錢 晨,楊從新,富 友,張 揚(yáng),侯凱文
?
平衡鼓間隙對(duì)首級(jí)葉輪前泵腔壓力及多級(jí)泵軸向力的影響
錢 晨,楊從新,富 友,張 揚(yáng),侯凱文
(蘭州理工大學(xué)能源與動(dòng)力工程學(xué)院,蘭州 730050)
平衡鼓的軸向力平衡能力是多級(jí)離心泵發(fā)生故障并影響其壽命的關(guān)鍵因素。該文采用數(shù)值模擬方法,在多級(jí)泵的外特性、平衡管內(nèi)壓力和泄漏量的數(shù)值計(jì)算結(jié)果與試驗(yàn)結(jié)果基本一致的基礎(chǔ)上,研究了平衡鼓間隙泄漏量變化對(duì)首級(jí)葉輪前泵腔的壓力分布、首級(jí)葉輪及整個(gè)葉輪軸向力的影響。研究結(jié)果表明:首級(jí)葉輪前泵腔中的漩渦區(qū)是腔體內(nèi)壓力變化的主要原因。當(dāng)平衡鼓間隙由0增大到0.5 mm時(shí),首級(jí)葉輪的軸向力在間隙為0時(shí)最大,在間隙為0.3 mm時(shí)最小,其最小值為最大值的20.6%;整個(gè)葉輪所受軸向力隨著平衡鼓間隙增大呈先減小后增大的趨勢(shì)。無量綱化的平衡鼓間隙面積大于6.6×10-3時(shí),由于平衡鼓前后壓差較小,已無法有效平衡軸向力,在此范圍軸承發(fā)生斷軸的風(fēng)險(xiǎn)較大。該研究可為多級(jí)泵平衡鼓設(shè)計(jì)提供參考。
泵;壓力;數(shù)值計(jì)算;首級(jí)葉輪前泵腔;平衡鼓間隙;軸向力
多級(jí)離心泵軸向力過大直接影響其運(yùn)行穩(wěn)定性,平衡和減小軸向力是目前研究多級(jí)離心泵的重要課題之一。多級(jí)泵的軸向力平衡裝置主要有平衡盤和平衡鼓等,由于平衡鼓沒有與動(dòng)靜金屬直接接觸,其運(yùn)行可靠性較高,被廣泛應(yīng)用在節(jié)段式多級(jí)離心泵軸向力平衡機(jī)構(gòu)中[1]。平衡鼓的工作原理是通過末級(jí)葉輪后泵腔與平衡腔之間的壓差平衡軸向力[2]。平衡鼓在運(yùn)行過程中,由于長(zhǎng)期受到液體的碰撞或與殼體發(fā)生摩擦,平衡鼓間隙產(chǎn)生磨損,使平衡鼓間隙泄漏量逐漸增大[1-3]。而平衡鼓間隙泄漏流通過平衡腔底部的平衡管與吸水室相連,其間隙大小對(duì)首級(jí)葉輪前泵腔進(jìn)口流量產(chǎn)生影響,引起首級(jí)葉輪前泵腔壓力的改變[4-8]。
許多學(xué)者在平衡鼓軸向力平衡及平衡鼓間隙泄漏流方面做出了研究。Gordon 等[9]揭示了預(yù)旋和轉(zhuǎn)子渦流速度對(duì)階梯式和鋸齒狀平衡鼓間隙泄漏量的影響。Rui 等[10]通過試驗(yàn)和數(shù)值模擬方法分析了空化導(dǎo)致的平衡腔侵蝕引起平衡鼓間隙壓力及流量的變化。張賢安等[11-12]通過單獨(dú)對(duì)平衡鼓進(jìn)行數(shù)值模擬,發(fā)現(xiàn)隨著平衡鼓間隙增大,平衡鼓軸向力平衡能力迅速減弱。張翼飛等[13]通過試驗(yàn)方法確定了平衡鼓直徑的大小。此外,許多學(xué)者在平衡鼓優(yōu)化設(shè)計(jì)上也做了許多工作[14-17]。從上述研究中可以發(fā)現(xiàn),關(guān)于平衡鼓的研究都只側(cè)重于間隙流動(dòng)對(duì)平衡鼓受力等局部特性的影響,而關(guān)于平衡鼓間隙泄漏量對(duì)首級(jí)葉輪前泵腔腔體內(nèi)流動(dòng)特性、首級(jí)葉輪和整個(gè)葉輪軸向力以及對(duì)平衡鼓軸向力平衡能力影響的研究尚未開展,因此,有必要對(duì)上述問題進(jìn)行深入研究。
本文以蘭州某石化公司助劑廠使用的高壓雙殼體11級(jí)節(jié)段式多級(jí)離心泵為研究對(duì)象,通過改變平衡鼓間隙大小,進(jìn)行全流場(chǎng)數(shù)值計(jì)算,研究不同工況下,平衡鼓間隙對(duì)首級(jí)葉輪前泵腔流體的運(yùn)動(dòng)及壓力分布、首級(jí)葉輪及整個(gè)葉輪軸向力的變化,同時(shí)將數(shù)值計(jì)算結(jié)果與試驗(yàn)結(jié)果進(jìn)行比較,并分析了殘余軸向力系數(shù)與比面積的關(guān)系,得到多級(jí)泵軸承發(fā)生斷裂風(fēng)險(xiǎn)較大的范圍。
