蔡淑芳,陳 敏,陳永快,包興勝,張 鐘,雷錦桂
?
種植密度對魚菜共生系統(tǒng)氮素轉(zhuǎn)化的影響
蔡淑芳,陳 敏,陳永快,包興勝,張 鐘,雷錦桂※
(福建省農(nóng)業(yè)科學(xué)院數(shù)字農(nóng)業(yè)研究所,福州 350003)
為評估不同植物密度對魚菜共生系統(tǒng)氮素轉(zhuǎn)化的影響,在試驗溫室內(nèi)搭建了基于營養(yǎng)液膜(nutrient film technique,NFT)栽培的魚菜共生系統(tǒng)。養(yǎng)殖水量350L,養(yǎng)殖密度10 kg/m3;栽培面積1.0 m2,栽培密度60、45和30株/m2。考察了系統(tǒng)33d運(yùn)行期間的水質(zhì)情況和魚菜生長情況,探討了投入氮素的轉(zhuǎn)化情況以及時間和植物密度對氮化合物質(zhì)量濃度的影響情況。結(jié)果表明:試驗期間,不同植物密度系統(tǒng)的水質(zhì)適合魚菜生長,魚類和蔬菜主要生物學(xué)特性指標(biāo)有不同程度的增長。氨氮、亞硝酸鹽氮、硝酸鹽氮質(zhì)量濃度隨時間變化顯著(<0.01);不同植物密度系統(tǒng)的硝酸鹽氮質(zhì)量濃度存在顯著差異(=0.028),植物密度為45株/m2的系統(tǒng)具有較高的硝酸鹽氮積累優(yōu)勢。系統(tǒng)運(yùn)行后期,氮化合物質(zhì)量濃度基本穩(wěn)定,氨氮、亞硝酸鹽氮、硝酸鹽氮質(zhì)量濃度分別為2.50、0.20和5.00 mg/L左右。49.32%~68.41%投入飼料的氮素積累在魚菜生物體內(nèi),與普通水產(chǎn)養(yǎng)殖和NFT栽培相比,魚、菜含氮量均不具優(yōu)勢。可通過擴(kuò)大栽培面積、配備生物濾池、調(diào)整栽培模式等方法加強(qiáng)氮素轉(zhuǎn)化。綜上,試驗系統(tǒng)的優(yōu)勢栽培密度為45株/m2,應(yīng)結(jié)合其他措施提升氮素轉(zhuǎn)化效果。
養(yǎng)殖;氮素;魚菜共生;植物密度
魚菜共生是水產(chǎn)養(yǎng)殖與無土栽培的互利結(jié)合,具有零排放特征[1]。在魚菜共生系統(tǒng)中,魚類排泄廢物,細(xì)菌將廢物轉(zhuǎn)化成營養(yǎng)以供植物吸收。這形成了動植物的集約化生產(chǎn),降低了種養(yǎng)殖獨立系統(tǒng)的操作成本,減少了污水排放,節(jié)約了用水量,因此被認(rèn)為是一種可持續(xù)的生產(chǎn)模式[2]。
魚菜共生系統(tǒng)的研究始于20世紀(jì)70年代,相關(guān)研究范圍非常廣泛,包括作物、魚類、每日喂食量比例的合理化,生物過濾器的類型[3-6],植物的水質(zhì)凈化、修復(fù)作用等方面[7-13]。近年來,有學(xué)者以鯉魚/羅非魚-油菜/番茄/白菜等為研究對象,在實驗室規(guī)模的系統(tǒng)中進(jìn)行了魚菜共生系統(tǒng)氮素轉(zhuǎn)化的系列研究,包括系統(tǒng)設(shè)計(如藻類-細(xì)菌型系統(tǒng)、不同植物種類系統(tǒng)、水流速度)、運(yùn)行條件(如溫度、pH值、溶解氧、營養(yǎng)元素)、微生物群落調(diào)控(如硝化劑添加和填料分級)等多角度分析,并提出了相關(guān)的系統(tǒng)優(yōu)化措施[14-25]。
