劉云超 陳敏 劉云濤 肖璟博 張成彬 陳杰
摘 要:設(shè)計了一款低功耗自適應(yīng)偏置無片外電容低壓差線性穩(wěn)壓器.為了解決由于設(shè)計和工藝中存在不匹配造成每級誤差放大器不同類型輸入管的反型系數(shù)在自適應(yīng)偏置下變化不同步問題,提出了由循環(huán)折疊共源共柵放大器和跨導提高放大器構(gòu)成的誤差放大器結(jié)構(gòu),同時采用推挽輸出結(jié)構(gòu)提高了對功率管的驅(qū)動能力.該無片外電容低壓差穩(wěn)壓器采用嵌套密勒補償和自適應(yīng)偏置,解決了輕負載時的穩(wěn)定性問題,同時提高了輕負載下的電流效率.芯片采用SMIC 0.18 μm CMOS工藝設(shè)計,版圖面積為0.019 9 mm2.蒙特卡羅后仿真的結(jié)果表明,其負載電流范圍為10 μA~100 mA,最大負載寄生電容為100 pF,最小負載下靜態(tài)電流為1 μA,負載調(diào)整率和電源調(diào)整率分別為3.5 μV/mA和0.372 mV/V.設(shè)計的低壓差穩(wěn)壓器具有低功耗、無片外電容、面積小的優(yōu)點,是片上系統(tǒng)中電源管理知識產(chǎn)權(quán)核的良好選擇.
關(guān)鍵詞:線性穩(wěn)壓器;低功耗;無片外電容;自適應(yīng)偏置
中圖分類號:TN402 文獻標志碼:A
Abstract:A lowpower adaptively biased outputcapacitorfree lowdropout linear regulator was designed. In order to tackle the problem that the inversion coefficients of different types of input transistors in each error amplifier stage may vary asynchronously under adaptive bias caused by mismatches in the design and process, an error amplifier comprised of the recycling folded cascode amplifier and transconductanceboosting amplifier was proposed. The driving ability for the power transistor was improved by the adopted pullpush output structure. Nested Miller compensation and adaptive bias were used to solve the stability problem of outputcapacitorfree lowdropout regulator and improve the current efficiency at light loads. The regulator chip was implemented in SMIC 0.18 μm CMOS process with a layout area of 0.019 9 mm2. The Monte Carlo postsimulation results show that the load current range is 10 μA~100 mA with the maximum load parasitic capacitance of 100 pF, and the quiescent current is 1 μA at the minimum load condition. The load regulation and line regulation are 3.5 μV/mA and 0.372 mV/V, respectively. The designed lowdropout regulator has the merits of low power consumption, no offchip capacitor and small area, which indicates that it is a good choice as intellectual property core of the power management for the system on chip.
Key words:linear regulator; low power consumption; outputcapacitorfree; adaptive bias
低壓差線性穩(wěn)壓器(lowdropout linear regulator, LDO)是一種重要的電源管理芯片,具有噪聲低、紋波小、電源抑制比高、精度高、結(jié)構(gòu)簡單、封裝小、瞬態(tài)響應(yīng)速度快等優(yōu)點,被廣泛應(yīng)用于片上系統(tǒng)設(shè)計中,特別是高性能的模擬、數(shù)?;旌想娐分?傳統(tǒng)結(jié)構(gòu)的LDO需要一個帶等效串聯(lián)電阻的片外電容起到頻率補償作用,穩(wěn)定LDO的輸出電壓,抑制過充電壓[1-4],但是它增加了芯片引腳和片外元件,而且增加了負載電源線間的串擾,不利于電壓調(diào)整[5].因此,無片外電容LDO逐漸成為研究熱點.