本文選用的P101A型節(jié)段式多級(jí)離心泵,其主要設(shè)計(jì)參數(shù)為:設(shè)計(jì)流量=128 m3/h,級(jí)數(shù)=11級(jí),單級(jí)揚(yáng)程=106 m,轉(zhuǎn)速=2 986 r/min,其過流部件主要參數(shù)如表1所示。應(yīng)用Pro/E軟件進(jìn)行全流道幾何建模,如圖1所示。本文在原型泵平衡鼓間隙為0.2 mm的基礎(chǔ)上,進(jìn)行5次平衡鼓間隙的改變,分別為0、0.1、0.3、0.4、0.5 mm。
采用六面體結(jié)構(gòu)化網(wǎng)格進(jìn)行多級(jí)泵全流道數(shù)值仿真,并對(duì)近壁區(qū)進(jìn)行網(wǎng)格加密,近壁區(qū)+(靠近壁面第一層網(wǎng)格的無量綱高度)小于5。選擇效率作為準(zhǔn)則來進(jìn)行網(wǎng)格無關(guān)性驗(yàn)證,設(shè)計(jì)工況點(diǎn)泵效率和網(wǎng)格關(guān)系如圖2所示,當(dāng)網(wǎng)格數(shù)從4 800萬增加到6 500萬時(shí),泵的效率絕對(duì)值增量小于0.01%,故采用4 800萬網(wǎng)格進(jìn)行數(shù)值計(jì)算如圖2所示。部分部件網(wǎng)格圖如圖3所示。對(duì)于耦合面上網(wǎng)格尺度差異較大的區(qū)域,采用等比遞增的網(wǎng)格劃分形式,使網(wǎng)格合理過渡。
表1 多級(jí)泵過流部件主要參數(shù)
1.吸水室 2.首級(jí)葉輪 3.導(dǎo)葉 4.次級(jí)葉輪 5.末級(jí)導(dǎo)葉 6.壓水室 7.平衡管 8.末級(jí)葉輪后蓋板 9.平衡腔 10.平衡鼓間隙
1.Suction chamber 2.First stage impeller 3.Guide vane 4.Secondary impeller 5.Final stage guide vane 6.Water chamber 7.Balance tube 8.Rear cover plate of last stage impeller 9.Balance chamber 10.Balance drum clearance
注:1為首級(jí)葉輪出口直徑,mm;D為前密封環(huán)直徑,mm。
Note:1is the outlet diameter of the first impeller, mm;Dis the diameter of front seal ring, mm.
圖1 多級(jí)泵計(jì)算模型
Fig.1 Computational model of multistage pump
利用FLUENT流體計(jì)算軟件,將工作介質(zhì)選取為清水,泵內(nèi)流動(dòng)設(shè)置為不可壓縮定常湍流流動(dòng)。應(yīng)用SST-湍流模型,進(jìn)口邊界條件為速度進(jìn)口,假定來流方向垂直于入口截面,給定來流速度的大小。出口邊界為自由出流,認(rèn)為流動(dòng)充分發(fā)展,固體壁面給定無滑移條件。
圖2 不同網(wǎng)格數(shù)下的泵效率
圖3 多級(jí)泵網(wǎng)格圖
試驗(yàn)是在蘭州石化公司助劑廠P101A泵的試驗(yàn)臺(tái)進(jìn)行,試驗(yàn)測(cè)試裝置如圖4所示。多級(jí)泵試驗(yàn)臺(tái)是甲乙酮反應(yīng)裝置的一部分,試驗(yàn)泵主要將回流罐中的液體輸送到填料塔進(jìn)行氧化還原反應(yīng)。試驗(yàn)臺(tái)使用的電機(jī)為AMD400L2RBABM型電機(jī)(瑞士ABB公司)提供的最大功率為455 kW,可以滿足泵運(yùn)行的設(shè)計(jì)轉(zhuǎn)速2 950 r/min;泵的進(jìn)、出口液體壓力用德國(guó)西門子公司的7MF403壓力傳感器測(cè)量,其測(cè)量誤差為±0.075%;采用中國(guó)橫河公司AE215型電磁流量計(jì)測(cè)量流量,其測(cè)量誤差為±0.5%;轉(zhuǎn)速與功率用安裝在泵與電機(jī)之間的轉(zhuǎn)速轉(zhuǎn)矩傳感器測(cè)量[18-20]。
1.泵出口 2.泵進(jìn)口 3.扭矩儀 4.電機(jī) 5.試驗(yàn)多級(jí)泵 6.壓力計(jì) 7.孔板流量計(jì)