雖然魚菜共生系統(tǒng)氮素轉(zhuǎn)化研究取得了一定的進(jìn)展,但是因氮素轉(zhuǎn)化是一個復(fù)雜的過程,涉及到氨化作用、硝化作用、反硝化作用等多元反應(yīng),影響因素眾多,已有研究還不夠全面。其中,從植物密度角度對魚菜共生系統(tǒng)氮素轉(zhuǎn)化的研究還鮮見報道[26]。不同植物密度的配置隸屬于系統(tǒng)設(shè)計內(nèi)容,植物密度關(guān)系到魚菜比例、植株光照利用等,影響到植物氮素等營養(yǎng)吸收,進(jìn)而作用于系統(tǒng)水質(zhì)和魚菜產(chǎn)出。因此,分析植物密度與系統(tǒng)氮素轉(zhuǎn)化關(guān)聯(lián)性具有重要意義。本研究擬在統(tǒng)一氮輸入量情況下,深入研究植物密度在魚菜共生氮素轉(zhuǎn)化中所扮演的角色,探討優(yōu)勢種植密度及其作用機(jī)理,為優(yōu)化系統(tǒng)設(shè)計與運(yùn)行等提供科學(xué)依據(jù)和技術(shù)指導(dǎo)。
試驗于福州的中以示范農(nóng)場內(nèi)展開,試驗基地為薄膜日光溫室,接受自然光源直接照射,配置有卷簾、濕簾等環(huán)境控制設(shè)施。試驗期間,室內(nèi)空氣濕度為51%~72%,室溫為32.5~34.5 ℃。
溫室內(nèi),一系列魚菜共生系統(tǒng)整齊排列成3行,每個系統(tǒng)主體包含1個魚箱和2根栽培槽(圖1)。魚箱采用容積為500L的PVC材質(zhì)周轉(zhuǎn)箱,上口徑為1 m×1 m,下口徑為0.85 m×0.85 m,高為0.7 m。栽培槽為營養(yǎng)液膜(nutrient film technique,NFT)栽培槽,每根栽培槽尺寸為6.50 m×0.07 m×0.05 m(長×寬×高),有35個定植孔,2根栽培槽間距18 cm,栽培面積為1 m2。魚箱置于地面上,配有遮陰網(wǎng),以防魚躍出,并起到遮光作用,控制藻類生長。栽培槽置于距地面80 cm的NFT支架上。
除魚箱和栽培槽外,每個魚菜共生系統(tǒng)包含抽水泵、增氧機(jī)、過濾器及水氣輸送管等構(gòu)件。魚菜共生系統(tǒng)采用連續(xù)流運(yùn)行,抽水泵將養(yǎng)殖水體提升并經(jīng)過濾器過濾后輸送至栽培槽內(nèi)。水體滴濾進(jìn)入蔬菜根部,流經(jīng)整根栽培槽后于出水口流出,在重力作用下回流至魚箱。增氧機(jī)用于補(bǔ)充系統(tǒng)的溶解氧。在水體循環(huán)過程中,蔬菜根部充當(dāng)生物濾池,為微生物附著生長提供環(huán)境,對有機(jī)廢水進(jìn)行資源化處理與利用。試驗期間,除用自來水補(bǔ)充因蒸發(fā)、植物蒸騰而損失的水量,系統(tǒng)與四周環(huán)境無水體交換。整套系統(tǒng)試驗水流量為0.043 2 m3/h,循環(huán)率為20次/d,栽培區(qū)水流速約為3.45 m/min,停留時間為20 min。
1.電源裝置 2.增氧機(jī) 3.導(dǎo)氣管 4.栽培支架 5.曝氣頭 6.遮陽網(wǎng) 7.栽培槽 8.進(jìn)水管 9.抽水泵 10.魚箱 11.浮球液位開關(guān) 12.控制器 13.過濾器 14.輸液管 15.集液槽 16.回液管 17.電線
試驗開始于2017年7月14日,結(jié)束于8月15日,試驗期為33 d。試驗設(shè)3個處理,每個處理3個重復(fù)。每個處理組蔬菜栽培面積為1.0 m2,A、B、C組栽培密度分別為60、45和30株/m2;養(yǎng)殖水量為350 L,養(yǎng)殖密度為10 kg/m3。
選用水雍菜()為水培植物,其根系發(fā)達(dá),適于NFT栽培,且對水中氮等營養(yǎng)鹽吸收去除能力強(qiáng)[8]。植株幼苗取自中以示范農(nóng)場,試驗開始前,所有植株均已在NFT槽上定植10 d。選取植株健康、生長狀況基本一致的幼苗均勻移植至栽培槽內(nèi)。
選用鯽魚()為養(yǎng)殖魚類,鯽魚是優(yōu)良的飼養(yǎng)品種,具有很強(qiáng)的適應(yīng)能力,生長速度快且容易獲取[27]。用于試驗的鯽魚初始質(zhì)量為175~230 g,每個魚箱的鯽魚總質(zhì)量約為3.5 kg。每日投餌2次,日投喂量為魚總質(zhì)量的2%[28]。養(yǎng)殖餌料選用市售蛋白質(zhì)含量30%,含水率10%的漂浮型餌料。