無片外電容LDO實際上是由多級放大器構(gòu)成的負反饋放大電路,在LDO環(huán)路中存在多個極點,不利于LDO穩(wěn)定工作,國內(nèi)外學者對此提出了不同的補償方案.文獻[5]提出一種阻尼系數(shù)控制的補償方法,文獻[6]提出了品質(zhì)因數(shù)Q值減小技術(shù),文獻[7]提出通過功率管陣列實現(xiàn)平滑的極點追蹤技術(shù),文獻[8]提出有源反饋結(jié)合前饋的技術(shù),這些方法都是通過減小復極點對的Q值來實現(xiàn)環(huán)路穩(wěn)定,但是存在一些固有缺點,如補償電路結(jié)構(gòu)復雜[5,7-8]、靜態(tài)電流過大[6-7]或輕負載下不穩(wěn)定[5-7]等缺點.文獻[9-15]采用了自適應(yīng)偏置方法,其中誤差放大器的部分偏置電流鏡像復制功率管的工作電流,彌補上述缺陷,但是還存在如下問題:1)誤差放大器對功率管柵極電容充放電速度受到尾電流源的限制[9-15];2)設(shè)計和工藝中存在失配造成每級誤差放大器不同類型輸入管的反型系數(shù)隨LDO負載變化不同步[14];3)需要片外電容[9,13,15].
本文設(shè)計了一種采用嵌套密勒補償自適應(yīng)偏置無片外電容LDO.為了解決誤差放大器輸入管的反型系數(shù)隨LDO負載電流變化不同步問題,提出了由輸入管都是PMOS管的循環(huán)折疊共源共柵放大器和跨導提高放大器組成的誤差放大器結(jié)構(gòu),同時在跨導提高放大器中采用推挽輸出結(jié)構(gòu)提高了對功率管柵極電容充放電的速度.此外,該結(jié)構(gòu)具有很高的開環(huán)增益,因此有效提高了LDO的負載調(diào)整率.為了減小LDO的靜態(tài)功耗和芯片面積,使用了二極管連接的PMOS管反饋網(wǎng)絡(luò).
1 提出的LDO結(jié)構(gòu)及原理分析
1.1 LDO的電路結(jié)構(gòu)
圖1是一個基于自適應(yīng)偏置的無片外電容LDO結(jié)構(gòu).它由以下幾部分構(gòu)成:誤差放大器、帶隙基準源、功率管、反饋網(wǎng)絡(luò)、補償網(wǎng)絡(luò)、自適應(yīng)偏置電路.功率管尺寸決定了LDO所能提供的最大負載電流,一般設(shè)計的尺寸都非常大;由三級放大器組成的LDO環(huán)路中存在三個低頻極點,可以利用功率管的柵極和漏極之間存在的pF級寄生電容CGD和補償電容CC共同實現(xiàn)嵌套密勒補償方法,將第二、三級放大器輸出節(jié)點的兩個非主極點推至單位增益帶寬外,保證LDO有足夠的相位裕度;自適應(yīng)偏置電路通過電流鏡按固定的比例鏡像復制LDO的負載電流,為誤差放大器提供自適應(yīng)偏置電流,提高LDO輕負載下的電流效率和重負載下的瞬態(tài)響應(yīng)特性;誤差放大器將反饋電壓VFB同由帶隙基準源提供的高精度、低溫漂參考電壓VREF進行比較放大,調(diào)整功率管的工作狀態(tài),穩(wěn)定LDO的輸出電壓.本文提出了由循環(huán)折疊共源共柵放大器和跨導提高放大器組成的誤差放大器,可以使得誤差放大器輸入管的反型系數(shù)始終一致,推挽驅(qū)動功率管,增大了LDO的環(huán)路增益進而有效地提高LDO的負載調(diào)整率和電源調(diào)整率.
3 后仿真結(jié)果分析
本文的自適應(yīng)偏置無片外電容LDO采用SMIC 0.18 μm CMOS混合信號工藝模型設(shè)計和仿真,版圖面積為0.019 9 mm2(194.08 μm×102.78 μm),如圖5所示.其供電電壓范圍是1.4~2 V,輸出電壓為1.2 V,輸出負載電流范圍是10 μA~100 mA.
