支蘇麗,周 婧,趙 潤,楊鳳霞,張克強(qiáng)※
?
畜禽糞便厭氧發(fā)酵過程抗生素抗性基因歸趨及驅(qū)動因子分析
支蘇麗1,周 婧2,趙 潤1,楊鳳霞1,張克強(qiáng)1※
(1. 農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測所,天津 300191;2. 東北農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,哈爾濱 150036)
針對畜禽養(yǎng)殖業(yè)抗生素抗性基因(antibiotic resistance genes, ARGs)污染問題,該文選取厭氧發(fā)酵技術(shù),對比不同厭氧發(fā)酵體系內(nèi)ARGs消長與潛在宿主菌,挖掘不同因子與ARGs的相互關(guān)系。結(jié)果表明,厭氧發(fā)酵體系內(nèi)微生物群落變化是ARGs消長的主要驅(qū)動因子,確定ARGs的潛在宿主菌是目前研究的難點(diǎn);抗生素和重金屬也是ARGs消長的重要驅(qū)動因子,控制抗生素污染和重金屬污染可有效減緩ARGs污染;可移動遺傳元件在ARGs水平傳播過程中起著重要作用。綜合而言,厭氧發(fā)酵體系內(nèi)各個因子直接或間接影響ARGs消長,其中工藝參數(shù)是控制整個厭氧發(fā)酵體系的先決因素,在特定工藝參數(shù)下,微生物群落與體系物化指標(biāo)相互影響與制約;微生物通過分子內(nèi)部可移動遺傳元件實(shí)現(xiàn)ARGs在不同微生物之間的水平傳播。綜上所述,通過綜合協(xié)調(diào)各類因子實(shí)現(xiàn)厭氧發(fā)酵體系內(nèi)ARGs消控是今后研究重點(diǎn)。
抗生素;糞;厭氧發(fā)酵;微生物群落;可移動遺傳元件;驅(qū)動因子
抗生素抗性基因(antibiotic resistance genes, ARGs)是一種新型污染物,其產(chǎn)生的主要原因是抗生素大量使用。中國是畜禽養(yǎng)殖大國,據(jù)報(bào)道,2013年中國抗生素總使用量約為16.2萬t(約為美國總使用量的9倍),其中52%為獸用抗生素[1]。目前,養(yǎng)殖糞便已成為抗生素和ARGs重要的儲存庫,如不加以處理控制,ARGs便會隨著農(nóng)用進(jìn)一步污染土壤等環(huán)境介質(zhì),并有可能通過直接或間接途徑進(jìn)入食物鏈和人體,增加人體抗藥性,危害人類公共健康。世界衛(wèi)生組織(WHO)也已將ARGs作為21世紀(jì)威脅人類健康的最重大挑戰(zhàn)之一,并宣布將在全球范圍內(nèi)對控制ARGs進(jìn)行戰(zhàn)略部署。在畜禽養(yǎng)殖業(yè),厭氧發(fā)酵技術(shù)被認(rèn)為是合乎環(huán)境可持續(xù)發(fā)展要求、最具有前景的發(fā)展技術(shù)之一,目前被普遍應(yīng)用于養(yǎng)殖場的糞污處理,大量學(xué)者研究了ARGs在畜禽糞便厭氧發(fā)酵過程中的消長規(guī)律,以及不同因子對ARGs的影響作用,然而缺少相關(guān)綜述研究。本文將全面介紹畜禽糞便中ARGs產(chǎn)生與污染情況,綜述了ARGs在現(xiàn)有畜禽糞便厭氧發(fā)酵系統(tǒng)內(nèi)的消長規(guī)律,分析了不同因子與ARGs之間相互作用關(guān)系,并提出現(xiàn)有的研究問題與今后研究重點(diǎn)。旨在為讀者客觀呈現(xiàn)關(guān)于ARGs在畜禽糞便厭氧發(fā)酵過程中消長規(guī)律與驅(qū)動因子相關(guān)方面研究,并指出仍需深入研究的關(guān)鍵點(diǎn)。
抗生素抗性基因指環(huán)境中某些微生物攜帶或者能夠獲得的特定基因,屬于編碼不同的蛋白質(zhì)以去除抗生素的生物毒性效應(yīng)[2],也稱為耐藥基因或耐藥性[3]。微生物對抗生素的耐藥性主要分兩大類型:固有耐藥性和獲得性耐藥性[3]。固有耐藥性是指微生物通過遺傳而獲得的抗生素耐藥性,是微生物在長期進(jìn)化過程中獲得的天然抗生素抗性[4-5];獲得性耐藥性是微生物借助質(zhì)粒、整合子或者轉(zhuǎn)座子等其他可移動遺傳元件,通過基因水平轉(zhuǎn)移的方式從外界獲得的抗生素耐藥基因,而在自身體內(nèi)表達(dá)出相應(yīng)的抗生素耐藥性表型[6]。報(bào)道指出,細(xì)菌自發(fā)突變率約為10-6~10-8,且非常不穩(wěn)定,而通過突變來獲得抗生素耐藥基因以及多重耐藥基因的幾率更低[7],因此,由移動遺傳元件所導(dǎo)致的抗性基因的水平轉(zhuǎn)移,才是造成目前抗生素抗性基因污染廣泛、嚴(yán)重且日益惡化的主要原因。
自ARGs作為一種“新型污染物”進(jìn)入公眾視線以后,關(guān)于不同環(huán)境介質(zhì)中ARGs污染的報(bào)道日益增加。1)地表水:大量研究表明地表水體中ARGs污染普遍存在,例如,Jia等[8]對西安灞河水體中的14種抗生素和23種ARGs進(jìn)行了研究,指出1、A、C、Z、A、F、A和TEM在水體中絕對豐度較高;Niu等[9]指出ARGs在渤海灣水體和底泥中普遍存在,其中M 和B豐度相對較高;甚至,在無人類活動影響的深海區(qū)域也能監(jiān)測到ARGs[10]。2)污水系統(tǒng):諸多研究者指出污水系統(tǒng)是ARGs的巨大儲存庫,尤其是醫(yī)療廢水,由于抗生素等藥物的存在,使得ARGs以較高的豐度存在,Rodriguez- Rodriguez-Lazaro D等[11]對醫(yī)院廢水、污水處理廠及其受納水體進(jìn)行分析,發(fā)現(xiàn)醫(yī)院廢水中TEM、S、B、1和W 在所有樣品中豐度均最高,達(dá)106 copies/mL以上;此外,不同污水處理工藝對ARGs處理效果不同,Munir等[12]指出膜生物反應(yīng)器(membrane bioreactor, MBR)對ARGs的消減效果較好,而生物濾池對ARGs的去除效果相對較差;Diehl等[13]指出在序列式生物反應(yīng)器(sequencing batch reactor activated sludge process, SBR)中ARGs的豐度有所升高。3)飲用水系統(tǒng):飲用水系統(tǒng)與人體健康有著直接的關(guān)系,Xu等[14]調(diào)查了飲用水廠和布水系統(tǒng)中ARGs分布,不同處理對ARGs富集產(chǎn)生不同影響,氯化消毒處理會使ARGs的相對豐度升高。4)土壤:土壤中ARGs污染越來越引起人們重視,Wang等[15]在中水灌溉的城市公園土壤中發(fā)現(xiàn)了147種ARGs,其中氨基糖苷類和-內(nèi)酰胺類豐度最高;Dungan等[16]指出牛場廢水灌溉后,農(nóng)田土壤中的ARGs豐度急劇增高。5)食品:Sko?ková等[17-18]都從牛奶原漿中分離出帶有抗生素抗性基因的大腸桿菌;Marti等[19]在施用牛糞有機(jī)肥的蔬菜中發(fā)現(xiàn)了T、PSE、OXA-20、2、F和B,在以豬糞為有機(jī)肥的蔬菜中發(fā)現(xiàn)了B、T、OXA-20、2、A和F。6)空氣:空氣中顆粒物質(zhì)可攜帶大量微生物,如果這些微生物攜帶有ARGs,將會直接被吸入人體,不少研究者指出,北京霧霾的空氣中存在多種ARGs[20-21],例如,Hartmann等研究表明,ARGs在室內(nèi)空氣顆粒物上的分布與顆粒物所攜帶的致病菌有直接聯(lián)系[22]。由以上分析可知,ARGs普遍存在于各種環(huán)境介質(zhì)中,然而,隨著ARGs研究的不斷深入,研究焦點(diǎn)應(yīng)該從ARGs的檢出和污染表象逐漸轉(zhuǎn)向ARGs在不同環(huán)境介質(zhì)間的遷移轉(zhuǎn)化途徑、機(jī)制,以及ARGs溯源追蹤和阻斷ARGs傳播的方法探索。