試驗期間,對系統(tǒng)水質(zhì)進(jìn)行持續(xù)監(jiān)測,使用HANNA的溶氧儀和一體化測試儀,每日現(xiàn)場測量魚箱基礎(chǔ)水質(zhì)(水溫、溶解氧DO、pH值、EC)。每4 d對含氮化合物(氨氮(NH4+–N)、亞硝酸鹽氮(NO2––N)和硝酸鹽氮(NO3––N))進(jìn)行取樣測定,取樣點為魚箱,取樣時間為上午9:00。采集的水樣于24 h內(nèi)完成測試,水質(zhì)分析主要參考國家標(biāo)準(zhǔn)方法。氨氮:納式試劑分光光度法[29],亞硝酸鹽氮:分光光度法[30],硝酸鹽氮:紫外分光光度法[31]。
試驗期間,每日記錄餌料投放量和水體補(bǔ)充量;并根據(jù)水雍菜的生長狀況,進(jìn)行3次收割(第9、21、33天),每次收割時剪去水雍菜上部莖葉部分,保留根部繼續(xù)生長。
試驗起止時,取樣測量水雍菜株高、鮮質(zhì)量和鯽魚體長、鮮質(zhì)量。測定試驗起止和收割期的魚菜生物體總氮含量,測定方法為凱氏定氮法。
相對增長率計算方法如下
=100%×(2j?1j)/1j
式中為相對增長率;1j2j為試驗開始和結(jié)束時的第種類型魚菜生物學(xué)特性指標(biāo)(鮮質(zhì)量(g)、總鮮質(zhì)量(kg)、體長(cm)、株高(cm)、含氮量(%)、氮積累總量(g))。
采用SPSS16.0數(shù)據(jù)處理軟件進(jìn)行方差分析,用Excel作圖。
試驗初始按照設(shè)計的系統(tǒng)水量加入自來水,系統(tǒng)循環(huán)運(yùn)行33 d,期間不進(jìn)行換水,試驗期內(nèi)各項基礎(chǔ)水質(zhì)指標(biāo)的情況如表1所示。試驗期間系統(tǒng)的水溫穩(wěn)定,平均水溫為30.53 ℃;水質(zhì)基本中性,平均pH值為6.49;經(jīng)曝氣增氧,平均DO為3.50 mg/L;平均EC值為0.43 mS/cm。
表1 基礎(chǔ)水質(zhì)情況
有研究表明,鯽魚在0~40 ℃都可生存,最佳生長水溫為25~30 ℃,DO為0.7~7 mg/L,pH值為6~9[27]。水雍菜生長適溫為25~30 ℃,能耐35~40 ℃的高溫,最適pH值為5.6~7.0[32]。因營養(yǎng)物質(zhì)產(chǎn)生的可持續(xù)性,在魚菜共生系統(tǒng)中,EC保持在0.3~0.6 mS/cm比較理想[3]。由此可知,在試驗水質(zhì)條件下,鯽魚和水雍菜均能正常生長。
試驗期間,魚菜(總)鮮質(zhì)量、體長、株高等均有正向的相對增長(表2)。A、B、C組每條鯽魚鮮質(zhì)量增加91.67、83.33、93.33 g,總鮮質(zhì)量增加1.69、1.50、1.65 kg,體長增加3.13、3.17、4.27 cm,期間投加餌料總計2.31 kg。期間共收割3次水雍菜,合計A、B、C組每株水雍菜鮮質(zhì)量增加128、137、135 g,總鮮質(zhì)量增加7.71、6.15、4.04 kg,株高增加104.66、103.88、105.01 cm。經(jīng)單因素方差分析,植物密度對魚菜(總)鮮質(zhì)量、體長、株高相對增長率的影響不顯著(>0.050);植物密度對菜總鮮質(zhì)量增量影響顯著(<0.01)。
表2 魚菜生物學(xué)特性
注:不同小寫字母表示處理間差異顯著(<0.05)。A,B,C處理分別指蔬菜的種植密度為60、45和30株·m-2. 下同。
Note: Different lowercase letters in the table indicate significant differences between treatments (<0.05)。The plant density of A, B, C treatment are 60,45 and 30 plants·m-2. The same as below.
