国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

3種綠色減菌技術(shù)在食品中的應(yīng)用研究進(jìn)展

2019-02-06 03:51:41白晶朱秋勁徐世濤劉春麗陳玉芹楊睿穎龍久鈴
肉類研究 2019年12期
關(guān)鍵詞:微生物乳酸

白晶 朱秋勁 徐世濤 劉春麗 陳玉芹 楊睿穎 龍久鈴

摘 要:微生物是影響食品品質(zhì)及安全的重要因素,微生物污染不僅會造成食品品質(zhì)下降,還可能引發(fā)食源性疾病,影響消費(fèi)者的身體健康。聚焦食品安全,建立食品安全監(jiān)控體系,采取有效減菌措施尤為重要。本文總結(jié)乳酸、微酸性電解水、低溫等離子體3 種綠色減菌技術(shù)在食品中的應(yīng)用進(jìn)展,對其在肉蛋、果蔬、糧油等方面的應(yīng)用研究進(jìn)行綜合闡述,歸納其優(yōu)缺點(diǎn),為有效減少微生物污染、把關(guān)食品品質(zhì)、解決食品生產(chǎn)中的質(zhì)量問題提供一定的理論指導(dǎo)。

關(guān)鍵詞:乳酸;微酸性電解水;低溫等離子體;微生物;減菌

Abstract: Microorganisms are an important factor affecting food quality and safety. Microbial contamination can not only result in a decline in food quality, but also cause foodborne diseases affecting consumers health. Therefore, it is of particular importance to focus on food safety, establish a food safety monitoring system, and take effective measures to reduce bacterial contaminants. This article summarizes the current status of the application of three green bacterial decontamination technologies, namely using lactic acid, slightly acidic electrolyzed water and cold plasma in foods, such as meat, eggs, fruits, vegetables, grains and oil. The advantages and disadvantages of these technologies are pointed out. This review provides a theoretical guidance for effectively reducing microbial contamination, ensuring food quality and solving quality problems associated with food production.

Keywords: lactic acid; slightly acidic electrolytic water; cold plasma; microorganism; bacterial contamination

DOI:10.7506/rlyj1001-8123-20191021-246

中圖分類號:TS201.3? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A 文章編號:1001-8123(2019)12-0061-08

食品為人類提供了豐富的維生素、蛋白質(zhì)、脂類及抗氧化類物質(zhì)來維持人類的生存,但食品原材料在食品加工、運(yùn)輸、銷售等過程中易受到微生物的污染,導(dǎo)致食品品質(zhì)降低,造成經(jīng)濟(jì)損失。食源性致病菌會引起不良反應(yīng),嚴(yán)重的會造成食物中毒。因此,去除食品中的有害污染菌至關(guān)重要。在傳統(tǒng)的殺菌技術(shù)中,熱處理、化學(xué)試劑滅菌法會影響食品的氧化速率、蛋白質(zhì)結(jié)構(gòu)、原有風(fēng)味等品質(zhì),殘留的滅菌劑還會對人體造成危害;紫外殺菌由于殺菌作用機(jī)理會產(chǎn)生光復(fù)活現(xiàn)象,此外處理不當(dāng)會對人的皮膚和眼睛造成危害;臭氧殺菌技術(shù)中,由于臭氧分子極不穩(wěn)定,易分解,殺菌效果受限;超高壓技術(shù)因設(shè)備要求高,在實(shí)際生產(chǎn)中的應(yīng)用受到一定程度的限制[1-3]。而與傳統(tǒng)方式相比,綠色、健康、無殘留且高效的滅菌技術(shù)是必然的發(fā)展趨勢,將會被不斷地應(yīng)用于食品實(shí)際生產(chǎn)中[1]。結(jié)合柵欄效應(yīng),巧妙運(yùn)用和控制不同的柵欄因子,如高溫、低溫、降低pH值、添加防腐劑等,科學(xué)合理地將不同技術(shù)運(yùn)用于食品加工生產(chǎn)中,發(fā)揮其協(xié)同作用,能夠?yàn)榫C合調(diào)控和改善食品質(zhì)量提供有效途徑。

乳酸沖淋技術(shù)作為一種天然、安全、無污染的減菌技術(shù),通過單一使用和結(jié)合其他技術(shù)協(xié)同使用,應(yīng)用于食品加工中[4-8];微酸性電解水(slightly acidic electrolyzed water,SAEW)作為一種綠色、非熱加工殺菌劑在醫(yī)學(xué)和食品中有廣泛應(yīng)用[9-12];低溫等離子體(cold plasma,CP)作為物質(zhì)存在的第4種狀態(tài),克服了蒸汽、化學(xué)試劑等滅菌方法的不足,成為新一代的滅菌技術(shù)[13]。上述3 種減菌措施都是非熱殺菌技術(shù),處理后的殘留物不會對人體產(chǎn)生危害,且在控制食品中微生物數(shù)量的同時(shí)保持了食品的新鮮度和營養(yǎng)成分,可在一定程度上避免因物理產(chǎn)熱對食品品質(zhì)造成的影響。目前,關(guān)于3 種減菌技術(shù)均有一定的報(bào)道,但是在實(shí)際生產(chǎn)中的應(yīng)用并不是很廣泛,本文介紹上述3 種綠色減菌技術(shù)在食品中的應(yīng)用,并對其未來發(fā)展方向進(jìn)行展望。

1 乳酸減菌技術(shù)