隨著ARGs污染的日益嚴(yán)重,ARGs檢測技術(shù)也不斷發(fā)展,主要是利用分子生物學(xué)技術(shù)來監(jiān)控不同環(huán)境介質(zhì)中的ARGs豐度。1)PCR和實(shí)時(shí)定量PCR技術(shù):在ARGs研究初期,研究者常利用PCR技術(shù)檢測ARGs出現(xiàn)的頻率,梁惜梅等[23]利用PCR技術(shù)對珠江口典型水產(chǎn)養(yǎng)殖區(qū)水體進(jìn)行檢測,結(jié)果顯示1、2和1的檢出率均達(dá)100%,A、B、C、H、M、O和S的檢出頻率為27.3%~90.9%。實(shí)時(shí)定量PCR(real-time quantitative PCR,qPCR)是目前檢測ARGs豐度的最主要手段,它具有靈敏度高且成本低等優(yōu)點(diǎn),可滿足不同環(huán)境樣品中ARGs污染的分析研究,李蕾等[24]利用qPCR技術(shù)研究垃圾填埋場ARGs污染情況,結(jié)果顯示2、1、W、SHV和豐度最高,分別達(dá) 3.7×108、9.3×106、2.3×105、3.7×104和1.4×104copies/g;錢燕云等[25]利用qPCR技術(shù)研究了厭氧發(fā)酵過程中ARGs豐度變化,結(jié)果表明四環(huán)素類抗性基因呈降低規(guī)律,但磺胺類抗性基因則呈現(xiàn)上升趨勢。2)高通量定量PCR技術(shù):高通量定量PCR技術(shù)(high-throughput quantitative PCR, HT-qPCR)可同時(shí)對環(huán)境樣品中上百種ARGs進(jìn)行定量分析,以獲得ARGs的廣譜分布結(jié)果,但該技術(shù)只能獲得ARGs的相對豐度。Karkman等[26]利用該技術(shù)對城市污水處理系統(tǒng)中ARGs進(jìn)行監(jiān)控,共得到9種可移動遺傳元件(mobile genetic elements, MGEs)和175種ARGs的豐度。黃福義等[27]利用該技術(shù)同時(shí)對市政污水和生活垃圾滲濾液中的ARGs進(jìn)行監(jiān)控,并指出市政污水中存在39種ARGs,生活垃圾滲濾液中存在187種ARGs。3)高通量測序技術(shù):高通量測序技術(shù)(high-throughput sequencing)可同時(shí)實(shí)現(xiàn)對幾十萬到幾百萬條DNA分子進(jìn)行序列測定,以454和Illumina平臺為代表,具有通量高、信息量大和基因序列準(zhǔn)確等優(yōu)點(diǎn)。其不僅可全面揭示樣品中微生物種類,將微生物注釋到屬水平,還可獲得微生物豐度數(shù)據(jù)[28],近期研究通常用ARGs與微生物豐度進(jìn)行相關(guān)性分析,以揭示ARGs在環(huán)境中的傳播機(jī)理。宏基因組測序技術(shù)是近些年新發(fā)展起來的高通量技術(shù),該技術(shù)建立在高通量測序技術(shù)基礎(chǔ)上,在提取樣品中總 DNA后,針對總DNA構(gòu)建文庫進(jìn)行測序,所測序列中包含了樣品中所有ARGs。Yang等[29]利用宏基因組測序技術(shù)對香港1個污水處理廠中ARGs進(jìn)行長期監(jiān)測(4 a),結(jié)果表明氨基糖苷類和四環(huán)素類抗生素抗性基因豐度最高;Fang等[30]利用宏基因組測序技術(shù)研究南京某雞場糞便和施肥后溫室大棚土壤中ARGs和致病菌污染特點(diǎn),結(jié)果表明22類ARGs、32種治病菌以及被致病菌所攜帶的46種ARGs均有檢出,其中雞糞中四環(huán)素類ARGs相對豐度最高,溫室土壤中以多重耐藥基因?yàn)橹鳌?/p>
抗生素用于畜禽體后,一方面會形成選擇壓力使畜禽腸道微生物產(chǎn)生耐藥性,從而使畜禽糞便中攜帶大量ARGs;另一方面,約30%~90%的抗生素會隨畜禽糞便排入環(huán)境,進(jìn)入環(huán)境中的抗生素除了會造成化學(xué)污染外,最重要的是可能會誘導(dǎo)環(huán)境中抗生素抗性微生物(antibiotic resistance bacteria, ARB)和ARGs的產(chǎn)生[31-32]。不同于傳統(tǒng)化學(xué)污染物,ARGs因其固有的生物學(xué)特性,表現(xiàn)出獨(dú)特的環(huán)境行為,如可復(fù)制性、傳播性和環(huán)境持久性等特點(diǎn)。ARGs借助可移動基因元件, 如質(zhì)粒(plasmids)、轉(zhuǎn)座子(transposons)、整合子(integrons)、插入序列共同區(qū)域和復(fù)雜整合子、噬菌體等,通過基因水平轉(zhuǎn)移(horizontal gene transfer,HGT)機(jī)制在環(huán)境介質(zhì)中不同微生物之間傳播[33-34],并有可能通過直接或間接途徑進(jìn)入食物鏈和人體,增加人體抗藥性,危害人類公共健康。圖1所示為畜禽糞便中ARGs在環(huán)境中遷移擴(kuò)散示意圖,如圖所示,抗生素被用于動物體后,可使動物體內(nèi)產(chǎn)生ARGs,一方面糞便和污水中的ARGs可進(jìn)入土壤和作物中,另一方面,ARGs隨著地表徑流和滲透作用可進(jìn)入地表水和地下水,2種途徑中ARGs均可進(jìn)入食物鏈。因此,鑒于畜禽糞便中ARGs污染的特殊性以及所構(gòu)成的生態(tài)風(fēng)險(xiǎn),應(yīng)該尋找和開發(fā)具有針對性措施以遏制畜禽糞便中ARGs在環(huán)境中的產(chǎn)生與傳播。
圖1 畜禽糞便中ARGs在環(huán)境中擴(kuò)散示意圖
