中:Ht為壩后透射波高;H為壩前入射波高。
透射系數(shù)為檢驗(yàn)沙壩消減波浪能力的主要指標(biāo),透射系數(shù)愈小,沙壩的消浪效果愈好[9]。
波陡為波高與波長(zhǎng)之比,見(jiàn)式(2),它表示波動(dòng)的平均斜率[10]。當(dāng)水位升高,波高、波陡會(huì)隨之變化,故沙壩透射系數(shù)亦相應(yīng)出現(xiàn)改變。
(2)
此外,隨著水位的升高,初始岸線后的海灘會(huì)被淹沒(méi),水位增加會(huì)引起近岸海灘水下坡上移,壩頂水深加大。由此而引起水動(dòng)力條件及波能增強(qiáng),海洋動(dòng)力環(huán)境會(huì)發(fā)生改變,即波浪場(chǎng)、潮流場(chǎng)和泥沙發(fā)生變化,故岸灘及沙壩剖面均會(huì)隨之發(fā)生演變。受到近岸人工沙壩補(bǔ)沙的影響,初始剖面非均衡穩(wěn)定的剖面,在水位升高的作用下,岸灘及沙壩剖面演變存在著復(fù)雜性。
本文采用極端高水位、設(shè)計(jì)高水位和0.00 m水位,對(duì)近岸人工沙壩及岸灘進(jìn)行二維斷面試驗(yàn),分析波陡參數(shù)對(duì)沙壩透射系數(shù)的影響,研究不同水位下人工沙壩以及岸灘的變化,探究不同水位對(duì)人工沙壩補(bǔ)沙養(yǎng)灘防護(hù)效果的影響。
二維物理模型試驗(yàn)在山東省海洋工程重點(diǎn)實(shí)驗(yàn)室波浪水槽中進(jìn)行,波浪水槽的尺寸為:長(zhǎng)60.0 m、寬3.0 m、深2.0 m。波浪水槽的造波系統(tǒng)由波流水槽、造波控制系統(tǒng)、水槽前端的推板式造波機(jī)和水槽末端的多孔介質(zhì)消能措施4部分組成。
波高測(cè)量采用天津水運(yùn)工程科學(xué)研究院所生產(chǎn)的SG2000型波高儀。海床高程采用激光全站儀進(jìn)行測(cè)量,精度為1 mm。試驗(yàn)岸灘剖面通過(guò)野外調(diào)查和觀測(cè)確定的典型剖面,試驗(yàn)橫斷面長(zhǎng)600 m,試驗(yàn)斷面布置如圖1所示。根據(jù)模型布置,離岸距離112 m處為1號(hào)波高儀,測(cè)量淺水波高;離岸距離217 m處為2號(hào)波高儀,測(cè)量壩后波高;離岸距離290 m處為3號(hào)波高儀,測(cè)量壩前波高;離岸距離402 m處為4號(hào)波高儀,測(cè)量深水波高,這樣可以測(cè)量垂直岸線沿程有代表性的波高值,繼而可得到沿程波高的變化情況,通過(guò)2號(hào)、3號(hào)所得數(shù)據(jù)也可計(jì)算沙壩透射系數(shù)。
圖1 試驗(yàn)斷面示意圖Fig.1 Sketch of the experiment section
本斷面試驗(yàn)是為了研究不同水位條件下人工沙壩及岸灘與波浪之間的相互作用,根據(jù)相似理論,重力是主要作用力,模型試驗(yàn)相似應(yīng)首先滿足重力相似[10]。采用幾何比尺λl=10的正態(tài)波浪模型,模型比尺按表1選取。
表1 模型比尺Table 1 Model scale
2.3.1 試驗(yàn)水位及波浪參數(shù) 試驗(yàn)采用0.00、1.35 m(設(shè)計(jì)高水位)和2.66 m(極端高水位)3種水位(黃海高程)作為代表水位,進(jìn)行潮位控制。試驗(yàn)采用規(guī)則波,在距離岸邊400 m為外海開(kāi)邊界的入射動(dòng)力條件,各工況波高為3種水位對(duì)應(yīng)的規(guī)則波極限波高。3種水位對(duì)應(yīng)的極限波高、波浪周期和波長(zhǎng)參數(shù)數(shù)值見(jiàn)表2。
表2 3種水位對(duì)應(yīng)的極限波高、波浪周期和波長(zhǎng)數(shù)值Table 2 Extreme wave height, wave period, and wave length with three different water levels