乳酸作為一種有機(jī)酸被公認(rèn)為是天然、無毒的食品級抗菌劑。與其他化學(xué)試劑相比,乳酸可通過降低原料肉的pH值抑制微生物的生長[14];其代謝過程中產(chǎn)生的酸、過氧化氫、二氧化碳和細(xì)菌素能夠抑制腐敗菌生長,如乳酸鏈球菌素可吸附于細(xì)菌細(xì)胞膜上,破壞其完整性并使細(xì)胞中的內(nèi)含物外泄,對菌體造成不可恢復(fù)的損害[15-16],乳酸可參與人體新陳代謝且不會對人體產(chǎn)生危害。乳酸在食品加工中的應(yīng)用已被廣泛報(bào)道。

1.1 乳酸減菌技術(shù)在畜、禽、蛋中的應(yīng)用

乳酸作為一種安全的抗菌劑,在食品中的應(yīng)用較為廣泛。乳酸噴淋的應(yīng)用主要是單獨(dú)使用或與其他有機(jī)酸、熱水、脈沖強(qiáng)光、靜電噴霧等方式結(jié)合使用。Ba等[5]將2%和4%的乳酸溶液應(yīng)用在豬胴體加工過程中,結(jié)果表明,4%的乳酸噴淋效果更好。Youssef等[17]用5 g/L的乳酸溶液噴淋處理樣品,發(fā)現(xiàn)乳酸溶液可有效減少大腸桿菌,這種方法對于污染較輕的樣品減菌效果較好,對于嚴(yán)重污染樣品的減菌效果需要進(jìn)一步驗(yàn)證。夏小龍等[18]用熱水結(jié)合乳酸噴淋的方法對屠宰鏈中的肉雞胴體進(jìn)行處理,1.5 g/L乳酸、50 ℃熱水、噴淋時(shí)間為15 s,可延長肉雞胴體的貨架期。

Li Zhuoyang等[7]發(fā)現(xiàn),在雞蛋表面噴灑2%的乳酸溶液可顯著降低沙門氏菌的數(shù)量,但乳酸噴淋處理后,細(xì)菌在常溫條件下容易滲入到雞蛋中,低溫貯藏能夠形成第2道屏障,降低甚至是抑制微生物污染。

1.2 乳酸減菌技術(shù)在果蔬中的應(yīng)用

乳酸溶液對鮮切果蔬及采摘前果蔬具有一定的抑菌、抗氧化作用。Kwon等[6]將飽和蒸汽和過飽和蒸汽與2%乳酸溶液結(jié)合對哈密瓜進(jìn)行處理,通過感官評價(jià)比較可得,2%乳酸溶液與過飽和蒸汽結(jié)合處理不會影響哈密瓜品質(zhì)。Laury-Shaw等[19]將乳酸與靜電噴霧相結(jié)合對綠葉植物進(jìn)行噴灑,發(fā)現(xiàn)該方法對大腸桿菌的抑制作用優(yōu)于單一的乳酸噴灑方法,將其應(yīng)用于農(nóng)業(yè)方面可提高農(nóng)產(chǎn)品的安全性。

1.3 乳酸減菌技術(shù)在其他方面的應(yīng)用

乳酸與熱水相結(jié)合被認(rèn)為是一種能有效降低生產(chǎn)過程中由于人工操作、刀具接觸和內(nèi)臟污染引起胴體污染的方法,針對這一措施研究者通過不同的指標(biāo)研究其對微生物的抑制效果。Smulders等[20]采用等體積乳酸、乙酸配制成混合溶液,用微生物數(shù)量和感官評價(jià)研究冷-熱有機(jī)酸噴霧和亞大氣壓蒸汽冷凝對豬胴體表面接種微生物的影響,發(fā)現(xiàn)微生物數(shù)量低于最低檢測限2 (lg(CFU/cm2))。Wakinaka等[21]利用含有天冬氨酸脫羧酶的嗜鹽乳酸菌作為魚露發(fā)酵劑,可防止產(chǎn)品中生物胺的積累;此外,通過分離乳酸菌菌株獲得一種適宜的抗李斯特菌生物保護(hù)物,為海產(chǎn)品保鮮提供了新的方法[22]。Kalchayanand等[23]用樣品表面pH值作為參數(shù)驗(yàn)證乳酸噴淋處理對新鮮牛肉中大腸桿菌O157:H7和沙門氏菌的抑制效果,建立乳酸噴淋溫度、乳酸噴淋時(shí)新鮮牛肉表面pH值與大腸桿菌O157:H7及沙門氏菌數(shù)量之間的線性關(guān)系,結(jié)果表明,可將新鮮牛肉表面pH值作為目標(biāo)病原菌減少的參照依據(jù)。

乳酸對去除食品表面微生物有一定的效果,然而實(shí)際應(yīng)用中的乳酸濃度還沒有標(biāo)準(zhǔn),確定乳酸的使用濃度對于食品產(chǎn)業(yè)化生產(chǎn)尤為重要,可在有效的濃度范圍內(nèi)達(dá)到最大的經(jīng)濟(jì)價(jià)值;乳酸的單一使用效果不是十分理想,與其他方法結(jié)合使用時(shí),在最佳的乳酸濃度范圍內(nèi)可以保障鮮肉顏色的穩(wěn)定性[24]。乳酸對相同食品的不同部位、不同處理時(shí)間的減菌效果不同,且對特征污染菌的減菌效果不同[5],但乳酸減菌技術(shù)應(yīng)用簡單,不需要復(fù)雜的儀器設(shè)備,應(yīng)用領(lǐng)域廣泛,進(jìn)行“精準(zhǔn)化”殺菌將是未來研究的主要方向。