研究表明,畜禽糞便已經(jīng)成為抗生素抗性基因重要的儲存庫。Ben等[35]對山東省9家生豬養(yǎng)殖場糞便中ARGs研究表明,豬糞中ARGs相對豐度為3.3×10-5(C)到5.2×10-1(O),污水中ARGs相對豐度為7.3×10-3(C)到1.7×10-1(O)。冀秀玲等[36]調(diào)查了上海地區(qū)豬場和牛場廢水中磺胺類和四環(huán)素類耐藥基因,濃度最高的分別是磺胺類耐藥基因A (108~1010copies/mL)和四環(huán)素耐藥基因W(106~107copies/mL)。目前,中國和主要發(fā)達(dá)國家推行畜禽糞污處置后還田利用,如果畜禽糞污中攜帶大量抗生素和ARGs進(jìn)入農(nóng)田或者接納水體,可能會導(dǎo)致土壤中或接納水體中抗生素和ARGs增加,從而造成抗生素和ARGs的二次傳播,并有可能進(jìn)入人類食物鏈。例如,Wu等[37]在北京某養(yǎng)豬場周邊土壤中檢測出了15種四環(huán)素類抗性基因,包括A,、C、E、G、K、L、A/P、M、O、Q、S、T、W、B/P、X。Zhu等[38]從國內(nèi)3個大型城郊養(yǎng)豬場糞便處理到土地利用的過程中檢測出149種抗性基因,豐度最高的63種抗性基因與沒有施用糞便的土壤中抗性基因相比被擴(kuò)增了192~28 000倍。由此可見,畜禽糞污已成為ARGs污染與傳播的重要源頭。與此同時(shí),中國畜禽糞便排放量十分巨大,據(jù)報(bào)道,2010年全國糞便產(chǎn)生量高達(dá)45億t[39]。國家一號文件(國辦發(fā)〔2017〕48號)提倡中國要加快推進(jìn)畜禽養(yǎng)殖廢棄物資源化利用,加強(qiáng)糞肥還田,因此,面對畜禽糞便大面積還田的同時(shí),如何有效處置和降低畜禽糞便中抗性基因或耐藥性傳播對降低生態(tài)風(fēng)險(xiǎn)至關(guān)重要。
畜禽養(yǎng)殖業(yè)糞便無害化處理和資源化利用技術(shù)當(dāng)中,厭氧發(fā)酵技術(shù)由于其獨(dú)特的優(yōu)勢成為畜禽糞便無害化和資源化技術(shù)主要技術(shù)之一[40],它能使糞便穩(wěn)定化,消除氣味與病原體,降低溫室氣體排放,將糞便轉(zhuǎn)化為能源物質(zhì)甲烷和有機(jī)肥料,從而達(dá)到畜禽糞便的資源化利用[41]。關(guān)于厭氧發(fā)酵體系內(nèi)ARGs的來源,一方面,進(jìn)料中攜帶的ARGs進(jìn)入?yún)捬醢l(fā)酵體系,并傳播給體系內(nèi)原有微生物;另一方面,畜禽糞污中所含抗生素殘留會形成選擇壓力,使體系內(nèi)微生物自身產(chǎn)生耐藥性并發(fā)生水平轉(zhuǎn)移。目前,厭氧發(fā)酵體系已成為ARGs龐大儲存庫和水平轉(zhuǎn)移的高發(fā)區(qū),厭氧發(fā)酵體系內(nèi)ARGs消長機(jī)制已成為國際上研究熱點(diǎn)。
目前關(guān)于畜禽糞便厭氧發(fā)酵過程中ARGs消長規(guī)律總結(jié)見表1所示。大部分學(xué)者認(rèn)為厭氧發(fā)酵是一種減少原料中ARGs的有效方法。例如表1中,Zhang等[42]研究表明厭氧發(fā)酵可以較好降低ARGs豐度;Diehl等[43]認(rèn)為高溫厭氧消化能夠有效減少ARGs豐度,并且A、O、W、X在厭氧發(fā)酵體系內(nèi)去除規(guī)律符合一次動力學(xué)模型;Beneragama等[44]指出,相對于中溫厭氧發(fā)酵(37 ℃),高溫厭氧發(fā)酵(55 ℃)更能有效消除體系內(nèi)的ARGs;Sui等[45]指出厭氧發(fā)酵可以很好降低ARGs豐度,并指出穩(wěn)定的溫度和較長停留時(shí)間更有利于ARGs去除。然而,并不是所有厭氧發(fā)酵體系均可降低ARGs豐度,Zhang等[46]研究表明微波+H2O2預(yù)處理后直接進(jìn)行厭氧消化使得ARGs的拷貝數(shù)和豐度均呈現(xiàn)上升趨勢,而2階段厭氧消化體系更有助于ARGs的消除;其他研究者也得出類似結(jié)論認(rèn)為厭氧發(fā)酵體系可以增加ARGs豐度[45, 47],甚至,高溫發(fā)酵也不能降低某些ARGs[48-49]。如果將這些含有ARGs的沼液或沼渣直接施用于農(nóng)田,必將會造成ARGs的二次擴(kuò)散。此外,同一種ARGs在不同研究中表現(xiàn)出不同的消長規(guī)律,例如表1中,Chen等[50]研究表明X在傳統(tǒng)常溫消化過程中表現(xiàn)出升高現(xiàn)象,而在高含固率厭氧消化過程中呈現(xiàn)降低趨勢;Resende等[51]在牛糞厭氧發(fā)酵實(shí)驗(yàn)中發(fā)現(xiàn)B呈現(xiàn)降低趨勢,這與Chen等[50]報(bào)道的B在豬糞厭氧發(fā)酵過程中出現(xiàn)升高現(xiàn)象不一致。由此可見,關(guān)于ARGs在厭氧發(fā)酵體系內(nèi)的消長規(guī)律,現(xiàn)有結(jié)論不盡相同,這可能是由于研究者所使用的原料以及操作參數(shù)不同造成的。此外,隨著對厭氧發(fā)酵體系研究的深入,研究者開始關(guān)注不同厭氧發(fā)酵體系內(nèi)所特有的ARGs消長機(jī)制,例如,孫薇[49]研究表明,與液態(tài)厭氧發(fā)酵相比,牛糞固態(tài)厭氧發(fā)酵對ARGs和MGEs有更好的去除效果,且ARGs圖譜和微生物群落較液態(tài)厭氧發(fā)酵更穩(wěn)定。因此,為了更加全面了解厭氧發(fā)酵過程中ARGs消長機(jī)制,今后工作應(yīng)該對比不同厭氧發(fā)酵模式下所特有的ARGs消長規(guī)律與傳播機(jī)制,從而可為選取固定模式厭氧發(fā)酵體系提供理論依據(jù)。
表1 不同厭氧發(fā)酵過程中ARGs消長規(guī)律
不同因素對厭氧發(fā)酵體系內(nèi)ARGs的消長產(chǎn)生不同程度影響,微生物是ARGs攜帶者,與微生物總量相關(guān)的16S rRNA的增加應(yīng)該可以預(yù)示著ARGs的復(fù)制程度,許多研究也證實(shí)了ARGs和總16S rRNA之間的正相關(guān)性[46,59-60],然而,Mao等[31]研究結(jié)果表明,ARGs與16S rRNA之間并未表現(xiàn)出很強(qiáng)相關(guān)性,尤其是對于某些污水處理廠的樣品ARGs與16S rRNA之間沒有任何相關(guān)性。顯然,單純建立ARGs與總生物量16S rRNA豐度之間相互關(guān)系,并不能完全表達(dá)ARGs消長,這是因?yàn)椴煌珹RGs擁有不同宿主菌,因此,ARGs潛在宿主菌的變化才有可能預(yù)示著ARGs的消長。近些年,研究者深入研究了ARGs的內(nèi)部消長機(jī)制,并指出微生物群落結(jié)構(gòu)演替是ARGs消長的主要驅(qū)動力,例如,Zhang等[60]比較了微生物群落結(jié)構(gòu)(microbial community, MC)、遺傳移動元件(mobile genetic elements, MGEs)和重金屬(heavy metal, HMs)對ARGs消長的影響,并表明三者的作用大小為MC>MGEs>HMs;Zhang等[46]研究了2階段厭氧發(fā)酵體系內(nèi)ARGs與細(xì)菌群落之間的關(guān)系,并表明細(xì)菌群落對ARGs豐度變化的解釋率為86.6%,并指出厚壁菌()主要與X、A/E、M和A有關(guān),而擬桿菌()主要與B、F有關(guān),不動桿菌()、氣單胞菌()、假單胞菌()也與ARGs有明顯正相關(guān)性。由此可見,微生物群落結(jié)構(gòu)演替在ARGs消長機(jī)制中起著不可替代的作用,這可能是由于攜帶ARGs的優(yōu)勢菌群發(fā)生了演替規(guī)律。對不同厭氧發(fā)酵體系,由于原料濃度、啟動過程以及各發(fā)酵階段的特殊性,勢必?fù)碛胁煌⑸锶郝溲萏鏅C(jī)制,因此,研究厭氧發(fā)酵過程中微生物群落演替是研究ARGs消長的必要條件。