2.3.2 泥沙參數(shù) 岸灘位置處的模型沙中值粒徑為0.06 mm,對(duì)應(yīng)原型沙粒徑為0.60 mm的天然沙。人工沙壩處模型沙中值粒徑為0.15 mm,對(duì)應(yīng)原型沙粒徑為1.5 mm的中粗沙。
2.3.3 試驗(yàn)工況 本模型試驗(yàn)研究人工沙壩設(shè)計(jì)參數(shù)中,離岸距離、沙壩高程和壩頂寬度等保持不變,而水位及其引起的入射波等條件變化時(shí),對(duì)人工沙壩消弱波浪、養(yǎng)護(hù)海灘及自身演變的影響。人工沙壩設(shè)計(jì)為潛壩(有一定的過(guò)水能力),壩頂高程設(shè)計(jì)為-0.9 m,壩頂寬度為30 m,離岸距離250 m。在人工沙壩迎水坡處較陡,波浪會(huì)發(fā)生破碎,破碎波類型為卷破波,波峰的前沿面首先變成直立面,隨即向前呈卷舌狀,最后卷舌沒(méi)入到波谷中。卷破波水體有較大范圍的紊動(dòng)與回流,容易產(chǎn)生沙壩泥沙輸移。根據(jù)試驗(yàn)?zāi)康?,試?yàn)方案設(shè)計(jì)組次如表3所示。
表3 試驗(yàn)工況Table 3 Experiment cases
圖2為不同水位時(shí)波高沿著離岸距離的變化圖。其中,離岸距離112 m處波高H1對(duì)應(yīng)1號(hào)波高儀數(shù)據(jù);離岸距離217 m處是沙壩后波高H2,對(duì)應(yīng)2號(hào)波高儀數(shù)據(jù);離岸距離為290 m處是沙壩前波高H3,對(duì)應(yīng)3號(hào)波高儀數(shù)據(jù);離岸距離402 m處波高H4對(duì)應(yīng)4號(hào)波高儀數(shù)據(jù);離岸距離為250 m處是沙壩壩頂波高。
圖2 不同水位時(shí)波高沿程變化Fig.2 The changes of wave height along distance with different water levels
從圖中可以看到:波浪在向岸灘傳播過(guò)程中,波高一直在衰減,在波浪越過(guò)人工沙壩時(shí),波高下降趨勢(shì)尤為明顯,說(shuō)明人工沙壩有比較好的消減波浪效果。
由圖2中曲線亦可得到:不同水位條件下,波高沿程變化曲線斜率有所不同。在水位較低時(shí),人工沙壩前后位置處波高變化曲線斜率明顯較大;而在水位較高時(shí),在相同位置,波高變化曲線斜率不大。原因在于試驗(yàn)各工況中,人工沙壩高程為定值,當(dāng)水位較低時(shí),壩頂水深較小,限制了波浪的傳播,波高可能在人工沙壩斜坡處或壩頂位置發(fā)生破碎,波高則減?。欢?dāng)水位較高時(shí),壩頂水深較大,大于波浪破碎水深,波浪越過(guò)人工沙壩時(shí)沒(méi)有發(fā)生破碎,波高衰減不明顯。對(duì)比結(jié)果中壩頂處波高與沙壩前波高之比,通過(guò)計(jì)算可知,當(dāng)水位分別為0.0、1.35和2.66 m時(shí),二者比值為0.497、0.803及0.895。通過(guò)以上數(shù)據(jù)可以說(shuō)明前述原因正確。
表4為3種水位對(duì)應(yīng)組次4、5、6中波浪的透射系數(shù)的變化值。由表可知:隨著水位的升高,對(duì)應(yīng)的波浪參數(shù)隨之變化,透射系數(shù)亦逐漸增大。
表4 三種水位對(duì)應(yīng)的波浪透射系數(shù)Table 4 Wave transmission coefficients with the three different water levels
圖3是當(dāng)沙壩高程為-0.9 m時(shí),波浪透射系數(shù)與入射波波陡之間關(guān)系曲線。
圖3 波浪透射系數(shù)與波陡的關(guān)系曲線Fig.3 Relation curve between wave transmission coefficient and wave steepness