乳酸減菌在食品中的部分應(yīng)用如表1所示。

2 SAEW技術(shù)

電解水是一種基于電化學(xué)的環(huán)保技術(shù),已成為化學(xué)消毒劑的常用替代品,目前電解水主要應(yīng)用于食品生產(chǎn)企業(yè)生產(chǎn)環(huán)境、設(shè)備及產(chǎn)品的消毒[26]。SAEW是將稀鹽酸或稀鹽溶液在電解裝置中電解、pH 5.0~6.5、有效氯質(zhì)量濃度10~30 mg/L的電解水。電解稀鹽酸時(shí)會產(chǎn)生次氯酸,由于次氯酸為小分子且不帶電荷,不僅可以作用于細(xì)胞壁還可以滲入到細(xì)菌體內(nèi),通過破壞外膜并使質(zhì)膜中的蛋白質(zhì)失活,導(dǎo)致細(xì)胞壁和細(xì)胞膜破裂,抑制酶的作用、破壞細(xì)胞代謝過程,滲透到細(xì)胞中并破壞細(xì)胞內(nèi)的微生物細(xì)胞壁和細(xì)胞器,導(dǎo)致細(xì)菌死亡[27]。作為一種新興的環(huán)保技術(shù),SAEW殺菌效果穩(wěn)定、無殘留、殺菌效果好、物理化學(xué)性質(zhì)穩(wěn)定,在食品領(lǐng)域應(yīng)用廣泛[26,28-30]。

2.1 SAWE在蛋、肉及肉制品中的應(yīng)用

SAEW具有殺菌效能良好、對人畜無刺激性、無毒副作用的特性。有學(xué)者利用SAEW對完整雞蛋表面進(jìn)行減菌處理[28,31],結(jié)合紫外照射對雞翅進(jìn)行預(yù)冷前處理[10]。雞肉、雞蛋本身及在加工過程中由于操作、環(huán)境、貯藏等過程會受到一定的污染,經(jīng)過SAEW處理后發(fā)現(xiàn),食源性致病菌數(shù)量明顯減少[10,31]。使用有效氯質(zhì)量濃度為70 mg/L的SAEW沖淋鴨肉5 min可以顯著減少鴨肉表面單核李斯特菌的生物膜,降低食源性疾病爆發(fā)的風(fēng)險(xiǎn)[11]。Sheng Xiaowei等[4]研究表明,在4 ℃條件下,SAEW可以使牛肉貨架期達(dá)到14~16 d,明顯優(yōu)于空白對照組在相同條件下的6~8 d,同時(shí)指出SAEW在抗氧化方面作用一般。以噴霧的方式用SAEW對冷凍凡納濱對蝦進(jìn)行保鮮,或?qū)⑿迈r的魷魚放置于SAEW冰上進(jìn)行保鮮處理,均發(fā)現(xiàn)SAEW能夠在一定程度上抑制微生物的生長及海鮮的氧化速率[32-33]。SAEW為降低海產(chǎn)品的微生物數(shù)量和延長保鮮期提供了新的思路。

2.2 SAEW在果蔬、糧食中的應(yīng)用

SAEW的應(yīng)用不僅局限于對設(shè)備和原料進(jìn)行消毒,從而延長畜禽蛋的保質(zhì)期,近年來,隨著研究者的不斷探索,SAEW在果蔬、糧食方面的應(yīng)用得到不斷發(fā)展。Li Zhen等[34]使用不同有效氯濃度的SAEW浸泡花椰菜種子,探討SAEW對花椰菜生物活性化合物和萌芽形態(tài)的影響。糙米加工后成為消費(fèi)者喜愛的食物,但在浸泡過程中極易遭到微生物污染,SAEW浸泡處理可以減少微生物數(shù)量且可以提升糙米品質(zhì)[35]。Tango等[36]將SAEW與氧化鈣(CaO)、延胡索酸及超聲波處理用于減少蘋果、西紅柿表面接種的大腸桿菌O157:H7和單核細(xì)胞增生李斯特菌數(shù)量。褐變是水果和蔬菜的常見問題之一,不僅會影響產(chǎn)品的銷售價(jià)值也會影響其營養(yǎng)價(jià)值。

Li Huiying等[37]將鮮切后的蓮藕浸泡在SAEW中,發(fā)現(xiàn)能抑制蓮藕褐變的發(fā)生,但對多酚氧化酶的抑制機(jī)理仍需要進(jìn)一步研究。

2.3 SAWE在其他方面的應(yīng)用

SAEW作為一種新型的非熱加工減菌措施,研究人員應(yīng)用其提高食品經(jīng)濟(jì)價(jià)值,保持食品的營養(yǎng)品質(zhì)和感官品質(zhì),并探索其對食品成分產(chǎn)生的影響。西蘭花芽的植物化學(xué)研究表明,使用不同的誘導(dǎo)子時(shí),會使健康植物化學(xué)物質(zhì)的數(shù)量變化顯著,SAEW被用作激發(fā)劑以增加生物活性化合物的含量[38]。使用基于高分辨率質(zhì)譜數(shù)據(jù)的無標(biāo)記定量蛋白質(zhì)組學(xué)方法研究高壓處理和SAEW滅活蠟狀芽孢桿菌孢子的機(jī)制,結(jié)果表明,高壓處理和SAEW結(jié)合可使孢子的代謝、降解、信號傳導(dǎo)和生物合成途徑受到影響,最終使其被滅活,Spo0A轉(zhuǎn)錄因子的磷酸化是由ATP結(jié)合盒轉(zhuǎn)運(yùn)蛋白(ATP-binding cassette transporter,ABC)中的ATP結(jié)合蛋白的下調(diào)介導(dǎo),與孢子的失活有關(guān)[39]。