目前,關(guān)于ARGs與微生物群落之間的關(guān)系,其重點(diǎn)是分析ARGs的潛在宿主菌,諸多學(xué)者利用分子生物學(xué)手段與統(tǒng)計(jì)學(xué)理論判斷出ARGs與微生物群落之間的關(guān)系。表2所示為不同研究者所得出的厭氧發(fā)酵過程中ARGs的潛在宿主菌。例如,Song等[56]利用高通量測序技術(shù)和Network分析發(fā)現(xiàn)不同比例豬糞與秸稈厭氧發(fā)酵過程中、腸球菌()、、和不動桿菌屬()是B、1和A7的潛在宿主菌。然而,ARGs與特定菌屬之間的統(tǒng)計(jì)學(xué)相關(guān)性僅代表了數(shù)據(jù)結(jié)果的關(guān)聯(lián)性,要判斷某些菌屬是否為ARGs的宿主菌仍需要做進(jìn)一步分離培養(yǎng)證明實(shí)驗(yàn),這是目前確定厭氧發(fā)酵過程中ARGs宿主菌的難點(diǎn),也是亟待解決的研究重點(diǎn)。
表2 厭氧發(fā)酵過程中ARGs與其潛在宿主菌研究分析
ARGs變化的內(nèi)因除了微生物群落變化外,另1個直接因素是細(xì)菌間基因水平轉(zhuǎn)移(horizontal gene transfer,HGT)??梢苿舆z傳元件(mobile genetic elements,MGEs)被認(rèn)為是導(dǎo)致耐藥基因在細(xì)菌間水平轉(zhuǎn)移重要的指示基因。其中,Ⅰ類整合子(integron genes I,1)是細(xì)胞內(nèi)獲得ARGs的活動基因元件,通過基因盒整合和傳導(dǎo)ARGs,它是最早被發(fā)現(xiàn)的整合子,且已被證實(shí)與革蘭氏陰性致病菌有密切聯(lián)系,且廣泛存在于畜禽糞便等各種環(huán)境介質(zhì)中,是目前普遍研究的一類移動遺傳元件。然而,關(guān)于厭氧發(fā)酵體系內(nèi)1與ARGs、微生物之間的關(guān)系研究十分有限,有的研究表明1與X、A/E、M和A之間有明顯正相關(guān)性,但在兩相厭氧發(fā)酵體系內(nèi)1對ARGs的作用可能會被抑制[46],而有的研究表明1與ARGs之間關(guān)系并不明顯[61]。由此可見,不同研究者關(guān)于ARGs與1之間相互關(guān)系并不一致,這可能是由于厭氧發(fā)酵體系內(nèi)微生物群落結(jié)構(gòu)、體系參數(shù)、工藝條件不同而造成ARGs傳播條件不同。因此,研究者應(yīng)更加全面探索ARGs與微生物和可移動遺傳元件之間的關(guān)系,這種關(guān)系的揭示將有助于全面了解厭氧發(fā)酵過程中ARGs的形成與消長機(jī)制,從而為通過1指示ARGs消長提供理論依據(jù)。
雖然1與ARGs之間的關(guān)系被廣泛研究,然而,近些年發(fā)現(xiàn)的插入序列共同區(qū)(inserting sequence common regions,ISCR)可通過非基因盒整合耐藥基因,插入序列是染色體的重要組成部分,屬于高度可移動轉(zhuǎn)座子。其中,ISCR1是研究最多的一類,它與多種耐藥基因有關(guān)。它的繁殖及其結(jié)合因子進(jìn)入質(zhì)粒進(jìn)行復(fù)制在一些致病菌中起重要作用。它與基因整合子共同作用控制著ARGs在革蘭氏陰性致病菌之間的復(fù)制和傳播。916/1545是1種接合型轉(zhuǎn)座子,它可以在染色體和質(zhì)粒間進(jìn)行轉(zhuǎn)接,通過結(jié)合作用它不僅可以在革蘭氏陰性菌之間進(jìn)行轉(zhuǎn)接,而且可以在革蘭氏陰性菌與革蘭氏陽性菌之間進(jìn)行轉(zhuǎn)接。目前,關(guān)于ISCR1、916/1545對厭氧發(fā)酵體系內(nèi)ARGs作用的研究十分不足,Zhang等[61]在污泥生物干化過程中分析了ISCR1、916/1545與不同ARGs之間的關(guān)系。因此,為了更加全面了解畜禽糞便厭氧發(fā)酵體系內(nèi)ARGs的傳播機(jī)制,研究多種可移動遺傳元件的消長以及與ARGs之間的關(guān)系是必要的。
抗生素抗性基因ARGs的產(chǎn)生與抗生素的使用有直接關(guān)系,抗生素的環(huán)境行為與ARGs的環(huán)境行為有高度一致性和相似性。因此,抗生素濃度對ARGs水平與傳播起著至關(guān)重要的作用。對于畜禽糞便厭氧消化體系,進(jìn)料中勢必會攜帶大量抗生素殘留,因此,研究厭氧發(fā)酵過程中抗生素殘留對ARGs消長的驅(qū)動作用具有重要意義。Wang等研究表明厭氧消化過程中金霉素對ARGs產(chǎn)生明顯的選擇壓力[62]。并且諸多研究表明,抗生素與ARGs存在明顯正相關(guān)性,例如,Ji等研究表明,糞便和土壤中抗生素與ARGs存在顯著相關(guān)性,但這種相關(guān)性隨著抗生素的降解而逐漸減弱[63]。因此,降低厭氧發(fā)酵過程中抗生素殘留濃度對控制ARGs產(chǎn)生具有重要作用。然而,有的研究表明厭氧發(fā)酵過程對抗生素的降解作用相對較弱,Stone等[64]指出在126 d厭氧發(fā)酵后,金霉素濃度僅降低了57%;Arikan[65]也指出,在牛糞厭氧發(fā)酵過程中土霉素的半衰期為56 d,64 d發(fā)酵后土霉素僅降解了58.2%。Zhi等[66]研究表明,高固體厭氧發(fā)酵30 d后四環(huán)素總濃度降低不足20%,而水溶性四環(huán)素濃度出現(xiàn)升高趨勢。由此可見,厭氧發(fā)酵技術(shù)并不是所有條件下均能使畜禽糞便中獸用抗生素得到有效降解。因此,探索促進(jìn)厭氧發(fā)酵過程中抗生素降解的新技術(shù)對控制ARGs產(chǎn)生與傳播具有重要意義;此外,分析厭氧發(fā)酵體系其它因子與ARGs之間關(guān)系,并通過協(xié)同調(diào)控各類因子達(dá)到控制厭氧發(fā)酵過程中ARGs產(chǎn)生不僅具有理論指導(dǎo)意義,更具備工程實(shí)踐應(yīng)用價(jià)值。
重金屬是畜禽養(yǎng)殖過程中常用的一種飼料添加劑,其中以Cu、Zn最為常見,研究表明,在重金屬的選擇壓力下,微生物可能產(chǎn)生重金屬抗性基因(metal resistance genes,MRGs)。不僅如此,重金屬可與抗生素殘留形成協(xié)同選擇壓力(co-selection)[67],從而使得抗生素抗性基因豐度增高。Wang等[62]研究了厭氧消化過程中金霉素(chlorotetracycline, CTC)和Cu對ARGs的作用,研究表明,Cu對抗性基因有一定的選擇壓力,但選擇壓力遠(yuǎn)小于CTC添加組和CTC+Cu添加組;CTC+Cu添加組對抗性基因表現(xiàn)出極大選擇壓力,尤其是A和1。Zhang等[68]研究也表明,豬糞厭氧消化過程中Zn的添加可以增加ARGs豐度(除W和C外),并降低厭氧發(fā)酵體系甲烷產(chǎn)量。