在平衡管軸向距泵進(jìn)口153 mm處安裝上海蒙暉公司的MH6150型孔板流量計(jì)(0.5級(jí))測(cè)流量,在239 mm處安裝上海自動(dòng)化儀表四廠生產(chǎn)的YB-150型標(biāo)準(zhǔn)壓力計(jì)(0.4級(jí))測(cè)壓強(qiáng)。試驗(yàn)時(shí),先從設(shè)計(jì)流量(128 m3/h)以20 m3/h量級(jí)逐漸遞減到最小流量28 m3/h,后逐級(jí)遞增大到最大流量248 m3/h,最后逐級(jí)調(diào)整為設(shè)計(jì)流量為一個(gè)試驗(yàn)周期。試驗(yàn)數(shù)據(jù)為同一流量下一個(gè)試驗(yàn)周期2次試驗(yàn)結(jié)果的平均值,試驗(yàn)與數(shù)值計(jì)算結(jié)果如圖5所示。
圖5 多級(jí)泵試驗(yàn)結(jié)果與數(shù)值模擬結(jié)果對(duì)比
從圖5a可以看出,數(shù)值預(yù)測(cè)性能曲線與試驗(yàn)曲線變化基本一致,但模擬值始終低于試驗(yàn)值,這是主要由于數(shù)值模擬沒有考慮機(jī)械密封和軸承摩擦所產(chǎn)生的能量損失,其中揚(yáng)程、效率、軸功率的最大誤差分別為4.17%、2.81%和4.25%。
對(duì)于高壓雙殼體多級(jí)泵而言,直接測(cè)量泵腔內(nèi)的壓強(qiáng)及平衡鼓間隙泄漏量的難度較大,因此本文通過測(cè)量平衡管內(nèi)的壓強(qiáng)及流量,并與模擬結(jié)果進(jìn)行比較,從而驗(yàn)證文中采用的計(jì)算方法的可靠性。從圖5b中可以看出,平衡管流量的計(jì)算值與試驗(yàn)值趨勢(shì)基本一致,但試驗(yàn)值始終小于模擬值,這主要因?yàn)閿?shù)值模擬沒有考慮孔板流量計(jì)對(duì)管道內(nèi)流動(dòng)的影響,設(shè)計(jì)工況點(diǎn)平衡管流量最大誤差為4.49%。平衡管內(nèi)壓強(qiáng)的計(jì)算曲線與試驗(yàn)曲線吻合較好,最大誤差為2.5%,試驗(yàn)誤差在允許范圍內(nèi),說明本文選用的計(jì)算方法能夠?yàn)楸狙芯刻峁┛煽勘WC。
為分析平衡鼓間隙變化與首級(jí)葉輪前泵腔壓力的關(guān)系,在設(shè)計(jì)流量下,分別截取多級(jí)泵首級(jí)葉輪前泵腔沿軸向的3個(gè)截面(如圖1b所示)分別為:前泵腔進(jìn)口截面(1-1截面)、前泵腔軸向中心截面(2-2截面)以及前泵腔出口截面(3-3截面),其壓力云圖從左至右如圖6所示。
從壓力云圖6上可以看出,同一平衡鼓間隙下,首級(jí)葉輪前泵腔內(nèi)液體壓力由葉輪前泵腔進(jìn)口截面至前泵腔出口截面沿軸向壓力呈逐漸增大的趨勢(shì),這是因?yàn)榍惑w內(nèi)的液體受到首級(jí)葉輪前蓋板旋轉(zhuǎn)影響,壓力從進(jìn)口至出口逐漸增大[21-26]。當(dāng)平衡鼓間隙由0~0.5 mm增大時(shí),首級(jí)葉輪前泵腔體內(nèi)各截面的壓力沿徑向逐漸增大,尤其在前泵腔出口截面尤為明顯,這是因?yàn)殡S著平衡鼓間隙增大,通過平衡管流入吸水室液體的壓力增加,導(dǎo)致首級(jí)葉輪進(jìn)口截面壓力增大,由于受到前蓋板旋轉(zhuǎn)以及葉輪出口側(cè)壁形狀的共同影響,而側(cè)壁對(duì)液體流動(dòng)也存在一定的制約作用,故前腔出口截面壓力變化較大;當(dāng)間隙小于0.2 mm時(shí),前泵腔進(jìn)口截面和前泵腔軸向中心截面壓力沿徑向變化不明顯;當(dāng)間隙大于0.2 mm時(shí),前泵腔進(jìn)口截面和中心截面出現(xiàn)壓力沿徑向分布呈非對(duì)稱性,且隨著間隙增大,壓力不均勻性更加明顯,說明前泵腔內(nèi)液體存在間隙泄漏流動(dòng),其主要由剪切流和壓差流組成,近似為二維黏性層流運(yùn)動(dòng)[5]。
注:b為平衡鼓間隙,mm;圖6a中3張圖片從左至右分別為1-1截面、2-2截面、3-3截面,下同。