SAEW因具有成本低廉、綠色安全、殺菌效率高等優(yōu)點(diǎn),近幾年關(guān)于其改善食品品質(zhì)的報(bào)道越來越多,但SAEW對食品的影響機(jī)制尚不明確,在實(shí)際生產(chǎn)中的應(yīng)用較少。SAEW在食品中的部分應(yīng)用如表2所示。

3 CP技術(shù)

等離子體是一種特殊的物質(zhì)存在形式,是固、液、氣以外物質(zhì)存在的第4種狀態(tài),1928年首次使用“等離子體”一詞來定義這種部分或全部電離的氣體和在電離態(tài)下發(fā)現(xiàn)的等離子體振蕩的第4種物質(zhì)狀態(tài)[51]。CP是在較低的壓力和環(huán)境溫度下,通過介質(zhì)阻擋放電、射頻放電、滑動弧放電或電暈放電等作用產(chǎn)生的,含有大量不同的物質(zhì),包括電子、離子、紫外光子及自由基等,如活性氧(reactive oxygen species,ROS)和活性氮[52]。目前,CP的抑菌機(jī)制主要有紫外光輻射誘導(dǎo)DNA損傷、CP產(chǎn)生的羥自由基引起膜蛋白發(fā)生化學(xué)修飾和降解、ROS通過與脂質(zhì)相互作用改變生物膜結(jié)構(gòu),破壞細(xì)胞外膜,細(xì)胞質(zhì)溢出導(dǎo)致細(xì)胞死亡[53]。作為一種新興的非熱加工技術(shù),CP具有無殘留、無熱處理、時(shí)間短、效率高等特點(diǎn),被廣泛應(yīng)用于食品、醫(yī)學(xué)、環(huán)境工程等學(xué)科,克服了蒸汽、化學(xué)等現(xiàn)行消毒方法的不足,成為新一代的滅菌技術(shù)。

3.1 CP技術(shù)在肉及肉制品中的應(yīng)用

肉及肉制品是人日常生活中主要的蛋白質(zhì)來源,微生物不僅會造成食品腐敗變質(zhì),使其品質(zhì)降低且一些微生物產(chǎn)生的外毒素會引起食物中毒。為保證食品的經(jīng)濟(jì)價(jià)值和營養(yǎng)價(jià)值,CP作為一種高效、綠色的滅菌方法受到越來越多的學(xué)者重視。Misra等[54]將CP技術(shù)凈化肉和肉制品的相關(guān)研究進(jìn)行歸納,總結(jié)了CP中的ROS通過破壞DNA、蛋白質(zhì)、細(xì)胞中的酶等造成細(xì)胞失活以及在強(qiáng)電場作用下,細(xì)菌細(xì)胞膜由于電荷的靜電力作用破裂而死亡等相關(guān)機(jī)制。Ulbin-Figlewicz等[55]探討CP處理對肉表面微生物活性的影響及其對肉顏色和pH值的影響,樣品在真空室中暴露5、10 min,用平板法測定微生物總數(shù)、嗜冷菌數(shù)、酵母菌數(shù)和霉菌數(shù),結(jié)果表明,微生物數(shù)量明顯減少。Yadav等[56]對影響CP效果的內(nèi)外因素進(jìn)行研究發(fā)現(xiàn),CP處理后肉樣中的丙二醛含量顯著增加,含水量顯著降低,而水分活動無顯著變化,這一結(jié)果對未來研究肉類產(chǎn)品干燥、氧化及風(fēng)味的改變有一定的參考價(jià)值。冷鏈技術(shù)的應(yīng)用正在蓬勃發(fā)展,但在運(yùn)輸過程中不可避免會產(chǎn)生溫度波動。Zhang Yuxiang等[57]研究CP對商業(yè)魚丸中微生物的殺菌作用,為控制商業(yè)魚丸運(yùn)輸過程中的品質(zhì)變化提供了新思路,為確保冷鏈?zhǔn)称钒踩峁┝诵路椒āS袑W(xué)者研究CP技術(shù)對凡納濱對蝦[58]、鯖魚[59]、鮭魚[60]的影響,發(fā)現(xiàn)該技術(shù)在一定程度上可以改善原料品質(zhì)。隨著肉雞消費(fèi)量的持續(xù)攀升,肉雞屠宰過程中的污染成為首要問題[18]。Gavahian等[61]討論CP在家禽加工中帶來的經(jīng)濟(jì)效益、質(zhì)量屬性及其局限性,指出監(jiān)管機(jī)構(gòu)對產(chǎn)品和工藝的安全性驗(yàn)證是食品工業(yè)預(yù)期應(yīng)用的一個(gè)關(guān)鍵考慮因素,將CP和其他技術(shù)聯(lián)合使用是未來的發(fā)展趨勢。

3.2 CP技術(shù)在果蔬、糧食中的應(yīng)用

果蔬、糧食是人們?nèi)粘I钪芯S生素、酚類、花青素和抗氧化物的主要來源,傳統(tǒng)的加工方式往往會造成營養(yǎng)物質(zhì)的損失或破壞。Thirumdas等[13]研究CP在巴斯馬蒂米粉中的應(yīng)用及對其凝膠水化性能、面粉水化性能、糊化溫度和抗氧化性能等的影響,X-射線衍射、差示掃描量熱法處理發(fā)現(xiàn)CP對米粉的結(jié)構(gòu)沒有影響,米粉總多酚含量和還原力增加,CP處理能夠改善巴斯馬蒂米粉的功能特性。Misra等[62]用CP對硬性和軟性小麥粉進(jìn)行處理,結(jié)果表明,CP可以調(diào)節(jié)小麥粉的彈性和黏性。Hou Yanan等[63]發(fā)現(xiàn)利用CP與加熱提取法對藍(lán)莓汁進(jìn)行處理可顯著提高對芽孢桿菌的滅活率,并對花青素、總酚、VC含量和抗氧化活性有積極影響。用CP對蘋果處理40 s,再進(jìn)行乳酸鏈球菌素型抗菌消毒劑處理180、3 600 s,可分別導(dǎo)致單核細(xì)胞增生李斯特菌數(shù)量減少2.5、4.6 (lg(CFU/g))[64]。此外,CP預(yù)處理具有提高辣椒干燥速率并優(yōu)化干辣椒品質(zhì)的特性[65],但CP技術(shù)存在殺菌作用不均勻的現(xiàn)象[66]。