從圖3可以看到波浪透射系數(shù)隨著入射波波陡的增大而減小。在有限振幅波理論中,波浪進(jìn)入淺水區(qū)后,極限坡陡不是常數(shù),它與相對(duì)水深有關(guān),根據(jù)有限水深的極限坡陡公式[10]:
(3)
擬合波陡與透射系數(shù)之間的關(guān)系曲線,可得:
(4)
式中:Kt為透射系數(shù);H為壩前入射波波高;L為壩前入射波波長(zhǎng);H/L為波陡。擬合曲線與實(shí)測(cè)數(shù)據(jù)的相關(guān)系數(shù)為0.85。
當(dāng)波陡達(dá)到此值時(shí),波浪將發(fā)生破碎。因此,波浪越過(guò)沙壩時(shí),相同壩頂水深,波陡越大,波浪越容易達(dá)到破碎條件,由于破碎造成的波能量大量耗損,從而使人工沙壩的消浪作用加大,波浪透射系數(shù)減小明顯。
圖4為不同水位工況下沙壩剖面演變圖,對(duì)應(yīng)的是沙壩高程為-0.9 m中的3種工況。
圖4 不同水位工況沙壩剖面圖Fig.4 The profiles of sand bar with different water levels
由圖4可知,0.00 m水位時(shí),可觀察到人工沙壩剖面頂部有比較明顯的沙槽出現(xiàn);而在設(shè)計(jì)高水位、極端高水位兩種工況下,沒(méi)有觀測(cè)到人工沙壩剖面頂部有比較明顯的沙槽出現(xiàn)。
分析可知:不同水位條件下,水位低時(shí),人工沙壩頂部在形成的沙槽,隨著水位升高,沙槽消失。出現(xiàn)此現(xiàn)象的原因在于:試驗(yàn)中沙壩高程為-0.9 m,高度較低,而水位又比較高,沙壩頂部有一定的過(guò)水能力。當(dāng)水位很大時(shí),沙壩壩頂水深大于波浪破碎臨界水位,入射波在壩頂上方尚未發(fā)生波浪破碎,故而未形成沙槽。
此外,與初始放置的人工沙壩比較而言,波浪作用后,沙壩背水面坡角變陡,迎水面坡角變得平緩,但隨著水位的逐漸上升,迎水面坡角逐漸變陡。
圖5是不同水位工況的岸灘演變圖,對(duì)應(yīng)的是沙壩高程為-0.9 m中的3種工況。
圖5 不同水位工況的岸灘剖面圖Fig.5 The profiles of beach with different water levels
由圖5可知:不同水位工況時(shí),各水位對(duì)應(yīng)的岸灘侵蝕區(qū)域與淤積區(qū)域也各異,具體見(jiàn)表5,表中距離均為離岸距離。
分析可知:不同水位工況下,隨著水位的升高,岸灘受到波浪侵蝕區(qū)域向岸移動(dòng),侵蝕區(qū)域面積擴(kuò)大;隨著水位的升高,岸灘的淤積區(qū)域也向岸移動(dòng)。究其原因,水位升高會(huì)直接淹沒(méi)海濱而引起海岸線后退,不僅如此,還引起近岸海洋水動(dòng)力加強(qiáng),越灘波浪增多,破壞岸灘的平衡穩(wěn)定而造成海灘侵蝕、岸線退卻[10]。
表5 3種水位對(duì)應(yīng)的侵蝕與淤積區(qū)域Table 5 Erosion and deposition areas with three different water levels
從長(zhǎng)期看,此結(jié)論與Bruun模型所揭示的規(guī)律一致,即隨著海平面的上升,海灘平衡剖面向上部與向陸移動(dòng)[12-13](見(jiàn)圖6)。只是短期內(nèi)受人工沙壩補(bǔ)沙的影響,水位上升后,岸灘侵蝕、岸線后退效果沒(méi)有理論上的明顯。
圖6 Bruun模型示意圖(1962年)Fig.6 Sketch according to the Bruun Model (1962)
本文主要應(yīng)用的是FLOW-3D軟件其中的VOF模型及兩相流(泥沙與水流)進(jìn)行數(shù)值模擬研究,入口為波浪邊界,出口為自由出流邊界。