為進(jìn)一步理清前泵腔壓力沿徑向分布規(guī)律,分別在0.5、和1.5流量下,取首級(jí)葉輪前泵腔在相同半徑下0、90°、180°和270°處液體的壓力平均值,并繪制出壓力均值沿徑向的變化曲線,如圖7所示。由圖7可知,首級(jí)葉輪前泵腔進(jìn)口的液體壓力呈平衡鼓間隙越大,壓力越大的趨勢(shì),這是因?yàn)槠胶夤拈g隙較小時(shí),經(jīng)過平衡管流入吸水室的高壓液體較少,因此進(jìn)入前泵腔液體的壓力較小,隨著平衡鼓泄漏的高壓流體增多,泵腔液體的壓力逐漸增大。由于經(jīng)過密封環(huán)間隙進(jìn)入首級(jí)葉輪前腔的無旋液體受到葉輪旋轉(zhuǎn)產(chǎn)生的離心力作用,故不同工況下,前腔內(nèi)液體的壓力呈拋物線型分布規(guī)律,這與文獻(xiàn)[1]假設(shè)泵腔內(nèi)壓力呈拋物線型分布規(guī)律結(jié)論一致。
注:Q為設(shè)計(jì)流量,Q=128 m3·h-1。
由圖7還可以看出,不同工況下,首級(jí)葉輪前泵腔液體的壓力均值沿徑向隨流量的增大而逐漸減小。在0.5和1.5流量下,不同平衡鼓間隙下的壓力增幅無明顯規(guī)律性,兩種工況下,平衡鼓間隙=0.3 mm時(shí)壓力增幅最小,=0時(shí)壓力增幅最大,最小增幅分別為最大增幅的50.7%和88.9%。設(shè)計(jì)流量下,間隙從0~0.4 mm增大時(shí),壓力增幅隨平衡鼓間隙增大呈逐漸增加趨勢(shì),但在間隙0.5 mm時(shí),壓力沿徑向增幅最小,在間隙為0時(shí)壓力增幅最大,最小增幅為最大增幅的44.6%,說明隨著流入前泵腔內(nèi)高壓流體增多,從葉輪出口向前泵腔回流的液體減少,壓力變化減?。划?dāng)>142 mm時(shí),壓力沿徑向迅速增大,近似成線性分布,說明此時(shí)壓力增幅較快,這是因?yàn)楫?dāng)接近前泵腔出口處時(shí),泵腔內(nèi)的液體與葉輪出口處沿徑向回流的有旋流體相互碰撞,速度降低較快,故泵腔外徑處壓力變化較大。
由于作用在葉輪上的軸向力主要取決于泵腔內(nèi)部流動(dòng)狀態(tài)[3],基于3.1節(jié)進(jìn)一步分析首級(jí)葉輪泵腔內(nèi)流體的運(yùn)動(dòng)形式,選取不同工況下,壓力增幅最大和最小的3個(gè)平衡鼓間隙=0,0.3,0.5 mm,沿軸向截取首級(jí)葉輪前泵腔內(nèi)的中心截面(=0),得到不同工況下,首級(jí)葉輪前泵腔流線圖,如圖8所示。由圖8可知,不同工況下,3種平衡鼓間隙的首級(jí)葉輪前蓋板內(nèi)都有一個(gè)較大的漩渦區(qū),且漩渦區(qū)隨著流量的增大逐漸變小,說明該漩渦區(qū)是使腔體內(nèi)壓力變化的主要原因。相同工況下,平衡鼓間隙=0時(shí),首級(jí)葉輪前泵腔內(nèi)流線較紊亂,=0.3和0.5 mm時(shí),前腔內(nèi)流線分布較均勻。
圖8 不同工況下首級(jí)葉輪前腔流線圖
為了進(jìn)一步分析平衡鼓間隙與首級(jí)葉輪軸向力的關(guān)系,通過數(shù)值模擬得到不同間隙下多級(jí)泵首級(jí)葉輪前蓋板軸向力1、后蓋板軸向力2、輪轂端結(jié)構(gòu)引起的軸向力3、動(dòng)反力[1]4以及首級(jí)葉輪總的軸向力的數(shù)值計(jì)算結(jié)果如表2所示。由表2可知,當(dāng)平衡鼓間隙由0~0.5 mm增大時(shí),首級(jí)葉輪前后蓋板的蓋板力1和2相比其他因素引起的軸向力取值始終較大,且后蓋板力2方向指向葉輪進(jìn)口,是產(chǎn)生軸向力的主要因素。前蓋板力1和輪轂端結(jié)構(gòu)引起的軸向力3隨著間隙的增大而逐漸增加,這是因?yàn)楫?dāng)平衡鼓間隙增大時(shí),高壓流體使吸水室及首級(jí)葉輪前蓋板壓力升高,其值隨著間隙增大而逐漸增加。動(dòng)反力4則受進(jìn)口速度變化的影響,其值稍有變化但不明顯。首級(jí)葉輪總的軸向力隨著平衡鼓間隙增大,總軸向力呈先減小后增大的趨勢(shì),在間隙為0時(shí)首級(jí)葉輪所受軸向力最大,在間隙為0.3 mm時(shí)所受軸向力最小,其最小值為最大值的20.6%,說明平衡鼓可有效減小首級(jí)葉輪所受軸向力。
表2 首級(jí)葉輪數(shù)值計(jì)算軸向力結(jié)果對(duì)比