CP在食品行業(yè)的應(yīng)用仍處于初探階段,目前市場上的設(shè)備較為昂貴,對于食品企業(yè)來說投資成本較大。關(guān)于CP作用于食品品質(zhì)屬性的機(jī)制及精準(zhǔn)調(diào)控、設(shè)備研發(fā)有待深入研究。CP在食品中的部分應(yīng)用如表3所示。

4 結(jié) 語

本文綜述乳酸噴淋、SAEW及CP 3 種綠色減菌技術(shù)在食品中的應(yīng)用研究進(jìn)展及優(yōu)缺點(diǎn),相比傳統(tǒng)減菌方式,上述3 種方式更有利于高效、快速、無殘留地去除食品中的有害菌,提高食品的安全性。但單一減菌技術(shù)仍然存在一些不足之處:如乳酸減菌技術(shù)成本低、易操作,但處理不當(dāng)時(shí)會使原料的感官品質(zhì)遭到破壞,營養(yǎng)價(jià)值降低;SAEW的殺菌效率能夠達(dá)到90%以上,且制作簡單,但其對食品品質(zhì)影響的機(jī)制仍需進(jìn)一步研究;CP技術(shù)避免了處理過程產(chǎn)熱對食品品質(zhì)的影響,但殺菌作用不均勻且設(shè)備投資成本較高。

[10] CICHOSKI A J, MARTINS FLORES D R, DE MENEZES C R, et al.?Ultrasound and slightly acid electrolyzed water application: an efficient combination to reduce the bacterial counts of chicken breast during pre-chilling[J]. International Journal of Food Microbiology, 2019, 301: 27-33. DOI:10.1016/j.ijfoodmicro.2019.05.004.

[11] JEON H R, KWON M J, YOON K S. Control of Listeria innocua biofilms on food contact surfaces with slightly acidic electrolyzed water and the risk of biofilm cells transfer to duck meat[J]. Journal of Food Protection, 2018, 81(4): 582-592. DOI:10.4315/0362-028X.JFP-17-373.

[12] WANG Huhu, QI Jun, DUAN Debao, et al. Combination of a novel designed spray cabinet and electrolyzed water to reduce microorganisms on chicken carcasses[J]. Food Control, 2018, 86: 200-206.?DOI:10.1016/j.foodcont.2017.11.027.

[13] THIRUMDAS R, DESHMUKH R R, ANNAPURE U S. Effect of low temperature plasma on the functional properties of basmati rice flour[J]. Journal of Food Science and Technology-Mysore, 2016, 53(6): 2742-2751. DOI:10.1007/s13197-016-2246-4.

[14] TRZASKA W J, CORREIA J N, VILLEGAS M T, et al. pH manipulation as a novel strategy for treating mucormycosis[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(11): 6968-6974. DOI:10.1128/AAC.01366-15.

[15] 汪陳潔. 乳酸對常見食源性致病菌的抗菌活性與作用機(jī)理[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2014: 12-17.

[16] 彭書東, 李鍵, 劉士健, 等. 乳酸菌細(xì)菌素生物合成機(jī)制、抑菌機(jī)制及應(yīng)用研究進(jìn)展 [J]. 食品與發(fā)酵工業(yè), 2019, 45(6): 236-242. DOI:10.13995/j.cnki.11-1802/ts.018742.

[17] YOUSSEF M K, YANG X, BADONI M, et al. Effects of spray volume, type of surface tissue and inoculum level on the survival of Escherichia coli on beef sprayed with 5% lactic acid[J]. Food Control, 2012, 25(2): 717-722. DOI:10.1016/j.foodcont.2011.12.021.

[18] 夏小龍, 彭珍, 劉書亮, 等. 熱水結(jié)合乳酸噴淋處理對屠宰生產(chǎn)鏈中肉雞胴體微生物、理化及感官指標(biāo)的影響[J]. 食品工業(yè)科技, 2014, 35(24): 137-142. DOI:10.13386/j.issn1002-0306.2014.24.020.

[19] LAURY-SHAW A, GRAGG S E, ECHEVERRY A, et al. Survival of Escherichia coli O157:H7 after application of lactic acid bacteria[J]. Journal of the Science of Food and Agriculture, 2019, 99(4): 1548-1553. DOI:10.1002/jsfa.9332.

[20] SMULDERS F J, WELLM G, HIESBERGER J, et al. Microbiological and sensory effects of the combined application of hot-cold organic acid sprays and steam condensation at subatmospheric pressure for decontamination of inoculated pig tissue surfaces[J]. Journal of Food Protection, 2011, 74(8): 1338-1344. DOI:10.4315/0362-028X.JFP-10-472.

[21] WAKINAKA T, IWATA S, TAKEISHI Y, et al. Isolation of halophilic lactic acid bacteria possessing aspartate decarboxylase and application to fish sauce fermentation starter[J]. International Journal of Food Microbiology, 2019, 292: 137-143. DOI:10.1016/j.ijfoodmicro.2018.12.013.