本文所建立的數(shù)值波浪水槽要模擬波浪與沙壩的相互作用,波浪是不可壓縮粘性流體的運(yùn)動(dòng),F(xiàn)LOW-3D將連續(xù)性方程和不可壓縮粘性流體運(yùn)動(dòng)的Navier-Stokes方程作為流體運(yùn)動(dòng)的控制方程。波浪會(huì)出現(xiàn)劇烈的變形破碎,適合采用RNGk-ε模型進(jìn)行模擬。
連續(xù)性方程:
(5)
動(dòng)量方程式
(6)
(7)
(8)
其中:ρ為流體密度;VF是可流動(dòng)的體積分?jǐn)?shù);Ax、Ay、Az代表著x、y、z3個(gè)方向可流動(dòng)的面積分?jǐn)?shù);u、v、w為對(duì)應(yīng)x、y、z的速度分量;Gx、Gy、Gz為物體在x、y、z3個(gè)方向的重力加速度;fx、fy、fz為3個(gè)方向的黏滯力加速度。
泥沙模型中懸沙的對(duì)流擴(kuò)散方程為
(9)
其中:Cs為懸沙濃度;Lj為泥沙通量;Dj為沉降項(xiàng)。
為與試驗(yàn)結(jié)果進(jìn)行對(duì)照,本文采用的模擬區(qū)域與試驗(yàn)?zāi)P统叽缦嗤?。?shù)值模型地形圖如圖7所示,計(jì)算區(qū)域?yàn)殚L(zhǎng)寬高為:40.0 m×15.5 m×1.0 m。Xmin為線性波浪邊界條件,Xmax為自由出流邊界條件,Zmin為壁面邊界條件,Ymin、Ymax、Zmax均為對(duì)稱邊界條件。
圖7 模型地形示意圖Fig.7 Terrain sketch of the model
以模型試驗(yàn)中離岸距離為400 m處3種入射波高數(shù)據(jù)為基礎(chǔ),對(duì)數(shù)模波浪進(jìn)行驗(yàn)證。從圖8、9、10中可以看出,波浪試驗(yàn)值與數(shù)模值相吻合較好。
圖8 2.34 m波高驗(yàn)證圖Fig.8 Verifications of wave height 2.34 m
圖9 3.00 m波高驗(yàn)證圖Fig.9 Verifications of wave height 3.00 m
圖10 4.40 m波高驗(yàn)證圖Fig.10 Verifications of wave height 4.40 m
為證明試驗(yàn)結(jié)果的有效性,本文將數(shù)值模型沿程波高、沙壩變形及岸灘變形結(jié)果與試驗(yàn)結(jié)果對(duì)比。圖11為各水位下沿程波高對(duì)比圖。圖12水位為1.35 m、波高3.00 m情況下沙壩演變對(duì)比圖。圖12為水位為1.35 m、波高3.00 m情況下岸灘演變對(duì)比圖。
圖11 波高對(duì)比圖Fig.11 Comparison of wave height
圖12 沙壩對(duì)比圖Fig.12 Comparison of sand bar
圖13 岸灘對(duì)比圖Fig.13 Comparison of beach
由以上圖可知,數(shù)值模型結(jié)果與物理模型結(jié)果曲線規(guī)律相吻合,證明試驗(yàn)結(jié)果有效,可用于指導(dǎo)工程實(shí)踐,為工程應(yīng)用提供理論支持與科學(xué)依據(jù)。
本文通過(guò)對(duì)3種不同水位下近海人工沙壩養(yǎng)灘二維物理模型試驗(yàn)研究,并通過(guò)數(shù)值模型驗(yàn)證,得出以下結(jié)論:
(1) 波浪在沿著離岸距離向岸灘傳播中,波高一直在減小,在波浪越過(guò)人工沙壩時(shí),波高下降趨勢(shì)尤為明顯,這說(shuō)明人工沙壩有較好的消減波浪效果;
(2) 波浪越過(guò)沙壩時(shí),相同壩頂水深,波陡越大,波浪越容易達(dá)到破碎條件,由于破碎造成的波能大量耗損,從而使人工沙壩的消浪作用加大,波浪透射系數(shù)減?。?/p>
(3) 不同水位條件下,水位低時(shí),人工沙壩頂部在形成的沙槽,隨著水位升高,沙槽消失;
(4) 不同水位工況下,隨著水位的升高,岸灘受到波浪侵蝕區(qū)域向岸移動(dòng),侵蝕區(qū)域面積擴(kuò)大,岸灘的淤積區(qū)域也向岸移動(dòng)。