重金屬通常通過圖2所示機(jī)理對ARGs產(chǎn)生選擇壓力[69],包括共抗性、交叉抗性(cross-resistance)和協(xié)同抗性(co-resistance)[70-71],共抗性是指微生物攜帶的多種抗性基因(包括ARGs和MRGs)位于同一基因遺傳元件上;交叉抗性指微生物細(xì)胞對重金屬和抗生素同時(shí)產(chǎn)生抗性時(shí)利用了同一抗性系統(tǒng),以外排泵系統(tǒng)最常見;協(xié)同調(diào)控指在重金屬或抗生素任一作用下,微生物體內(nèi)的轉(zhuǎn)錄、翻譯應(yīng)答系統(tǒng)作出相應(yīng)反應(yīng)的過程。Seiler等[72]總結(jié)了畜禽糞便中重金屬與抗生素產(chǎn)生協(xié)同抗性的最小濃度(minimum co-selective concentration, MCC),結(jié)果表明在土壤介質(zhì)中,Cu和Zn濃度分別大于11.79和22.75 mg/kg時(shí),可與抗生素產(chǎn)生明顯協(xié)同抗性,但仍然缺乏畜禽糞便厭氧發(fā)酵過程中產(chǎn)生協(xié)同作用的最小濃度界定。此外,并不是所有研究均表明重金屬離子對ARGs促進(jìn)作用,Zhang等[73]研究表明,可生物利用Zn(bio-Zn)與ARGs并未表現(xiàn)出相關(guān)性,這可能是因?yàn)樘砑訚舛炔煌斐傻?。由此可見,重金屬離子對厭氧發(fā)酵過程中抗性基因消長的影響仍需進(jìn)一步研究,明確其產(chǎn)生影響的濃度界限。
厭氧發(fā)酵過程中很多因素均可影響ARGs的形成與消長,例如,溫度、停留時(shí)間、pH值、物料比以及預(yù)處理?xiàng)l件等[74-76]。例如,諸多研究表明高溫和較長水力停留時(shí)間有利于ARGs消減,Sun等[53]研究表明牛糞高溫發(fā)酵體系內(nèi)僅C增加,而中溫發(fā)酵體系內(nèi)C、M、Q、X均有所升高。Zhang等[57]研究了豬糞厭氧發(fā)酵體系內(nèi)中草藥殘?jiān)鼘RGs的影響,并表明中草藥殘?jiān)梢杂行Ы档椭饕狝RGs的豐度(F、A、W除外),又例如生物炭、石墨烯、沸石以及外源化合物添加均會對厭氧發(fā)酵體系內(nèi)ARGs產(chǎn)生影響[73, 77]。此外,微生物所需的C、N、VFAs、pH值等在一定程度上也會對體系內(nèi)ARGs的消長產(chǎn)生一定作用。然而,從某種程度上講,這些其他因素均是通過引起微生物變化而影響ARGs的消長。例如,碳源或氮源的不同影響著微生物自我增殖過程,從而在一定程度上影響了ARGs的擴(kuò)增、削減和轉(zhuǎn)移。VFAs是厭氧發(fā)酵過程中重要環(huán)境因子,某些情況下VFAs的積累直接降低體系的pH值[35, 78],有可能抑制細(xì)菌和古菌的自我復(fù)制過程,從而有可能對ARGs的傳播產(chǎn)生影響。因此,研究ARGs消長與傳播機(jī)制要以微生物群落變化為核心,同時(shí)監(jiān)測過程中其他參數(shù)的變化,并建立其他環(huán)境因子與ARGs之間關(guān)系。
圖2 微生物抗生素與重金屬協(xié)同選擇抗性機(jī)制[73]
由以上分析可知,在厭氧發(fā)酵過程中各參數(shù)對ARGs均有一定的影響作用,然而并不是所有因子都直接作用于ARGs,而且,各個影響因子之間又存在相互影響和制約作用。筆者將厭氧發(fā)酵過程中各因子對ARGs影響關(guān)系總結(jié)為圖3所示,其中,工藝參數(shù)是控制整個厭氧發(fā)酵系統(tǒng)如何進(jìn)行的先決條件,如何設(shè)定工藝參數(shù)直接影響著體系內(nèi)各物化指標(biāo)與微生物變化;而微生物與體系物化指標(biāo)間又存在著相互影響與制約關(guān)系,例如,VFAs的形成影響微生物活性,而微生物比例與組成又決定著VFAs能否快速被消耗;微生物通過其內(nèi)部形成機(jī)制與傳播機(jī)制來控制ARGs的產(chǎn)生與傳播,其核心是ARGs潛在宿主菌的多少與組成,可移動遺傳元件是微生物實(shí)現(xiàn)ARGs傳播的指示基因;厭氧發(fā)酵體系指標(biāo)通過與微生物群落相互制約而對ARGs的消長與傳播產(chǎn)生間接作用。由此可見,厭氧發(fā)酵體系內(nèi)ARGs驅(qū)動因子之間并不是孤立的,應(yīng)充分解析各因子相互關(guān)系,以正確理解ARGs的主要驅(qū)動因素。
圖3 厭氧發(fā)酵體系A(chǔ)RGs驅(qū)動因子之間的關(guān)系
目前,畜禽養(yǎng)殖業(yè)抗生素濫用造成ARGs污染與傳播已成為不爭的事實(shí),養(yǎng)殖場周圍ARGs污染與擴(kuò)散也頻頻曝出,關(guān)于ARGs在微生物之間的水平傳播也已被證實(shí),對于現(xiàn)有養(yǎng)殖場普遍推廣的厭氧發(fā)酵技術(shù),在實(shí)現(xiàn)糞便資源化與無害化同時(shí)應(yīng)當(dāng)充分考慮ARGs在體系內(nèi)部的消控程度,這有助于厭氧發(fā)酵技術(shù)進(jìn)一步適應(yīng)新型污染物去除要求,對推動厭氧發(fā)酵技術(shù)在畜禽養(yǎng)殖業(yè)高效可持續(xù)發(fā)展具有重要意義。因此,本文從以下3個方面進(jìn)行總結(jié)和展望:
優(yōu)化厭氧發(fā)酵工藝參數(shù)控制ARGs增長與傳播。工藝條件是控制厭氧發(fā)酵體系內(nèi)部反應(yīng)的先決條件,充分對比不同條件下ARGs的消長機(jī)制,有助于優(yōu)選出兼顧沼氣產(chǎn)量和ARGs消控的最佳方案,為厭氧發(fā)酵工藝發(fā)展方向提供參考依據(jù)。
綜合協(xié)調(diào)各類因子實(shí)現(xiàn)對ARGs的消控作用。厭氧發(fā)酵是一個復(fù)雜的生物過程,其中的各個因素均對ARGs產(chǎn)生直接或者間接作用,現(xiàn)有研究均是研究單一因素,并沒有闡明各個因素驅(qū)動作用的大小,為了抓住厭氧發(fā)酵過程中ARGs消長的主要驅(qū)動因子,必須全面研究各驅(qū)動因素對ARGs作用大小、作用方式以及因子間相互影響關(guān)系,從而為協(xié)同調(diào)控各類因子達(dá)到消控厭氧發(fā)酵過程中ARGs提供理論基礎(chǔ)和技術(shù)支撐。
挖掘厭氧發(fā)酵過程中ARGs潛在宿主菌。雖然目前研究通過微生物群落與ARGs之間的關(guān)系分析,指出ARGs可能的潛在宿主菌,例如腸球菌、不動桿菌等。然而,大部分研究是建立在數(shù)學(xué)統(tǒng)計(jì)學(xué)規(guī)律上,而統(tǒng)計(jì)學(xué)只是數(shù)據(jù)表觀分析,并不能完全證實(shí)ARGs與潛在宿主菌的內(nèi)部關(guān)系,因此,為了確實(shí)ARGs在厭氧發(fā)酵過程中的宿主菌應(yīng)該在統(tǒng)計(jì)學(xué)基礎(chǔ)上,進(jìn)一步分離培養(yǎng)其潛在宿主菌,證明其與ARGs的內(nèi)部關(guān)系,確定其傳播機(jī)制。
[1] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science and Technology, 2015, 49: 6772-6782.