設(shè)計(jì)工況下,平衡鼓間隙從0到0.5 mm時(shí),平衡鼓平衡軸向力、11級(jí)葉輪總軸向力以及殘余軸向力之間的關(guān)系如表3所示。由表3可以看出,隨著間隙增大,平衡鼓平衡軸向力逐漸減小,這是因?yàn)楫?dāng)間隙增大時(shí),末級(jí)葉輪后腔與平衡腔壓差減小,平衡鼓平衡能力逐漸減弱。11級(jí)葉輪總軸向力隨著間隙增大呈先減小后增大的趨勢(shì),這是因?yàn)殡S著平衡鼓泄漏量的增加,葉輪側(cè)壁間隙內(nèi)主流流動(dòng)受到蓋板旋轉(zhuǎn)影響減小,軸向力減小,但當(dāng)泄漏流繼續(xù)增大時(shí),泵腔內(nèi)的低壓流體與葉輪出口處高壓流體碰撞加劇,使壓力分布不均,軸向力增大。殘余軸向力是指平衡鼓平衡軸向力與11級(jí)葉輪總軸向力之差,即止推軸承承受軸向力,殘余軸向力隨著間隙的增大逐漸增加的。許多文獻(xiàn)認(rèn)為,平衡鼓間隙越小平衡軸向力越大[11-12];但通過計(jì)算發(fā)現(xiàn),當(dāng)間隙為0.1 mm時(shí),平衡鼓平衡軸向力大于葉輪產(chǎn)生的軸向力,說明平衡鼓平衡軸向力過大;當(dāng)間隙為0.2 mm時(shí),殘余軸向力最小,說明間隙為0.2 mm時(shí)平衡鼓軸向力平衡能力最好。
表3 不同平衡鼓間隙平衡軸向力結(jié)果對(duì)比
為了分析相似多級(jí)泵中,不同平衡鼓間隙尺寸對(duì)殘余軸向力系數(shù)的影響,本文引入無量綱化的殘余軸向力系數(shù),以及無量綱化的平衡鼓間隙面積(即比面積),即平衡鼓間隙面積與平衡鼓面積的比值,其公式為
平衡鼓間隙0、0.1、0.2、0.3、0.4、0.5 mm,對(duì)應(yīng)的比面積為0、2.2×10-3、4.4×10-3、6.6×10-3、8.8×10-3、11.01×10-3。繪制出=()關(guān)系曲線,如圖9所示。
注:畫圈部分為平衡鼓無法有效平衡軸向力區(qū)域。k'為平衡鼓間隙面積與平衡鼓面積的比值,即比面積。
從圖9中可以看出,比面積增大時(shí),殘余軸向力系數(shù)減?。黄渲?,由0增大到2.2×10-3時(shí),降低明顯,說明平衡鼓可以有效減小軸向力;當(dāng)2.2×10-3<<6.6×10-3時(shí),'逐漸由正值變?yōu)樨?fù)值且下降緩慢,說明在此范圍內(nèi),平衡鼓運(yùn)行較穩(wěn)定且可以平衡大部分的葉輪軸向力;當(dāng)>6.6×10-3時(shí),隨著的增大負(fù)值降低較快,說明由于平衡鼓前后壓差較小,已無法有效平衡軸向力,導(dǎo)致殘余軸向力過大,因此在此范圍軸承發(fā)生斷軸的風(fēng)險(xiǎn)較大。
1)設(shè)計(jì)流量下,首級(jí)葉輪前泵腔內(nèi)液體壓力由葉輪前泵腔進(jìn)口截面至前泵腔出口截面沿軸向壓力呈逐漸增大。當(dāng)平衡鼓間隙小于0.2 mm時(shí),首級(jí)葉輪前泵腔體內(nèi)各截面的壓力沿徑向分布較均勻,當(dāng)間隙大于0.2 mm時(shí),各截面內(nèi)壓力沿徑向分布呈非對(duì)稱性,且隨著間隙增大,壓力不均勻性更加明顯。
2)當(dāng)平衡鼓間隙由0~0.5 mm時(shí),首級(jí)葉輪前泵腔中心截面壓力值逐漸減小,呈平衡鼓間隙越大,前泵腔壓力取值減小趨勢(shì)。小流量和大流量下平衡鼓間隙為0.3 mm時(shí)壓力增幅最小,其間隙為0時(shí)壓力增幅最大,最小增幅分別為最大增幅的50.7%和88.9%;設(shè)計(jì)流量下,間隙為0.5 mm時(shí),壓力沿徑向增幅最小,在間隙為0時(shí)壓力增幅最大,最小增幅為最大增幅的44.6%。
3)不同工況下,首級(jí)葉輪前泵腔的漩渦區(qū)隨著流量的增大逐漸變小,說明該漩渦區(qū)是使腔體內(nèi)壓力變化的主要原因。
4)隨著間隙增大,11級(jí)葉輪所受總軸向力呈先減小后增大的趨勢(shì)。無量綱化的平衡鼓間隙面積大于6.6×10-3時(shí),平衡鼓無法有效平衡軸向力,該范圍軸承發(fā)生斷裂的風(fēng)險(xiǎn)較大。
[1] 關(guān)醒凡. 現(xiàn)代泵理論與設(shè)計(jì)[M]. 北京:中國(guó)宇航出版社,2011:498-530.
[2] 金建波. 平衡鼓平衡軸向力方法的研究與探討[D]. 杭州:浙江工業(yè)大學(xué),2010.