飼料含氮是系統(tǒng)氮素增加的主要來源,經(jīng)轉(zhuǎn)化后氮素主要存在魚菜生物體內(nèi)。試驗主要考查了飼料含氮向魚菜生物體的氮素轉(zhuǎn)化,N2O、N2等形式的氮素遺失不在本試驗范圍內(nèi)。試驗期間,A、B、C組魚、菜含氮量在8%、3.5%左右,相對增長率在7%以內(nèi);魚、菜氮積累總量相對增長率為34.51%~45.10%、8.21%~9.69%。系統(tǒng)飼料投喂總量均為2.31 kg,按照粗蛋白質(zhì)含氮量為16%計算,飼料含氮共99.79g。A組飼料含氮的32.90%、35.51%;B組飼料含氮的25.00%、28.70%;C組飼料含氮的31.06%、18.26%,分別轉(zhuǎn)化為魚、菜氮積累總量。經(jīng)單因素方差分析,植物密度對菜氮積累總量增量影響顯著(=0.002);植物密度對魚菜含氮量和氮積累總量的相對增長率沒有顯著影響(>0.050)。
試驗結(jié)果表明,不同植物密度的菜總鮮質(zhì)量增量、菜氮積累總量增量有顯著差異,植物密度與二者之間呈正相關(guān)。這說明,在栽培面積相同的情況下,更大的栽培密度將收獲更多的水雍菜產(chǎn)出和氮積累,這可以由植株數(shù)量優(yōu)勢加以解釋。在養(yǎng)殖密度不變的前提下,通過增加植物栽培面積來積累更多蔬菜和氮產(chǎn)出或許是可取的。
相比于普通水產(chǎn)養(yǎng)殖和NFT栽培,魚菜共生系統(tǒng)可以產(chǎn)出魚菜2種經(jīng)濟(jì)作物,氮素利用率提高[18]。試驗結(jié)果表明,約49.32%~68.41%投入飼料的氮素積累在魚菜生物體內(nèi)。雖然魚菜氮積累總量均有正向增長,但魚菜含氮量主要為負(fù)增長,與普通水產(chǎn)養(yǎng)殖和NFT栽培相比[33-34],魚菜含氮量不具優(yōu)勢。含氮量是評價生物體養(yǎng)分吸收的重要指標(biāo)之一[35],含氮量負(fù)增長說明系統(tǒng)中魚菜對氮素吸收處于相對劣勢,這反映了系統(tǒng)的氮素轉(zhuǎn)化效率還有進(jìn)一步提升的可能。有研究表明,不同于基質(zhì)栽培,NFT栽培由于沒有用于附著微生物的礫石等基質(zhì)[23],基于NFT栽培的魚菜共生系統(tǒng)需要配備獨立的用于硝化反應(yīng)的生物濾池[36],否則將降低氮素轉(zhuǎn)化效應(yīng)。本試驗僅將植物根部充當(dāng)生物濾池使用,在后期的試驗中,可通過改進(jìn)NFT栽培模式,如配置獨立的生物濾池或者應(yīng)用基質(zhì)栽培方法等予以調(diào)整。
在33d試驗中,3種氮化合物質(zhì)量濃度隨時間的變化情況如圖2所示。
圖2 氮化合物質(zhì)量濃度曲線
由圖2可知,氨氮質(zhì)量濃度波動較大,在系統(tǒng)運(yùn)行初期,氨氮質(zhì)量濃度迅速升高,第5天達(dá)到峰值2.17 mg/L;而后經(jīng)小幅下降后,于第9天開始又穩(wěn)步上升,第21天達(dá)到峰值3.50 mg/L;系統(tǒng)運(yùn)行后期經(jīng)短暫下降后保持小幅增長,并趨向穩(wěn)定。亞硝酸鹽氮質(zhì)量濃度總體呈下降趨勢,在系統(tǒng)運(yùn)行初期,亞硝酸鹽氮質(zhì)量濃度呈增長態(tài)勢,第5天達(dá)到峰值1.39 mg/L;而后急劇下降,第21天達(dá)到低值0.20 mg/L;系統(tǒng)運(yùn)行后期經(jīng)小幅降低后保持低值發(fā)展。硝酸鹽氮質(zhì)量濃度上升趨勢明顯,在系統(tǒng)運(yùn)行初期,硝酸鹽氮質(zhì)量濃度先緩慢后急劇增加,第13天達(dá)到峰值4.85mg/L;而后經(jīng)短暫調(diào)整后于第21天開始保持持續(xù)增長,并趨向平穩(wěn)。
方差分析顯示,3種氮化合物質(zhì)量濃度隨時間變化顯著(<0.01);不同種植密度的硝酸鹽氮質(zhì)量濃度差異顯著(=0.028),不同種植密度的氨氮、亞硝酸鹽氮質(zhì)量濃度差異不顯著(>0.050)。
有研究表明,在養(yǎng)殖水體資源化利用過程中,盡管有植物的吸收作用,但微生物的硝化反硝化仍然是主要的作用機(jī)制[37];生物濾器在處理有機(jī)污水時,本身具有一定的波動性[38]。在本試驗中,分析如下:系統(tǒng)建立初期的1~5天,魚類消耗含氮飼料,排放氨氮,亞硝化細(xì)菌開始發(fā)揮作用,能夠氧化以獲得能源固定無機(jī)碳,但同時存在著硝化細(xì)菌不足,不能及時將亞硝酸鹽氮轉(zhuǎn)化為硝酸鹽氮的情況,因而表現(xiàn)為水體中氨氮質(zhì)量濃度迅速升高,亞硝酸鹽氮質(zhì)量濃度上升較快,而硝酸鹽氮質(zhì)量濃度增加相對滯后。