[2] Shen Z, Wang Y, Shen Y, et al. Early emergence of-1 infrom food-producing animals[J]. Lancet Infectious Diseases, 2016, 16(3): 293-293.
[3] 王亞楠. 我國活禽市場抗生素抗性基因的多樣性及生態(tài)學(xué)分布規(guī)律研究[D]. 揚(yáng)州:揚(yáng)州大學(xué). 2018. Wang Yanan. Diverse and Ecological Distribution of Antibiotic Resistance Genes in Chinese Live Poultry Markets [D]. Yangzhou: Yangzhou University, 2018. (in Chinese with English abstract)
[4] Chait R, Vetsigian K, Kishony R. What counters antibiotic resistance in nature?[J]. Nature Chemical Biology, 2012, 8(1): 2-5.
[5] Bouma J E, Lenski R E. Evolution of a bacteria/plasmid association[J]. Nature, 1998, 335(6188): 351-352.
[6] Aminov R I, Mackie R I. Evolution and ecology of antibiotic resistance genes[J]. FEMS Microbiology Letters, 2007, 271(2): 147-161.
[7] Dodd M C. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment[J]. Journal of Environmental Monitoring: JEM, 2012, 14(7): 1754-1771.
[8] Jia J, Guan Y, Cheng M, et al. Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River, China[J]. Science of the Total Environment, 2018, 642(15): 1136-1144.
[9] Niu Z, Zhang K, Zhang Y. Occurrence and distribution of antibiotic resistance genes in the coastal area of the Bohai Bay, China[J]. Marine Pollution Bulletin, 2016, 107: 245-250.
[10] Chen B, Yang Y, Liang X, et al. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments[J]. Environmental Science and Technology, 2013, 47: 12753-12760.
[11] Rodriguez-Lazaro D, Diez-Valcarce M, Montes-Briones R, et al. Presence of pathogenic enteric viruses in illegally imported meat and meat products to EU by international air travelers[J]. International Journal of Food Microbiology, 2015, 209: 39-43.
[12] Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan[J]. Water Research, 2011, 45(2): 681-693.
[13] Diehl D L, Lapara T M. Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digestion treating municipal wastewater solids[J]. Environmental Science and Technology, 2010, 44(23): 9128-9133.
[14] Xu L, Ouyang W, Qian Y, et al. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems[J]. Environmental Pollution, 2016, 213: 119-126.
[15] Wang F H, Qiao M, Su J Q, et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation[J]. Environmental Science and Technology, 2014, 48(16): 9079-9085.
[16] Dungan R S, McKinney C W, Leytem A B. Tracking antibiotic resistance genes in soil irrigated with dairy wastewater[J]. Science of the Total Environment, 2018, 635: 1477-1483.
[17] Sko?ková A, Bogdanovi?ová K, Kolá?ková I, et al. Antimicrobial resistant and extended-spectrum β-lactamase– producing Escherichia coli in raw Cow's milk[J]. Journal of Food Protection, 2015, 78(1): 72-77.
[18] Bonyadian M, Moshtaghi H, Taheri M A. Molecular characterization and antibiotic resistance of enterotoxigenic and entero-aggregative Escherichia coli isolated from raw milk and unpasteurized cheeses[J]. Veterinary Research Forum, 2014, 5(1): 29-34.
[19] Marti R, Scott A, Tien Y C, et al. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest[J]. Applied and Environmental Microbiology, 2013, 79(18): 5701-5709.
[20] Pal C, Bengtsson-Palme J, Kristiansson E, et al. The structure and diversity of human, animal and environmental resistomes [J]. Microbiome, 2016, 4: 54-68.
[21] Hu J, Zhao F, Zhang X X, et al. Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event[J]. Science of the Total Environment, 2018, 615: 1332-1340.
[22] Hartmann E M, Hickey R, Hsu T, et al. Antimicrobial chemicals are associated with elevated antibiotic resistance genes in the indoor dust microbiome[J]. Environmental Science and Technology, 2016, 50: 9807-9815.
[23] 梁惜梅,聶湘平,施震. 珠江口典型水產(chǎn)養(yǎng)殖區(qū)抗生素抗性基因污染的初步研究[J]. 環(huán)境科學(xué). 2013,34(10):4073-4080. Liang Ximei, Nie Xiangping, Shi Zhen. Preliminary studies on the occurrence of antibiotic resistance genes in typical aquaculture area of the pearl river estuary[J]. Environmental Science, 2013, 34(10): 4073-4080. (in Chinese with English abstract)
[24] 李蕾,徐晶,趙由才,等. 垃圾填埋場抗生素抗性基因初探[J]. 環(huán)境科學(xué),2015,36(5):1769–1775.Li Lei, Xu Jing, Zhao Youcai, et al. Investigation of antibioticresistance genes (ARGs) in landfill[J]. Environmental Science,36(5): 1769-1775. (in Chinese with English abstract)
[25] 錢燕云,徐莉柯,蘇超,等. 初始pH對厭氧環(huán)境下污泥中抗生素抗性基因行為特征的影響[J]. 生態(tài)毒理學(xué)報(bào),2015,10(5):47-55. Qian Yanyun, Xu Like, Su Chao, et al. Effect of initial pH on antibiotic resistance genes behavior during anaerobic treatment of sludge[J]. Asian Journal of Ecotoxicology, 2015, 10(5): 47-55. (in Chinese with English abstract)
[26] Karkman A, Johnson T A, Lyra C, et al. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant[J]. FEMS Microbiology Ecology, 2016, 92(3): 1-7.
[27] 黃福義,李虎,安新麗,等. 城市生活污水和生活垃圾滲濾液抗生素抗性基因污染的比較研究[J]. 環(huán)境科學(xué),2016,37(10):3949-3954. Huang Fuyi, Li Hu, An Xinli, et al. Comparative investigation of antibiotic resistance genes between wastewater and landfill leachate[J]. Environmental Science, 2016, 37(10): 3949-3954. (in Chinese with English abstract)
[28] Zhi S, Zhang K. Antibiotic residues may stimulate or suppress methane yield and microbial activity during high- solid anaerobic digestion[J]. Chemical Engineering Journal, 2018 :DOI: https://doi.org/10.1016/j.cej.2018.11.050.