Jin Jianbo. Study and Investigation on the Axial Force Balance Method by Balance Drum[D]. Hangzhou: Zhejiang University of Technology, 2012. (in Chinese with English abstract)
[3] Johann Friedrich Gülich. Centrifugal Pumps[M]. Switzerland:Springer- Verlag Berlin Heidelberg 2008, 2010: 544-545.
[4] 劉在倫,董瑋,張楠,等. 離心泵平衡腔液體壓力的計(jì)算與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(20):54-59.
Liu Zailun, Dong Wei, Zhang Nan, et al. Calculation and validation of fluid pressure of balance cavity in Centrifugal Pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(20): 54-59. (in Chinese with English abstract)
[5] 董瑋,楚武利. 離心泵葉輪平衡腔內(nèi)液體流動(dòng)特性及圓盤損失分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(7):29-35.
Dong Wei, Chu Wuli. Analysis of flow Characteristics and disc friction loss in balance cavity of centrifugal pump impeller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(7):29-35.(in Chinese with English abstract)
[6] Dong Wei,Chu Wuli. Numerical investigation of the fluid flow characteristic in the hub plate crown of a centrifugal pump[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 64.
[7] Dong Wei, Chu Wuli. Numerical investigation of fluid flow mechanism in the back shroud cavity of a centrifugal pump[J]. Journal of Applied Fluid Mechanics, 2018, 11(3): 709-719.
[8] 董瑋,楚武利. 離心泵后泵腔內(nèi)液體壓力數(shù)值分析與驗(yàn)證[J]. 機(jī)械工程學(xué)報(bào),2016,52(4):165-170.
Dong Wei, Chu Wuli. Numerical analysis and validation of fluid pressure in the back chamber of centrifugal pump[J].Journal of Mechanical Engineering, 2016, 52(4): 165-170. (in Chinese with English abstract)
[9] Gordon Kirk, Rui Gao. Influence of preswirl on rotordynamic characteristics of labyrinth seals[J]. Tribology Transactions, 2012, 55: 357-364.
[10] Rui Gao, Gordon Kirk. CFD study on stepped and drum balance labyrinth seal[J]. Tribology Transactions, 2013, 56: 663-671.
[11] 張賢安,金建波. 平衡鼓間隙尺寸對(duì)多級(jí)泵軸向平衡能力影響的分析[J]. 流體機(jī)械,2013(41):49-53.