系統(tǒng)運(yùn)行第5~9天,充當(dāng)生物濾池的水雍菜根部中硝化細(xì)菌已經(jīng)適應(yīng)環(huán)境,能夠迅速將氨氮轉(zhuǎn)化為亞硝酸鹽氮,并轉(zhuǎn)化為硝酸鹽氮,即表現(xiàn)為氨氮和亞硝酸鹽氮質(zhì)量濃度快速下降,以及硝酸鹽氮質(zhì)量濃度的穩(wěn)步上升。系統(tǒng)運(yùn)行第9~21天,硝化細(xì)菌仍然發(fā)揮著硝化作用,持續(xù)將氨氮轉(zhuǎn)化為可供蔬菜吸收的硝酸鹽氮,表現(xiàn)為亞硝酸鹽氮質(zhì)量濃度的下降和硝酸鹽氮質(zhì)量濃度的上升。21天后,系統(tǒng)運(yùn)行基本穩(wěn)定,硝化作用持續(xù)進(jìn)行,系統(tǒng)內(nèi)無亞硝酸鹽氮質(zhì)量濃度的積累,氨氮和硝酸鹽氮質(zhì)量濃度增加緩慢。系統(tǒng)運(yùn)行期間,同時存在反硝化作用,硝酸鹽氮、亞硝酸鹽氮被轉(zhuǎn)化為N2O、N2等氣體。這有助于去除水體中氮素,減少對魚類的影響,但造成了系統(tǒng)的氮遺失,不利于提高氮素利用效率[36]。
養(yǎng)殖水體中氨氮、亞硝酸氮的積累會影響魚的生理狀況,嚴(yán)重時致使魚類死亡[15];而硝酸鹽氮質(zhì)量濃度即使高達(dá)150~300 mg/L,也對魚類無害[37];且硝酸鹽氮是魚菜共生系統(tǒng)最重要的營養(yǎng)物質(zhì),其積累可促進(jìn)植物的生長[18]。因此,保障魚菜共生系統(tǒng)運(yùn)行的關(guān)鍵是控制水體中氨氮、亞硝酸氮質(zhì)量濃度。著名的運(yùn)轉(zhuǎn)良好的美國維爾京群島大學(xué)(university of the virgin islands,UVI)魚菜共生系統(tǒng),氨氮、亞硝酸鹽氮、硝酸鹽氮質(zhì)量濃度分別為1.6~2.9、0.4~1.1和54.7 mg/L[3]。在本試驗的運(yùn)行后期,系統(tǒng)氨氮、亞硝酸鹽氮、硝酸鹽氮質(zhì)量濃度為2.50、0.20和5.00 mg/L左右,在魚類可接受范圍內(nèi),不影響魚類正常生長。試驗期間不同處理組的硝酸鹽氮質(zhì)量濃度差異明顯,且B組硝酸鹽氮質(zhì)量濃度平均值最高。分析原因,可能是B組水雍菜栽培密度適中,植株數(shù)量較合適,通風(fēng)透光性能較好,微生物生長環(huán)境較適宜,植株光照利用更充分,更有利于氨氮向硝酸鹽氮的轉(zhuǎn)化。
在魚菜共生系統(tǒng)中,植物有優(yōu)先吸收硝酸鹽氮的趨勢,因為魚菜共生系統(tǒng)的硝酸鹽氮質(zhì)量濃度高于氨氮質(zhì)量濃度[37];本試驗結(jié)果證明了這種趨勢的存在,但水雍菜對硝酸鹽氮與氨氮的具體吸收差異還有待進(jìn)一步研究。在系統(tǒng)運(yùn)行后期,氨氮質(zhì)量濃度處于2.5 mg/L左右,高于宋紅橋等的研究結(jié)果[39];這可能是因為本研究采取了10 kg/m3的高密度水產(chǎn)養(yǎng)殖方式,由此造成餌料投喂量、水體含氮有機(jī)物和氨氮排放量的增加。在養(yǎng)殖密度固定的前提下,或許可以通過增加植物栽培面積來調(diào)節(jié)氨氮排放。本研究的氨氮、亞硝酸鹽、硝酸鹽氮濃度最高值低于鄒藝娜等的研究結(jié)果[18];其中,在鄒藝娜等的研究中,系統(tǒng)運(yùn)行后期,硝酸鹽氮濃度達(dá)30 mg/L以上,這可能是因為其采取的是基質(zhì)栽培,本研究采取的是NFT栽培,栽培區(qū)水停留時間較短導(dǎo)致本研究的氮素轉(zhuǎn)化效果欠佳。
1)試驗期間,系統(tǒng)水質(zhì)適合魚菜正常生長,鯽魚和水雍菜主要生物學(xué)特性指標(biāo)有不同程度的增長。
2)大部分投入氮素經(jīng)轉(zhuǎn)化后在魚菜生物體內(nèi)積累,與普通水產(chǎn)養(yǎng)殖和營養(yǎng)液膜(NFT)栽培相比,試驗后期魚菜共生系統(tǒng)的魚菜含氮量不具優(yōu)勢,氮素轉(zhuǎn)化效率還有待提高。
3)氮化合物質(zhì)量濃度隨時間變化顯著;種植密度為45株/m2的系統(tǒng),有利于硝酸鹽氮積累。試驗后期氮化合物質(zhì)量濃度基本穩(wěn)定,可通過擴(kuò)大栽培面積、配備生物濾池、調(diào)整栽培模式等方法加強(qiáng)氮素轉(zhuǎn)化。
[1] Rakocy J E, Hargreaves J A. Integration of vegetable hydroponics with fish culture: A review[M]//Wang J K. Techniques for Modern Aquaculture. St.Joseph, Michigan, USA: American Society of Agricultural Engineers, 1993: 112-136.