(1) 由于本試驗(yàn)中波高儀數(shù)量及其布置位置的局限,無(wú)法測(cè)量在岸灘處(離岸距離小于110 m)波高詳細(xì)變化情況,因此不能精確地研究此區(qū)域波高的變化對(duì)岸灘的地形塑造的影響,下一步需要優(yōu)化試驗(yàn)方案,以期使研究數(shù)據(jù)豐富,結(jié)果更加完善。
(2) 本試驗(yàn)中離岸距離、沙壩高程和壩頂寬度等保持不變,而水位及其引起的入射波等條件變化時(shí),對(duì)人工沙壩消弱波浪、養(yǎng)護(hù)海灘及自身變形的影響。試驗(yàn)工況需要增加,包括改變沙壩高程、壩頂寬度和沙壩離岸距離等,這樣可以系統(tǒng)地研究水位對(duì)人工沙壩補(bǔ)沙養(yǎng)灘效果的影響。
[1] 王穎, 吳小根. 海平面上升與海灘侵蝕[J]. 地理學(xué)報(bào), 1995, 50(2): 118-127.
Wang Y, Wu X G. Sea level rise and beach response[J]. Acta Geographica Sinica, 1995, 50(2): 118-127.
[2] 吳建, 拾兵. 近岸補(bǔ)沙養(yǎng)護(hù)海灘研究綜述[J]. 海洋科學(xué), 2011, 35(8): 108-112.
Wu J, Shi B. A review of the shoreface nourishment for beach protection[J]. Marine Sciences, 2011, 35(8): 108-112.
[3] Dette H H, Larson M, Murphy J, et al. Application of prototype flume tests for beach nourishment assessment[J]. Coastal Engineering, 2002, 47: 137-177.
[4] Hoyng C W. Erosive and Accretive Coastal Profile Response[D]. Delft: Delft University of Technology, 2008.
[5] 吳建, 拾兵, 李智, 等. 近岸人工沙壩保灘促淤的試驗(yàn)研究[J]. 海洋通報(bào), 2012, 31(2): 176-180.
Wu J, Shi B, Li Z, et al. Experimental study on the shore nourishment for beach protection and siltation promotion[J]. Marine Science Bulletin, 2012, 31(2): 176-180.
[6] 馬悅, 拾兵, 楊燕雄, 等. 近海人工沙壩護(hù)岸養(yǎng)灘的模擬方法[J]. 海洋地質(zhì)前沿, 2013, 29(2): 31-36.
Ma Y, Shi B, Yang Y X, et al. Simulation methods for artificial nearshore sanbars for costal protection and beach nourishment[J]. Marine Geology Frontiers, 2013, 29(2): 31-36.
[7] 楊燕雄, 楊雯, 邱若峰, 等. 人工近岸沙壩在海灘養(yǎng)護(hù)中的應(yīng)用-以北戴河養(yǎng)灘工程為例[J]. 海洋地質(zhì)前沿, 2013, 29(2): 23-30.
Yang Y X, Yang W, Qiu R F, et al. Application of artificial submerged sandbars to beach nourishment—a case from Beidaihe beach[J].Marine Geology Frontiers, 2013, 29(2): 23-30.