[29] Yang Y, Li B, Ju F, et al. Exploring variation of antibiotic resistance genes in activated Sludge over a four-year period through a metagenomic approach[J]. Environmental Science and Technology, 2013, 47: 10197-10205.
[30] Fang H, Wang H, Cai L, et al. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey[J]. Environmental Science and Technology, 2015, 49: 1095-1104.
[31] Mao D, Yu S, Rysz M, et al. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants[J]. Water Research, 2015, 85: 458-466.
[32] 王攀攀, 袁巧霞, 周文兵. 光催化降解沼液中四環(huán)素類抗生素效果及反應(yīng)動力學(xué)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2018, 34(23): 193-198. Wang Panpan, Yuan Qiaoxia, Zhou Wenbing. Study on photocatalytic degradation and reaction kinetics of tetracycline antibiotics in biogas slurry [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 193-198. (in Chinese with English abstract)
[33] Soucy S M, Huang J, Gogarden J P. Horizontal gene transfer: building the web of life[J]. Nature Reviews Genetics, 2015, 16: 472-482.
[34] Van H A, Mevius D, Guerra B, et al. Acquired antibiotic resistance genes: An overview[J]. Front Microbiology, 2011, 2: 1-27.
[35] Ben W, Wang J, Pan X, et al. Dissemination of antibiotic resistance genes and their potential removal by on-farm treatment processes in nine swine feedlots in Shandong Province, China[J]. Chemosphere, 2017, 167: 262-268.
[36] 冀秀玲,劉芳,沈群輝,等. 養(yǎng)殖場廢水中磺胺類和四環(huán)素抗生素及其抗性基因的定量檢測[J]. 生態(tài)環(huán)境學(xué)報(bào),2011,20(5):927-933. Ji Xiuling, Liu Fang, Shen Qunhui, et al. Quantitative detection of sulfonamides and tetracycline antibiotics and resistance genes in sewage farms[J]. Ecology and Environmental Science, 2011, 20(5): 927-933. (in Chinese with English abstract)
[37] Wu N, Qiao M. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China[J]. Science of the Total Environment, 2010, 44: 6933-6939.
[38] Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. PNAS, 2013, 110: 3435-3440.
[39] Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China[J]. Environmental Pollution, 2010, 158: 2992-2998.
[40] 于佳動, 趙立欣, 馮晶, 等. 序批式秸稈牛糞混合厭氧干發(fā)酵影響因素研究[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2018, 34(15): 215-221.
Yu Jiadong, Zhao Lixin, Feng Jing, et al. Influence factors on batch dry anaerobic digestion for corn stalks-cow dung mixture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 215-221. (in Chinese with English abstract)
[41] 宋香育, 張克強(qiáng), 房芳, 等. 工藝措施對豬糞秸稈混合厭氧干發(fā)酵產(chǎn)氣性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2017, 33(11): 233-239. Song Xiangyu, Zhang Keqiang, Fang Fang, et al. Influences of different technological strategies on performance of anaerobic co-digestion of pig manure with straw in solid-state[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 233-239. (in Chinese with English abstract)
[42] Zhang J, Wang Z, Wang Y, et al. Effects of graphene oxide on the performance, microbial community dynamics and antibiotic resistance genes reduction during anaerobic digestion of swine manure[J]. Bioresource Technology, 2017, 245: 850-859.
[43] Diehl D L, Lapara T M. Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids[J]. Environmental Science & Technology, 2010, 44: 9128-9133.
[44] Beneragama N, Iwasaki M, Lateef S, et al. The survival of multidrug-resistant bacteria in thermophilic and mesophilic anaerobic co-digestion of dairy manure and waste milk[J]. Journal of Animal Science, 2013, 84: 426-433.
[45] Sui Q, Zhang J, Chen M, et al. Distribution of antibiotic resistance genes (ARGs) in anaerobic digestion and land application of swine wastewater[J]. Environmental Pollution, 2016, 213: 751-759.
[46] Zhang J, Liu J, Wang Y. Profiles and drivers of antibiotic resistance genes distribution in one-stage and two-stage sludge anaerobic digestion based on microwave-H2O2pretreatment[J]. Bioresource Technology, 2017, 241: 573-581.
[47] Sun W, Qian X, Gu J, et al. Mechanisms and effects of arsanilic acid on antibiotic resistance genes and microbial communities during pig manure digestion[J]. Bioresource Technology, 2017, 234: 217-223.
[48] Ma Y, Wilson C A, Novak J T, et al. Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline resistance genes and class 1 integrons[J]. Environmental Science & Technology, 2011, 45: 7855-7861.
[49] 孫薇. 畜禽糞便厭氧發(fā)酵過程中抗生素抗性基因變化機(jī)理研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2017. Sun Wei. Variation Mechanism of Antibiotic Resistance Genes during Anaerobic Digestion with Livestock Manure [D]. Yangling: Northwest A&F University, 2017. (in Chinese with English abstract)
[50] Chen J, Michel F C, Sreevatsan S, et al. Occurrence and persistence of erythromycin resistance genes (erm) and tetracycline resistance genes (tet) in waste treatment systems on swine farms[J]. Microbial Ecology, 2010, 60: 479-486.
[51] Resende J A, Diniz C G, Silva V L, et al. Dynamics of antibiotic resistance genes and presence of putative pathogens during ambient temperature anaerobic digestion[J]. Journal of Applied Microbiology, 2014, 117: 1689-1699.
[52] Tao C W, Hsu B M, Ji W T, et al. Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR[J]. Science of the Total Environment, 2014, 496: 116-121.
[53] Sun W, Qian X, Gu J, et al. Mechanism and effect of temperature on variations in antibiotic resistance genes during anaerobic digestion of dairy manure[J]. Scientific Reports, 2016, 6: 1-9.
[54] Wolters B, Ding G C, Kreuzing R, et al. Full-scale mesophilic biogas plants using manure as C-source: Bacterial community shifts along the process cause changes in the abundance of resistance genes and mobile genetic elements[J]. FEMS Microbiology Ecology, 2016, 92: 1-17.
[55] Zhang R, Gu J, Wang X, et al. Relationships between sulfachloropyridazine sodium, zinc, and sulfonamide resistance genes during the anaerobic digestion of swine manure[J]. Bioresource Technology, 2017, 225: 343-348.
[56] Song W, Wang X, Gu J, et al. Effects of different swine manure to wheat straw ratios on antibiotic resistance genes and the microbial community structure during anaerobic digestion[J]. Bioresource Technology, 2017, 231: 1-8.
[57] Zhang L, Gu J, Wang X, et al. Fate of antibiotic resistance genes and mobile genetic elements during anaerobic co-digestion of Chinese medicinal herbal residues and swine manure[J]. Bioresource Technology, 2018, 250: 799-805.
[58] Zhang M, Wu H, Zhang K, et al. Long-term low dissolved oxygen accelerates the removal of antibiotics and antibiotic resistance genes in swine wastewater treatment[J]. Chemical Engineering Journal, 2018, 334: 630-637.
[59] Wang J L, Mao D Q, Mu Q H, et al. Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants[J]. Science of Total Environment, 2015, 526: 366-373.
[60] Zhang J, Sui Q, Tong J, et al. Sludge bio-drying: Effective to reduce both antibiotic resistance genes and mobile genetic elements[J]. Water Research, 2016, 106: 62-70.
[61] Zhang J, Chen M, Sui Q, et al. Fate of antibiotic resistance genes and its drivers during anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment[J]. Bioresource Technology, 2016, 217: 28-36.
[62] Wang R, Chen M, Feng F, et al. Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion[J]. Bioresource Technology, 2017, 238: 57-69.