[2] Licamele J. Biomass Production and Nutrient Dynamics in An Aquaponics System[D].Tucson, Arizona: University of Arizona, 2009.
[3] Rakocy J E, Masser M P, Losordo T M. Recirculating aquaculture tank production systems: Aquaponics-integrating fish and plant culture[R]. Stoneville, Mississippi: Southern Regional Aquaculture Center, 2006.
[4] Wilson L. Aquaponic system design parameters: Fish to plant ratios (feeding rate ratios)fact sheets [R]. Victoria, Australia: 2012.
[5] Buzdy K M, Lin L S. Scaling aquaponic systems: Balancing plant uptake with fish output[J]. Aquacultural Engineering, 2014, 63: 39-44.
[6] Lam S S, Ma N L, Jusoh A, et al. Biological nutrient removal by recirculating aquaponic system: Optimization of the dimension ratio between the hydroponic & rearing tank components[J]. International Biodeterioration & Biodegradation, 2015, 102: 107-115.
[7] 薛凌展. “魚菜菌”生態(tài)養(yǎng)殖模式氮磷轉(zhuǎn)化及去除效果分析[J]. 亞熱帶資源與環(huán)境學(xué)報,2014,9(4):15-25.
Xue Lingzhan.Transformation and removal effects of nitrogen and phosphorus in the ecological farming model of fish-and-mushroom[J]. Journal of Subtropical Resources and Environment, 2014, 9(4): 15-25. (in Chinese with English abstract)
[8] 宋超,陳家長,戈賢平,等. 浮床栽培空心菜對羅非魚養(yǎng)殖池塘水體中氮磷的控制[J]. 中國農(nóng)學(xué)通報,2011,27(23):70-75.
Song Chao, Chen Jiazhang, Ge Xianping, et al. The control of nitrogen and phosphorus to tilapia fish pond by floating-bed-grown water spinach ()[J]. Chinese Agricultural Science Bulletin, 2011, 27(23): 70-75. (in Chinese with English abstract)
[9] 周小平,王建國,薛利紅,等. 浮床植物系統(tǒng)對富營養(yǎng)化水體中氮、磷凈化特征的初步研究[J]. 應(yīng)用生態(tài)學(xué)報,2005,16(11):2199-2203.
Zhou Xiaoping, Wang Jianguo, Xue Lihong, et al. N and P removal characters of eutrophic water body under planted float[J]. Chinese Journal of Applied Ecology, 2005, 16(11): 2199-2203. (in Chinese with English abstract)
[10] 王茂元. 水培空心菜對養(yǎng)殖池塘水質(zhì)的影響[J]. 福建農(nóng)業(yè)學(xué)報,2015,30(3):307-311.
Wang Maoyuan. Effect of, as an Ecological floatin raft, on water quality of aquaculture ponds[J]. Fujian Journal of Agricultural Sciences, 2015, 30(3): 307-311. (in Chinese with English abstract)
[11] 鄧素芳,陳敏,楊有泉,等. 紅萍凈化水產(chǎn)養(yǎng)殖水體的研究[J]. 環(huán)境工程學(xué)報,2009,3(5):809-812.
Deng Sufang, Chen Min, Yang Youquan. Study on purification of aquaculture water with Azolla[J]. Chinese Journal of Environmental Engineering, 2009, 3(5): 809-812. (in Chinese with English abstract)
[12] 陳敏,劉中柱,卞祖良. 高密度水產(chǎn)養(yǎng)殖自控生態(tài)型大棚的水質(zhì)凈化技術(shù)[J]. 農(nóng)業(yè)工程學(xué)報,2002,18(6):95-97.
Chen Min, Liu Zhongzhu, Bian Zuliang. Wastewater purifying technology of intensive aquiculture greenhouse: a case study on an automatically controlled ecological greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(6): 95-97. (in Chinese with English abstract)
[13] 李甍,宋協(xié)法,孫國祥,等. 適宜牡蠣與龍須菜配比提高含氮養(yǎng)殖廢水處理效果[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(11):243-248.
Li Meng, Song Xiefa, Sun Guoxiang, et al. Optimal ratios of oyster toimproving removal efficiency of nitrogen nutrients in aquaculture wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 243-248. (in Chinese with English abstract)
[14] Hu Zhen, Lee J W, Chandran K, et al. Effect of plant species on nitrogen recovery in aquaponics[J]. Bioresource Technology, 2015, 20(188): 92-98.