Zhang Xianan, Jin Jianbo. Analysis on the influence of balance drum gap sizes on axial balanced capacity in multistage pumps[J]. Fluid Machinery, 2013(41): 49-53. (in Chinese with English abstract)
[12] 林玲. 平衡鼓間隙對(duì)離心泵軸向力平衡的影響[J]. 輕工機(jī)械,2013(6):13-16.
Lin Ling. Effect of balance drum clearance on axial force balance of multistage centrifugal pumps[J]. Light Industry Machinery, 2013(6): 13-16. (in Chinese with English abstract)
[13] 張翼飛,楊從新. 平衡鼓直徑的實(shí)驗(yàn)確定法[J]. 水泵技術(shù),1996(5):24-27.
Zhang Yifei, Yang Congxin. Method for determining balanced diameter of multistage pump[J]. Pump Technology, 1996(5): 24-27. (in Chinese with English abstract)
[14] 歐陽武,袁小陽,宋建軍,等. 平衡鼓和平衡盤的系統(tǒng)模型及應(yīng)用[J]. 機(jī)械科學(xué)與技術(shù),2012,31(11):1731-1734.
Ouyang Wu, Yuan Xiaoyang, Song Jianjun, et al. System modeland application of balancing drum and balancing disc[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(11): 1731-1734. (in Chinese with English abstract)
[15] 汪建華,戴靜君. 平衡鼓和平衡盤聯(lián)合結(jié)構(gòu)的優(yōu)化設(shè)計(jì)[J].漢江石油學(xué)院學(xué)報(bào),2000,22(2):52-54.
Wang Jianhua, Dai Jingjun. Optimum design of the joint structure of balance drum and balance disk[J]. Journal of Hanjiang Petroleum Institute, 2000, 22(2): 52-54. (in Chinese with English abstract)
[16] 汪建華,周志宏,趙子傳. 注水泵雙平衡鼓裝置的優(yōu)化設(shè)計(jì)[J]. 石油機(jī)械,2000,28(8):8-11.
Wang Jianhua, Zhou Zhihong,Zhao Zizhuan. Optimum design of double balance drum device for water injection pump[J]. Petroleum Machinery, 2000, 28(8): 8-11. (in Chinese with English abstract)
[17] 陸河權(quán),牟介剛,鄭水華,等. 凹槽深度對(duì)新型平衡鼓性能影響的研究[J]. 浙江工業(yè)大學(xué)學(xué)報(bào),2012,40(5):559-566.
Lu Hequan, Mu Jiegang, Zheng Shuihua, et al. Study on the influence of the depth of groove on the performance of novel balance drum[J]. Journal of Zhejiang University of Technology, 2012, 40(5):559-566. (in Chinese with English abstract)
[18] 陳云富. 離心泵泵腔內(nèi)壓力分布規(guī)律的研究[D]. 蘭州:蘭州理工大學(xué),2005.
Chen Yunfu. The Research of Pressure Distribution Rule in the Chamber of Centrifugal Pump[D]. Lanzhou: Lanzhou University of Technology, 2005. (in Chinese with English abstract)
[19] 張春晉,孫西歡,李永業(yè),等. 螺旋流起旋器內(nèi)部流場(chǎng)水力特性數(shù)值模擬與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(1):53-62.
Zhang Chunjin, Sun Xihuan, Li Yongye, et al. Numerical simulation and verification of hydraulic characteristics of internal flow filed in spiral flow generator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 53-62. (in Chinese with English abstract)
[20] 李偉,季磊磊,施衛(wèi)東,等. 基于Hilbert-Huang變換的混流泵流動(dòng)誘導(dǎo)振動(dòng)試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):47-54.
Li Wei, Ji Leilei, Shi Weidong, et al. Experiment of flow induced vibration of mixed-flow pump based on Hilbert-Huang transform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 47-54. (in Chinese with English abstract)
[21] 李偉,施衛(wèi)東,蔣小平,等. 多級(jí)離心泵軸向力的數(shù)值計(jì)算與試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(23):52-59.
Li Wei, Shi Weidong, Jiang Xiaoping, et al. Numerical calculation and experimental study of axial force on multistage centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(23): 52-59. (in Chinese with English abstract)
[22] Cao Weidong,Dai Xun,Hu Qixiang.Effect of impeller reflux balance holes on pressure and axial force of centrifugal pump[J]. Journal of Central South University, 2015, 22: 1695-1706.
[23] Wang Chuan, Shi Weidong, Li Zhang. Calculation formula optimization and effect of ring clearance on axial force of multistage pump[J]. Mathematical Problems in Engineering. DOI:10.1155/2013/749375.
[24] Zhou L, Shi W, Li W, et al. Numerical and experimental study of axial force and hydraulic performance in a deep-well centrifugal pump with different impeller rear shroud radius[J]. Journal of Fluid Engineering, 2013, 135(10): 104501-1-104501-8.