[63] Ji X L, Shen Q H, Liu F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agriculture soils adjacent to feedlots in Shanghai, China[J]. Journal of Hazardous Materials, 2012, 235/236: 178-185.
[64] Stone J J, Clay S A, Zhu Z, et al. Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion[J]. Water Research, 2009, 43: 4740-4750.
[65] Arikan O A. Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves[J]. Journal of Hazardous Materials, 2008, 158: 485-490.
[66] Zhi S L, Tian X L, Lv M C, et al. The reduction and effect of tetracycline during thermal pretreatment of dewatered sludge and subsequent high solid anaerobic digestion[J]. Journal of Residuals Science & Technology, 2017, 14: 99-108.
[67] 隋倩雯,張俊亞,魏源送,等. 畜禽養(yǎng)殖廢水生物處理與農(nóng)田利用過程抗生素抗性基因的轉(zhuǎn)歸特征研究進(jìn)展[J]. 環(huán)境科學(xué)學(xué)報(bào). 2016,36(1):16-26. Sui Qianwen, Zhang Junya, Wei Yuansong, et al. Fate of antibiotic resistance genes in the process of biological treatment and land application of animal wastewater[J]. Acta Scientiae Circumstantiae, 2016, 36(1): 16-26. (in Chinese with English abstract)
[68] Zhang R, Wang X, Gu J, et al. Influence of zinc on biogas production and antibiotic resistance gene profiles during anaerobic digestion of swine manure[J]. Bioresource Technology, 2017, 244: 63-70.
[69] 張佳奇,徐艷,羅義,等. 重金屬協(xié)同選擇環(huán)境細(xì)菌抗生素抗性及其機(jī)制研究進(jìn)展[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016, 35(3):409-418. Zhang Jiaqi, Xu Yan, Luo Yi, et al. Co-selection mechanisms of bacterial resistance to heavy metals and antibiotics[J]. Journal of Agro-Environment Science, 2016, 35(3): 409-418. (in Chinese with English abstract)
[70] Martinez J L, Sanchez M B, Martinez-Solana L, et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems[J]. FEMS Microbiology Reviews, 2009, 33: 430-449.
[71] Canton R, Ruiz-Garbajosa P. Co-resistance: An opportunity for the bacteria and resistance genes[J]. Current Opinion in Pharmacology, 2011, 11: 477-485.
[72] Seiler C, Berendonk T U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture[J]. Frontiers in Microbiology, 2012, 3: 1-10.
[73] Zhang R, Gu J, Wang X, et al. Relationships between sulfachloropyridazine sodium, zinc, and sulfonamide resistance genes during the anaerobic digestion of swine manure[J]. Bioresource Technology, 2017, 225: 343-348
[74] Zhang T, Yang Y, Pruden A. Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach[J]. Applied Microbiology and Biotechnology, 2015, 99: 7771-7779.
[75] Huang H, Chen Y, Zheng X, et al. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer[J]. Bioresource Technology, 2016, 218: 1284-1289.
[76] Pei J, Yao H, Wang H, et al. Comparison of ozone and thermal hydrolysis combined with anaerobic digestion for municipal and pharmaceutical waste sludge with tetracycline resistance genes[J]. Water Research, 2016, 99: 122-128.
[77] Sun W, Gu J, Wang X, et al. Impacts of biochar on the environmental risk of antibiotic resistance genes and mobile genetic elements during anaerobic digestion of cattle farm wastewater[J]. Bioresource Technology, 2018, 256: 342-349.
[78] Lallai A, Mura G, Onnis N. The effects of certain antibiotics on biogas production in the anaerobic digestion of pig waste slurry[J]. Bioresource Technology, 2002, 82: 205-208.
Analysis of antibiotic resistance genes fate and its drivers during anaerobic digestion of animal manure
Zhi Suli1, Zhou Jing2, Zhao Run1, Yang Fengxia1, Zhang Keqiang1※
(1300191,;2,150036,)
Antibiotic resistance genes (ARGs) have been considered as an emerging pollutant. The occurrence of ARGs is mainly due to the overuse of antibiotics. China is the largest producer and consumer of antibiotics in the world, and it was estimated that about 162 000 t of antibiotics were used in China in 2013, among which 52% was used for animal breeding. However, after used, 30%-90% of these veterinary antibiotics were excreted with feces and urine for partially metabolized by animal body. Therefore, animal manure has been considered as an important reservoir of antibiotic residues and ARGs. If not treated effectively, ARGs can enter into other environmental mediums with land application. And ARGs can eventually enter into the human food chain which may endanger the public safety. Anaerobic digestion is a promising technology which can convert the organic matters to biogas and organic fertilizers. So it is widely used for animal manure disposal in different animal farms. Therefore, the variation of ARGs in anaerobic digestion system has big significance for reducing the risk of ARGs growth and transmission. The paper firstly showed that ARGs were ubiquitous in manure, water, soil, food and even in the air, on the basis of analyzing ARGs levels in different environmental mediums. About the detecting methods of ARGs, the main detecting methods contained PCR, real-time quantitative PCR (qPCR), high-throughput quantitative PCR and metagenomic technique, among which metagenomic technique was the most promising technology for comprehensive analyzing of ARGs in different types. About the variation of ARGs and its driving factors during anaerobic digestion, the paper analyzed the relating literatures at home and abroad. The results showed that the microbial community composition was the main driving factor of ARGs variation, which was due to the variation of the potential host microbes carrying ARGs during anaerobic digestion. Although many studies had investigated the ARGs and their potential hosts through the statistical method, the further confirmation of the real hosts for ARGs was also need. The determination of ARGs host microbes was the difficulty parts for the future research. Antibiotic residues and heavy metals were also the important driving factors for ARGs variation, so it is important to remove the antibiotic residues and heavy metals thoroughly to reduce the environmental risk of ARGs pollution. The mobile genetic elements played a key role in the horizontal transmission of ARGs, and they could be considered as some indicators for ARGs variation. On the whole, all the factors in anaerobic digestion system could directly or indirectly impact the ARGs variation. The operating parameters were the precondition for the whole system. Under the designed operating parameters, the microbial communities interacted with other physicochemical parameters in the anaerobic digestion system. The microbial communities affected the ARGs transmission by mobile genetic elements. Therefore, it was the research emphasis for future work to control ARGs by comprehensive regulation of different factors of anaerobic digestion system. The paper will provide some theoretical information for researchers about the variation, transmission and driving factors of ARGs in anaerobic digestion system with animal manure.
antibiotic; manure; anaerobic digestion; microbial community; mobile genetic elements; driving factor
2018-08-14
2018-12-13
國家自然基金項(xiàng)目(41807474);中央級公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(2018-jbkyywf-zsl);國家重點(diǎn)研發(fā)課題(2016YFD0501407)
支蘇麗,助理研究員,博士,主要從事抗生素及抗性基因污染相關(guān)研究。Email:zhisuli87@163.com
張克強(qiáng),研究員,博士,主要從事畜禽廢棄物資源化利用研究。Email:keqiangzhang68@163.com
10.11975/j.issn.1002-6819.2019.01.024
S216.4
A
1002-6819(2019)-01-0195-11
支蘇麗,周婧,趙 潤,楊鳳霞,張克強(qiáng). 畜禽糞便厭氧發(fā)酵過程抗生素抗性基因歸趨及驅(qū)動因子分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):195-205. doi:10.11975/j.issn.1002-6819.2019.01.024 http://www.tcsae.org
Zhi Suli, Zhou Jing, Zhao Run, Yang Fengxia, Zhang Keqiang. Analysis of antibiotic resistance genes fate and its drivers during anaerobic digestion of animal manure [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 195-205. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.01.024 http://www.tcsae.org