[22] OZYURT G, OZOGUL Y, BOGA E K, et al. The effects of fermentation process with acid and lactic acid bacteria strains on the biogenic amine formation of wet and spray-dried fish silages of discards[J]. Journal of Aquatic Food Product Technology, 2019, 28(3): 314-328. DOI:10.1080/10498850.2019.1578314.

[23] KALCHAYANAND N, ARTHUR T M, BOSILEVAC J M, et al. Surface pH of fresh beef as a parameter to validate effectiveness of lactic acid treatment against Escherichia coli O157:H7 and Salmonella[J]. Journal of Food Protection, 2018, 81(7): 1126-1133. DOI:10.4315/0362-028X.JFP-17-469.

[24] STIVARIUS M R, POHLMAN F W, MCELYEA K S, et al. Effects of hot water and lactic acid treatment of beef trimmings prior to grinding on microbial, instrumental color and sensory properties of ground beef during display[J]. Meat Science, 2002, 60(4): 327-334. DOI:10.1016/S0309-1740(01)00127-9.

[25] MASSEY L M, HETTIARACHCHY N S, HORAX R, et al. Efficacy of organic acid electrostatic spray for decontaminating Salmonella on cantaloupe cubes and cherry tomatoes[J]. Journal Food Process Preservation, 2018, 42(10): e13748. DOI:10.1111/jfpp.13748.

[26] HRICOVA D, STEPHAN R, ZWEIFEL C. Electrolyzed water and its application in the food industry[J]. Journal of Food Protection, 2008, 71(9): 1934-1947. DOI:10.4315/0362-028X-71.9.1934.

[27] CHYER K, YEN-CON H, BRACKETT R E. Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens[J]. International Journal of Food Microbiology, 2000, 61(2/3): 199-207. DOI:10.1016/s0168-1605(00)00405-0.

[28] FORGHANI F, PARK J H, OH D H. Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water[J]. Food Microbiology, 2015, 48: 28-34. DOI:10.1016/j.fm.2014.11.020.

[29] LIANG Duo, WANG Qingfa, ZHAO Dandan, et al. Systematic application of slightly acidic electrolyzed water (SAEW) for natural microbial reduction of buckwheat sprouts[J]. LWT-Food Science and Technology, 2019, 108: 14-20. DOI:10.1016/j.lwt.2019.03.021.

[30] WANG Huhu, DUAN Debao, WU Zhongyuan, et al. Primary concerns regarding the application of electrolyzed water in the meat industry[J]. Food Control, 2019, 95: 50-56. DOI:10.1016/j.foodcont.2018.07.049.

[31] BING Shan, ZANG Yitian, LI Yunjie, et al. The synergistic effects of slightly acidic electrolyzed water and UV-C light on the inactivation of Salmonella enteritidis on contaminated eggshells[J]. Poultry Science, 2019, 98(12): 6914-6920. DOI:10.3382/ps/pez454.

[32] YE Zhangying, QI Fangzhong, PEI Lei, et al. Using slightly acidic electrolyzed water for inactivation and preservation of ram frozen shrimp (Litopenaeus vannamei) in the fifle processing[J]. Applied Engineering in Agriculture, 2014, 30(6): 935-941. DOI:10.13031/aea.30.10657.

[33] XUAN Xiaoting, FAN Yifei, LING Jiangang, et al. Preservation of squid by slightly acidic electrolyzed water ice[J]. Food Control, 2017, 73: 1483-1439. DOI:10.1016/j.foodcont.2016.11.013.

[34] LI Zhen, HAO Jianxiong, SONG Shuhui, et al. Effect of slightly acidic electrolyzed water on bioactive compounds and morphology of broccoli sprouts[J]. Food Research International, 2018, 105: 102-109. DOI:10.1016/j.foodres.2017.10.052.

[35] ZHANG Chunling, XIA Xiaodong, LI Baoming, et al. Disinfection efficacy of electrolyzed oxidizing water on brown rice soaking and germination[J]. Food Control, 2018, 89: 38-45. DOI:10.1016/j.foodcont.2018.01.007.

[36] TANGO C N, KHAN I, KOUNKEU P F N, et al. Slightly acidic electrolyzed water combined with chemical and physical treatments to decontaminate bacteria on fresh fruits[J]. Food Microbiology, 2017, 67: 97-105. DOI:10.1016/j.fm.2017.06.007.

[37] LI Huiying, REN Yuanyuan, HAO Jianxiong, et al. Dual effects of acidic electrolyzed water treatments on the microbial reduction and control of enzymatic browning for fresh-cut lotus root[J]. Journal of Food Safety, 2017, 37(3): e12333. DOI:10.1111/jfs.12333.

[38] LI L, SONG S, NIRASAWA S, et al. Slightly acidic electrolyzed water treatment enhances the main bioactive phytochemicals content in broccoli sprouts via changing metabolism[J]. Journal of Agricultural and Food Chemistry, 2019, 67(2): 606-614. DOI:10.1021/acs.jafc.8b04958.

[39] WANG Liping, XIA Qiang, LI Yunfei. Label free-based proteomic analysis of proteins in Bacillus cereus spores regulated by high pressure processing and slightly acidic electrolyzed water treatment[J]. Food Control, 2018, 90: 392-400. DOI:10.1016/j.foodcont.2018.03.015.

[40] WANG Huhu, QI Jun, DUAN Debao, et al. Combination of a novel designed spray cabinet and electrolyzed water to reduce microorganisms on chicken carcasses[J]. Food Control, 2018, 86: 200-206.DOI:10.1016/j.foodcont.2017.11.027.

[41] RAHMAN S M E, PARK J, SONG K B, et al. Effects of slightly acidic low concentration electrolyzed water on microbiological, physicochemical, and sensory quality of fresh chicken breast meat[J]. Journal of Food Science, 2012, 77(1): 35-41. DOI:10.1111/j.1750-3841.2011.02454.x.