為了充分考慮工藝制程變化和器件失配對電路帶來的影響,特別是輕負載下電路中MOS管工作在亞閾值區(qū),對電路的瞬態(tài)特性進行了蒙特卡羅后仿真.圖10是針對電源瞬態(tài)響應(yīng)特性進行了300次蒙特卡羅后仿真的結(jié)果,在100 mA負載和100 pF負載寄生電容條件下,供電電壓從1.4~1.8 V以1 μs的時間階躍變化,LDO輸出上沖樣本均值(Mean)和標準差(Std Dev)分別為23.82 mV和1.44 mV,輸出下沖樣本均值和標準差分別為24.94 mV和1.80 mV.圖11和12是在1.8 V供電電壓下重負載和輕負載時針對負載瞬態(tài)響應(yīng)特性進行了300次蒙特卡羅后仿真的結(jié)果.負載電流從1~100 mA以1 μs的時間階躍變化,LDO輸出上沖的樣本均值和標準差分別是81.39 mV和3.33 mV,下沖的樣本均值和標準差分別是83.32 mV和5.14 mV;從10 μA~1 mA以1 μs的時間階躍變化,LDO輸出上沖的樣本均值和標準差分別是133.2 mV和1.61 mV,下沖的樣本均值和標準差分別是162.37 mV和0.64 mV.瞬態(tài)響應(yīng)特性蒙特卡羅后仿真的結(jié)果表明LDO具有很好的魯棒性,能夠穩(wěn)定地工作,為負載提供穩(wěn)定的工作電壓.
表2是其它文獻中LDO電路與本文設(shè)計電路的性能比較.相比文獻[56]中固定偏置結(jié)構(gòu)無片外電容LDO,本文設(shè)計自適應(yīng)偏置LDO無論是輕負載下的靜態(tài)電流還是最小負載電流都減小了1~2個數(shù)量級.文獻[9,13,15]中的自適應(yīng)偏置LDO以增添片外電容為代價實現(xiàn)空載下的穩(wěn)定工作.相比文獻[10,14]中自適應(yīng)偏置LDO,綜合從芯片面積、輕負載下靜態(tài)電流、最小負載電流三項指標來看,本文設(shè)計的三項指標都較小,僅次于文獻[12],但是本文采用的工藝節(jié)點相比文獻[12]落后3代.本文中LDO的電源調(diào)整率較小,僅次于文獻[6],而負載調(diào)整率也最小,這都與LDO環(huán)路的高增益有關(guān).從對比結(jié)果來看,本文設(shè)計的無片外電容LDO在芯片面積、輕負載下靜態(tài)功耗和負載電流范圍得到了很好的折中優(yōu)化,而且能夠為負載提供精準穩(wěn)定的工作電壓.
4 結(jié) 論
本文設(shè)計了一個低功耗自適應(yīng)偏置無片外電容LDO.利用嵌套密勒補償和自適應(yīng)偏置解決了LDO在輕負載下環(huán)路中出現(xiàn)復極點對的問題,確保其在10 μA的輕負載下也能夠穩(wěn)定工作,同時降低了靜態(tài)電流,進而提高其輕負載下的電流效率.提出的由循環(huán)折疊共源共柵放大器和跨導提高放大器構(gòu)成的誤差放大器結(jié)構(gòu),保證在自適應(yīng)偏置下每級誤差放大器PMOS輸入管的反型系數(shù)始終一樣,推挽輸出驅(qū)動功率管,增大LDO的環(huán)路增益進而提高負載調(diào)整率.同其它結(jié)構(gòu)相比,本文設(shè)計的LDO結(jié)構(gòu)簡單,版圖面積顯著降低,在輕負載下的靜態(tài)功耗相對較小.蒙特卡羅后仿真的結(jié)果表明LDO具有很好的穩(wěn)定性,可以作為電源管理知識產(chǎn)權(quán)核應(yīng)用于片上系統(tǒng)設(shè)計中.