[25] Bj?rnW,Friedrich B,Hans D. Investigation of the flow in the impeller side clearances of a centrifugal pump with volute casing[J]. Journal of Thermal Science, 2012, 2(3): 197-208.
[26] Yogesh J. Shear and preeure driven flow and thermal transport in microchannels[C]//Proceedings of the Sixth International ASME Conference on Nanochannels, Microchannels and Minichannels (ICNMM2008). Darmstadt, Germany, 2008: 1677-1688.
Influence of balance drum clearance on pressure of front cavity of first stage impeller and axial force of multistage pump
Qian Chen, Yang Congxin, Fu You, Zhang Yang, Hou Kaiwen
(,730050,)
The ability of the balance drum to balance the axial force is the key factor for the failure of multistage centrifugal pump. However, during the operation of the balance drum, due to the long-term collision with the liquid or the friction with the casing, the leakage amount at the balance drum clearance is gradually increased, resulting in the balance drum being worn. Therefore, studying the leakage flow is critical to the ability of the balance drum to accurately balance the axial force of the entire impeller. In this paper, three-dimensional turbulent flow of multistage centrifugal pump was simulated by using the CFD code FLUENT. Besides, steady simulation was conducted for different operating points of the pump, the turbulence was simulated with shear stress transportation(SST) turbulence model together with automatic near wall treatment. CFD results were compared with those from the model test. And the results of the pressure and leakage in the balance pipe and the external characteristics of the multistage pump were basically consistent with the experimental results. Moreover, the maximum errors of head, efficiency and shaft power were 4.17%, 2.81% and 4.25% respectively, but the experimental flow rate of balance pipe was always greater than the simulated one. This was mainly because the influence of orifice flowmeter in the pipe had been not taken into account in the numerical simulation. The maximum error of the flow rate of the balanced pipe at the design point was 4.49%. The maximum error of pressure was 2.5%. It showed that the calculation method selected in this paper could provide a reliable guarantee for this study. The results showed that at the design flow rate, the liquid pressure in the front cavity of the first impeller increased gradually along the axial direction from the inlet section to the outlet section. When the balance drum clearance was less than 0.2 mm, the pressure distribution along the radial direction was uniform in each section. But when the clearance was more than 0.2 mm, it was asymmetric. Furthermore, with the increase of clearance, the pressure inhomogeneity became more obvious. Moreover, at 0.5(is design flow,=128 m3/h) and 1.5flow rates, there was no obvious regularity of pressure increment along the radial direction under different clearances. The pressure increment was the smallest when the balance drum clearance was 0.3 mm, and the biggest when the balance drum clearance was 0. And under the above 2 conditions, the minimum increments were 50.7% and 88.9% of the maximum, respectively. When the clearance increased from 0 to 0.5 mm, under design flow rate, the pressure increased gradually along the radial direction. Wherein, when the clearance was 0 and 0.5 mm, the pressure increment was the maximum value and the minimum value, respectively, and the minimum value was 44.6% of the maximum value. Besides, there was a large vortex region in the front cavity of the first impeller, when the clearance of balance drums was 0, 0.3 and 0.5 mm, respectively. The vortex region decreased gradually with the increase of flow rate, which indicated that the appearance of the vortex region was the main reason for the change of pressure in the cavity. In addition, with the increase of clearance, the total axial force of 11 stage impellers decreased first and then increased. And when non-dimensionalized balance drum clearance area was greater than 6.6×10-3, the balance drum could not effectively balance the axial force. Furthermore, the bearing had a greater risk of fracture in this range. This research can provide useful reference for design of balance drum and prediction of risk of bearing fracture.
pumps; pressure; numerical calculation; front cavity of first stage impeller; balance drum clearance; axial force
10.11975/j.issn.1002-6819.2019.02.005
TH311
A
1002-6819(2019)-02-0033-07
2018-07-16
2018-12-30
甘肅省自然科學(xué)基金資助項(xiàng)目(061707);蘭州市人才創(chuàng)新創(chuàng)業(yè)項(xiàng)(2015-RC-29)
錢 晨,講師,研究方向?yàn)槎嗉?jí)泵泵腔流動(dòng)機(jī)理的研究。Emai:495980912@qq.com
錢 晨,楊從新,富 友,張 揚(yáng),侯凱文. 平衡鼓間隙對(duì)首級(jí)葉輪前泵腔壓力及多級(jí)泵軸向力的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(2):33-39. doi:10.11975/j.issn.1002-6819.2019.02.005 http://www.tcsae.org
Qian Chen, Yang Congxin, Fu You, Zhang Yang, Hou Kaiwen. Influence of balance drum clearance on pressure of front cavity of first stage impeller and axial force of multistage pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 33-39. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.02.005 http://www.tcsae.org