[42] MANSUR A R, TANGO C N, KIM G H, et al. Combined effects of slightly acidic electrolyzed water and fumaric acid on the reduction of foodborne pathogens and shelf life extension of fresh pork[J]. Food Control, 2015, 47: 277-284. DOI:10.1016/j.foodcont.2014.07.019.

[43] CHEN Jing, XU Bin, DENG Shanggui, et al. Effect of combined pretreatment with slightly acidic electrolyzed water and botanic biopreservative on quality and shelf life of bombay duck (Harpadon nehereus)[J]. Journal of Food Quality, 2016, 39(2): 116-125. DOI:10.1111/jfq.12182.

[44] JUNG S, KO B S, JANG H J, et al. Effects of slightly acidic electrolyzed water ice and grapefruit seed extract ice on shelf life of brown sole (Pleuronectes herzensteini)[J]. Food Science and Biotechnology, 2018, 27(1): 261-267. DOI:10.1007/s10068-017-0198-8.

[45] NI Li, CAO Wei, ZHEN Weichao, et al. Efficacy of slightly acidic electrolyzed water for reduction of foodborne pathogens and natural microfiora on shell eggs[J]. Food Science and Technology Research, 2014, 20(1): 93-100. DOI:10.3136/fstr.20.93.

[46] ZANG Yitian, BING Shan, LI Yunjie, et al. Efficacy of slightly acidic electrolyzed water on the microbial safety and shelf life of shelled eggs[J]. Poultry Science, 2019, 98(11): 5932-5939. DOI:10.3382/ps/pez373.

[47] ZHANG Chunling, LU Zhanhui, LI Yongyu, et al. Reduction of Escherichia coli O157:H7 and Salmonella enteritidis on mung bean seeds and sprouts by slightly acidic electrolyzed water[J]. Food Control, 2011, 22(5): 792-796. DOI:10.1016/j.foodcont.2010.11.018.

[48] LIU Rui, ZHANG Dongchen, HE Xiangli, et al. The relationship between antioxidant enzymes activity and mungbean sprouts growth during the germination of mungbean seeds treated by electrolyzed water[J]. Plant Growth Regulation, 2014, 74(1): 83-91. DOI:10.1007/s10725-014-9899-7.

[49] ZHANG Chunling, ZHANG Yuyu, ZHAO Zhiyi, et al. The application of slightly acidic electrolyzed water in pea sprout production to ensure food safety, biological and nutritional quality of the sprout[J]. Food Control, 2019, 104: 83-90. DOI:10.1007/s10725-014-9899-7.

[50] DING Tian, GE Zhi, SHI J, et al. Impact of slightly acidic electrolyzed water (SAEW) and ultrasound on microbial loads and quality of fresh fruits[J]. LWT-Food Science and Technology, 2015, 60(2): 1195-1199. DOI:10.1016/j.lwt.2014.09.012.

[51] REINHERZ E L, KUNG P C, GOLDSTEIN G, et al. Separation of functional subsets of human T cells by a monoclonal antibody[J]. Journal of Immunology, 2013, 190(11): 5346-5350. DOI:10.1073/pnas.76.8.4061.

[52] WIELOGORSKA E, AHMED Y, MENEELY J, et al. A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment[J]. Food Chemistry, 2019, 301: 125281. DOI:10.1016/j.foodchem.2019.125281.

[53] 韓格, 陳倩, 孔保華. 低溫等離子體技術(shù)在肉品保藏及加工中的應(yīng)用研究進(jìn)展[J]. 食品科學(xué), 2019, 40(3): 286-292. DOI:10.7506/spkx1002-6630-20180128-387.

[54] MISRA N N, JO C. Applications of cold plasma technology for microbiological safety in meat industry[J]. Trends in Food Science and Technology, 2017, 64: 74-86. DOI:10.1016/j.foodchem.2019.125281.

[55] ULBIN-FIGLEWICZ N, BRYCHCY E, JARMOLUK A. Effect of low-pressure cold plasma on surface microflora of meat and quality attributes[J]. Journal of Food Science and Technology-Mysore, 2015, 52(2): 1228-1232. DOI:10.1007/s13197-013-1108-6.

[56] YADAV B, SPINELLI A C, GOVINDAN B N, et al. Cold plasma treatment of ready-to-eat ham: influence of process conditions and storage on inactivation of Listeria innocua[J]. Food Research International, 2019, 123: 276-285. DOI:10.1016/j.foodres.2019.04.065.

[57] ZHANG Yuxiang, WEI Jianping, YUAN Yahong, et al. Bactericidal effect of cold plasma on microbiota of commercial fish balls[J]. Innovative Food Science and Emerging Technologies, 2019, 52:?394-405. DOI:10.1016/j.ifset.2019.01.019.

[58] EKEZIE F G C, CHENG G H, SUN D W. Effects of atmospheric pressure plasma jet on the conformation and physicochemical properties of myofibrillar proteins from king prawn (Litopenaeus vannamei)[J]. Food Chemistry, 2019, 276: 147-156. DOI:10.1016/j.foodchem.2018.09.113.

[59] CHEN Jing, WANG Shengzhe, CHEN Junyu, et al. Effect of cold plasma on maintaining the quality of chub mackerel (Scomber japonicus): biochemical and sensory attributes[J]. Journal of the Science of Food and Agriculture, 2019, 99(1): 39-46. DOI:10.1002/jsfa.9138.