[8] 趙多蒼, 拾兵, 宋朋遠(yuǎn), 等. 極限波高下人工沙壩的動(dòng)力調(diào)整研究[J].中國(guó)海洋大學(xué)學(xué)報(bào): 自然科學(xué)版, 2014, 44(6): 97-102.
Zhao D C, Shi B, Song P Y, et al. Study of Artificial Sand Bar Dynamic Adjustment on Limit Wave Height[J]. Periodical of Ocean University of China: Natural Science Edition, 2014, 44(6): 97-102.
[9] 趙多蒼. 沙質(zhì)海灘侵蝕與近岸沙壩防護(hù)技術(shù)研究[D].青島: 中國(guó)海洋大學(xué), 2014.42-45.
Zhao D C. Study on Sandy Beach Erosion and Protection Technology for the Offshore Artificial Sand Bar[D]. Qingdao: Ocean University of China, 2014.42-45.
[10] 鄒志利. 海岸動(dòng)力學(xué)[M]. 北京: 人民交通出版社, 2009.77-81.
Zou Z L. Coast Dynamics[M]. Beijing: China Communications Press, 2009.77-81.
[11] 嚴(yán)愷. 海岸工程[M]. 北京: 海洋出版社, 2002.570-598.
Yan K. Coastal Engineering[M]. Beijing: China Ocean Press, 2002.570-598.
[12] Bruun P. Sea-level rise as a cause of shore erosion[J]. Journal Waterways and Harbors Division, 1962, 88: 117-130.
[13] Bruun P. The Bruun rule of erosion by sea-level rise: A discussion of large-scale two-and-three-dimensional usages[J]. Journal of Coastal Research, 1988, 4(4): 627-648.
責(zé)任編輯 陳呈超
ExperimentalStudyonEffectofBeachNourishmentwiththeOffshoreArtificialSandyBarResponsetoWaterLevelChange
SHI Bing1,YU Dong1,ZHAO En-Jin1,ZHAO Duo-Cang2
(1. College of Engineering, Ocean University of China, Qingdao 266100, China; 2. China Railway Construction Bridge Engineering Bureau Groups Co Ltd, Tianjin 300300, China)
Beach erosion has become a major global problem, which not only causes Widespread attention from academia, but also causes widespread concern from people. At the present time, the most effective protection measures of beach erosion is beach nourishment, namely artificial sand filling. In this paper, two-dimensional sectional experiment of the offshore artificial sand bar was conducted with three different water levels, which were extreme high water level(2.66m), design high water level(1.35 m) and 0.00 m water level, respectively. This experiment was designed to study the change of artificial sand bar and beach, and explores the effect of beach nourishment protection under the condition of the three different water level. The result shows that: Under the case of different water levels, when water level was low, sand tanks produced on the top of artificial sand bar; with water level increasing, sand tanks disappeared. Erosion areas of beach under the wave action condition were closer to shore and become larger. Deposition areas of beach were closer to shore too. In this paper, Flow-3D was also used to carry out numerical simulation for the research content, which results were consistent with the two-dimensional sectional experiment. The study could provide a theoretical basis for the offshore filling sand beach nourishment project.
water level; artificial sand bar; beach; two-dimensional sectional experiment; numerical simulation
P753
A
1672-5174(2018)01-104-07
10.16441/j.cnki.hdxb.20150221
拾兵, 于冬, 趙恩金, 等. 水位變化對(duì)近岸人工沙壩養(yǎng)灘效果影響的試驗(yàn)研究[J]. 中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 48(1): 104-110.
SHI Bing, YU Dong, ZHAO En-Jin, et al. Experimental study on effect of beach nourishment with the offshore artificial sandy bar response to water level change[J].Periodical of Ocean University of China, 2018, 48(1): 104-110.
國(guó)家自然科學(xué)基金項(xiàng)目(51279189)資助
Supported by the National Natural Science Foundation of China(51279189)
2015-06-22;
2016-01-28
拾 兵(1961-),教授,博導(dǎo),主要從事河流、河口與海岸動(dòng)力學(xué)研究。E-mail:sediment@ouc.edu.cn