[15] 張明華,丁永良,楊箐,等. 魚菜共生技術(shù)及系統(tǒng)工程研究[J]. 現(xiàn)代漁業(yè)信息,2004,19(4):7-12.
Zhang Minghua, Ding Yongliang, Yang Jing, et al. A study on fish and vegetable co-existing technique and system engineering[J]. Modern Fisheries Information, 2004, 19(4): 7-12. (in Chinese with English abstract)
[16] Ngo T D T, Hans H S, Hans B. Leaf vegetables for use in integrated hydroponics and aquaculture systems: Effects of root flooding on growth, mineral composition and nutrient uptake[J]. African Journal of Biotechnology, 2010, 9(27): 4186-4196.
[17] Hussain T, Verma A K, Tiwari V K, et al. Effect of water flow rates on growth of(1758) and spinach plant in aquaponic system[J]. Aquaculture International, 2015, 23(1): 369-384.
[18] 鄒藝娜,胡振,張建,等. 魚菜共生系統(tǒng)氮素遷移轉(zhuǎn)化的研究與優(yōu)化[J]. 環(huán)境工程學(xué)報,2015,9(9):4211-4216.
Zou Yina, Hu Zhen, Zhang Jian, et al. Investigation and optimization of nitrogen transformations in aquaponics[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4211-4216. (in Chinese with English abstract)
[19] Fitzgerald C M, Camejo P, Oshlag J Z, et al. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen[J]. Water Research, 2015, 70(1): 38-51.
[20] Zou Yina, Hu Zhen, Zhang Jian, et al. Attempts to improve nitrogen utilization efficiency of aquaponics through nitrifies addition and filler gradation[J]. Environmental Science and Pollution Research, 2016, 23(7): 6671-6679.
[21] Zou Yina, Hu Zhen, Zhang Jian, et al. Mitigation of N2O emission from aquaponics by optimizing the nitrogen transformation process: Aeration management and exogenous carbon (PLA) addition[J]. Journal of Agricultural and Food Chemistry, 2017, 65(40): 8806-8812.
[22] Zou Yina, Hu Zhen, Zhang Jian, et al. Effect of seasonal variation on nitrogen transformations in aquaponics of northern China[J]. Ecological Engineering, 2016, 94: 30-36.
[23] Zou Yina, Hu Zhen, Zhang Jian, et al. Effects of pH on nitrogen transformations in media-based aquaponics[J]. Bioresource Technology, 2016, 210: 81-87.
[24] Fang Yingke, Chen Xinhan, Hu Zhen, et al. Effects of hydraulic retention time on the performance of algal-bacterial-based aquaponics (AA): focusing on nitrogen and oxygen distribution[J]. Applied Microbiology and Biotechnology, 2018, 102(22): 9843-9855.
[25] Fang Yingke, Hu Zhen, Zou Yina, et al. Improving nitrogen utilization efficiency of aquaponics by introducing algal-bacterial consortia[J]. Bioresour Technol, 2017, 245: 358-364.
[26] Petrea S M, Cristea V, Dediu L, et al. A study of nitrogen cycle in an integrated aquaponic system with different plant densities[J]. Bulletin UASVM Animal Science and Biotechnologies, 2013, 70(1): 55-64.
[27] Luskova V, Lusk S, Halacka K, et al.—the most successful invasive fish in waters of the Czech Republic[J]. Russian Journal of Biological Invasions, 2010, 1(3): 176-180.
[28] Thorarinsdottir R I. Aquaponics Guidelines[M]. Reykjavik: Haskolaprent, 2015: 18-26.
[29] HJ 535–2009,水質(zhì)氨氮的測定納氏試劑分光光度法[S].
[30] GB 7493–1987,水質(zhì)亞硝酸鹽氮的測定分光光度法[S].
[31] HJ/T 346–2007,水質(zhì)硝酸鹽氮的測定紫外分光光度法[S].
[32] 袁金蕊,李霞,李寶珍,等. 植物生長調(diào)節(jié)劑對葉菜產(chǎn)量及氮吸收的影響[J]. 水土保持學(xué)報,2013,27(2):131-135,188.
Yuan Jinrui, Li Xia, Li Baozhen, et al. Effects of plant growth regulators on yield and nitrogen uptake in leafy-vegetable crop[J]. Journal of Soil and Water Conservation, 2013, 27(2): 131-135, 188. (in Chinese with English abstract)
[33] Zou Z, Cui Y, Gui J, et al. Growth and feed utilization in two strains of gibel carp,: paternal effects in a gynogenetic fish[J]. Journal of Applied Ichthyology, 2001,17(2): 54-58.
[34] 謝新太. 不同配方營養(yǎng)液對水培空心菜的影響[D]. 貴陽:貴州師范大學(xué),2014.