[60] COLEJO S, ALVAREZ-ORDONEZ A, PRIETO M, et al. Evaluation of ultraviolet light (UV), non-thermal atmospheric plasma (NTAP) and their combination for the control of foodborne pathogens in smoked salmon and their effect on quality attributes[J]. Innovative Food Science and Emerging Technologies, 2018, 50: 84-93. DOI:10.1016/j.ifset.2018.10.002.

[61] GAVAHIAN M, CHU Y H, JO C. Prospective applications of cold plasma for processing poultry products: benefits, effects on quality attributes, and limitations[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(4): 1292-1309. DOI:10.1111/1541-4337.12460.

[62] MISRA N N, KAUR S, TIWARI B K, et al. Atmospheric pressure cold plasma (ACP) treatment of wheat flour[J]. Food Hydrocolloids, 2015, 44: 115-121. DOI:10.1016/j.foodhyd.2014.08.019.

[63] HOU Yanan, WANG Ruixue, GAN Zhilin, et al. Effect of cold plasma on blueberry juice quality[J]. Food Chemistry, 2019, 290: 79-86. DOI:10.1016/j.foodchem.2019.03.123.

[64] UKUKU D O, NIEMIRA B A, UKANALIS J. Nisin-based antimircobial combination with cold plasma treatment inactivate Listeria monocytogenes on Granny Smith apples[J]. LWT-Food Science and Technology, 2019, 104: 120-127. DOI:10.1016/j.lwt.2018.12.049.

[65] ZHANG Xiaolin, ZHONG Chongshan, MUJUMDAR A S, et al. Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum L.) [J]. Journal of Food Engineering, 2019, 241: 51-57. DOI:10.1016/j.jfoodeng.2018.08.002.

[66] 郭儉. 低溫等離子體殺菌機(jī)理與活性水殺菌作用研究[D]. 杭州: 浙江大學(xué), 2016: 55-68.

[67] ULBIN-FIGLEWICZ N, JARMOLUK A, MARYCZ K. Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota[J]. Annals of Microbiology, 2015, 65(3): 1537-1546. DOI:10.1007/s13213-014-0992-y.

[68] CHAPLOT S, YADAV B, JEON B, et al. Atmospheric cold plasma and peracetic acid-based hurdle intervention to reduce Salmonella on raw poultry meat[J]. Journal of Food Protection, 2019, 82(5): 878-888. DOI:10.4315/0362-028X.JFP-18-377.

[69] ROH S H, LEE S Y, PARK H H, et al. Effects of the treatment parameters on the efficacy of the inactivation of Salmonella contaminating boiled chicken breast by in-package atmospheric cold plasma treatment[J]. International Journal of Food Microbiology, 2019, 293: 24-33. DOI:10.1016/j.ijfoodmicro.2018.12.016.

[70] SHI Xingmin, LIU Jinren, XU Guimin, et al. Effect of low-temperature plasma on the degradation of omethoate residue and quality of apple and spinach[J]. Plasma Science and Technology, 2018, 20(4): 044004. DOI:10.1088/2058-6272/aa9b78.

[71] YODPITAKA S, MAHATHEERANONT S, BOONYAWAN D,et al. Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice[J]. Food Chemistry, 2019, 289: 328-339. DOI:10.1016/j.foodchem.2019.03.061.

[72] OLATUNDE O O, BENJAKUL S, VONGKAMJAN K. Combined effects of high voltage cold atmospheric plasma and antioxidants on the qualities and shelf-life of Asian sea bass slices[J]. Innovative Food Science and Emerging Technologies, 2019, 54: 113-122. DOI:10.1016/j.ifset.2019.03.012.

[73] SILVA D A D S, DA SILVA CAMPELO M C, REBOU?AS L, et al.?Use of cold atmospheric plasma to preserve the quality of white shrimp (Litopenaeus vannamei)[J]. Journal of Food Protection, 2019, 82(7): 1217-1223. DOI:10.4315/0362-028X.JFP-18-369.

[74] BAUER A, NI Y, BAUER S, et al. The effects of atmospheric pressure cold plasma treatment on microbiological, physical-chemical and sensory characteristics of vacuum packaged beef loin[J]. Meat Science, 2017, 128: 77-87. DOI:10.1016/j.meatsci.2017.02.003.

猜你喜歡
微生物乳酸
老年心力衰竭患者BNP及乳酸水平與心功能的相關(guān)性
二甲雙胍與乳酸酸中毒及其在冠狀動脈造影期間的應(yīng)用
生物瀝浸污泥深度脫水處理技術(shù)的產(chǎn)業(yè)化應(yīng)用
淺談微生物對污水的生物處理
腹腔鏡手術(shù)相關(guān)的高乳酸血癥或乳酸性酸中毒
不同臨床標(biāo)本微生物檢驗(yàn)的陽性率流行病學(xué)分布分析
紅樹林微生物來源生物堿的開發(fā)利用
科技視界(2016年9期)2016-04-26 12:23:48
環(huán)境工程中微生物處理技術(shù)的運(yùn)用與實(shí)踐
微生物對垃圾滲濾液中胡敏酸降解和形成的影響
科技視界(2016年7期)2016-04-01 09:39:11
服二甲雙胍別喝酸奶
乡宁县| 稷山县| 彭州市| 无极县| 峨山| 红桥区| 甘肃省| 石首市| 辉南县| 金昌市| 南靖县| 健康| 临海市| 阿尔山市| 华蓥市| 长岭县| 望江县| 牡丹江市| 福泉市| 阳西县| 华坪县| 九寨沟县| 凤台县| 隆回县| 郴州市| 苍南县| 惠安县| 东丽区| 江永县| 广灵县| 普安县| 吉水县| 辽阳市| 抚顺县| 雅安市| 时尚| 利辛县| 大关县| 阿合奇县| 宣化县| 海林市|