參考文獻
[1] 王 憶,何樂年.CMOS低壓差線性穩(wěn)壓器[M]. 北京:科學出版社, 2012:19-20,71-73.
WANG Y, HE L N. CMOS lowdropout linear regulator [M]. Beijing: Science Press, 2012:19-20,71-73. (In Chinese)
[2] RINCONMORA G A, ALLEN P E. A lowvoltage, low quiescent current, low dropout regulator [J]. IEEE Journal of SolidState Circuits, 1998,33(1):36-44.
[3] OH W, BAKKALOGLU B. A CMOS lowdropout regulator with currentmode feedback buffer amplifier [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2007,54(10):922-926.
[4] HO M, LEUNG K N, MAK K L. A lowpower fasttransient 90nm lowdropout regulator with multiple smallgain stages [J]. IEEE Journal of SolidState Circuits, 2010,45(11):2466-2475.
[5] LEUNG K N, MOK P K T. A capacitorfree CMOS lowdropout regulator with dampingfactorcontrol frequency compensation [J]. IEEE Journal of SolidState Circuits, 2003,38(10):1691-1702.
[6] LAU S K, MOK P K T, LEUNG K N. A lowdropout regulator for SoC with Qreduction [J]. IEEE Journal of SolidState Circuits, 2007,42(3):658-664.
[7] LIN Y H, ZHENG K L, CHEN K H. Smooth pole tracking technique by power MOSFET array in lowdropout regulators [J]. IEEE Transactions on Power Electronics, 2008,23(5):2421-2427.
[8] HO E N Y, MOK P K T. A capacitorless CMOS active feedback lowdropout regulator with slewrate enhancement for portable onchip application [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010,57(2):80-84.
[9] LAM Y H, KI W H. A 0.9V 0.35μm adaptively biased CMOS LDO regulator with fast transient response [C]// 2008 IEEE International SolidState Circuits Conference (ISSCC), Digest of Technical Papers. San Francisco, USA: IEEE,2008:442-626.
[10]ZHAN C, KI W H. Outputcapacitorfree adaptively biased lowdropout regulator for systemonchips [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010,57(5):1017-1028.
[11]ZHAN C, KI W H. An outputcapacitorfree adaptively biased lowdropout regulator with subthreshold undershootreduction for SoC [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012,59(5):1119-1131.
[12]CHONG S, CHAN P K. A 0.9μA quiescent current outputcapacitorless LDO regulator with adaptive power transistors in 65 nm CMOS [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013,60(4):1072-1081.
[13]MAITY A, PATRA A. Design and analysis of an adaptively biased lowdropout regulator using enhanced current mirror buffer [J]. IEEE Transactions on Power Electronics, 2016,31(3):2324-2336.
[14]MAITY A, PATRA A. Tradeoffs aware design procedure for an adaptively biased capacitorless low dropout regulator using nested miller compensation [J]. IEEE Transactions on Power Electronics, 2016,31(1):369-380.
[15]MAITY A, PATRA A. A hybridmode operational transconductance amplifier for an adaptively biased low dropout regulator [J]. IEEE Transactions on Power Electronics, 2017,32(2):1245-1254.
[16]ASSAAD R S, SILVAMARTINEZ J. The recycling folded cascode: a general enhancement of the folded cascode amplifier [J]. IEEE Journal of SolidState Circuits, 2009,44(9):2535-2542.
[17]BINKLEY D M. Tradeoffs and optimization in analog CMOS design [M]. England: John Wiley & Sons, 2008:33-294.
[18]LEUNG K N, MOK P K T. Analysis of multistage amplifierfrequency compensation [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001,48(9):1041-1056.
[19]SANSEN W M C. Analog design essentials [M]. Netherlands: Springer, 2006:1-49,263-290.