Xie Xintai. Effect of Different Formulations of Nutrient Solution on Hydroponic Morning Glory[D]. Guiyang: Guizhou Normal University, 2014. (in Chinese with English abstract)
[35] Reddy M M, Ulaganathan K. Nitrogen nutrition, its regulation and biotechnological approaches to improve crop productivity[J]. American Journal of Plant Sciences, 2015,6(18): 2745-2798.
[36] Wongkiew S, Hu Z, Chandran K, et al. Nitrogen transformations in aquaponic systems: A review[J]. Aquacultural Engineering, 2017, 76: 9-19.
[37] 李谷,吳振斌,侯燕松,等. 養(yǎng)殖水體氮的生物轉(zhuǎn)化及其相關(guān)微生物研究進(jìn)展[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2006,14(1):11-15.
Li Gu, Wu Zhenbin, Hou Yansong, et al. Nitrogen biotransformation and its relative microorganism in aquaculture waters[J]. Chinese Journal of Eco-Agriculture, 2006, 14(1): 11-15. (in Chinese with English abstract)
[38] 朱建新,劉慧,徐勇,等. 循環(huán)水養(yǎng)殖系統(tǒng)生物濾器負(fù)荷掛膜技術(shù)[J]. 漁業(yè)科學(xué)進(jìn)展,2014,35(4):118-123.
Zhu Jianxin, Liu Hui, Xu Yong, et al. Dual-culture techniques for the rapid start-up of recirculating aquaculture system[J]. Progress in Fishery Sciences, 2014, 35(4): 118-123. (in Chinese with English abstract)
[39] 宋紅橋,管崇武,李月,等. 水培植物對循環(huán)水養(yǎng)魚系統(tǒng)的水質(zhì)凈化研究[J]. 漁業(yè)現(xiàn)代化,2013,40(4):18-22.
Song Hongqiao, Guan Chongwu, Li Yue, et al. Effect of hydroponic plants on water quality purification in a recirculating aquaculture system[J]. Fishery Modernization, 2013, 40(4): 18-22. (in Chinese with English abstract)
Effects of plant density on nitrogen transformation in aquaponics system
Cai Shufang, Chen Min, Chen Yongkuai, Bao Xingsheng, Zhang Zhong, Lei Jingui※
(,,350003)
This study aims to discuss the effects of plant density on nitrogen transformation in aquaponics system, the purpose is to obtain the suitable arrangement of plant density for greenhouse aquaponics in Fuzhou. The experiment was conducted in a solar greenhouse in Fuzhou China-Israel Demonstration Farm in Fujian province from July to August in 2017. An experimental aquaponics system based on NFT (Nutrient Film Technique) cultivation was set up in the greenhouse. The cultivated variety of vegetable in the experiment was. The aquacultured variety of fish in the experiment was. The cultivated area was 1.0 m2and the aquaculture water amount was 350 L. The treatments comprised three plant densities(A(60 plants/m2), B(45 plants /m2),C(30 plants /m2)) with 10 kg/m3aquaculture density. The three treatments were experimented totally and every treatment was replicated three times. There were three harvests of vegetables without root during these experiments. The water quality and the growth of fish and vegetable during the 33d operation of system were investigated. The conversion of added nitrogen and the influence of time and plant density on the mass concentration of nitrogen compounds were discussed. The results showed that the water quality of different plant density systems, including water temperature, pH, DO and EC, was relatively stable and suitable for the growth of fish and vegetable. The main index of biological characteristics of fish and vegetable increased to different degrees. By analysis of variance, plant density had positive impact on the increment of total fresh quality of vegetables (<0.01) and the increment of total nitrogen accumulation in vegetables (=0.002), which indirectly meant the plant areas could be expanded. There was no significant interaction between plant density and relative growth rate of the main index of biological characteristics of fish and vegetable. Regardless of loss of nitrogen such as N2O, N2, 49.32%-68.41% of added nitrogen from feed were accumulated in fish and vegetable. Nitrogen content in fish and vegetable were negative increased and not better than that in ordinary aquaculture and NFT cultivation, which meant optimization measures such as biological filter and medium culture could be adopted. Mass concentrations of ammonia, nitrite and nitrate nitrogen changed significantly with time (<0.01). Under the action of nitrification and denitrification, the mass concentration of nitrogen compounds fluctuated and ammonia nitrogen was converted to nitrate nitrogen. At the late stage of the system operation, the mass concentration of nitrogen compounds was basically stable, and the mass concentrations of ammonia nitrogen, nitrite nitrogen and nitrate nitrogen were about 2.50, 0.20 and 5.00 mg/L, respectively. The mass concentration of nitrate nitrogen in different plant density systems was significantly different (=0.028), and the system with plant density of 45 plants /m2had a higher accumulation advantage of nitrate nitrogen. Plant density had no significant impact on the mass concentrations of ammonia nitrogen and nitrite nitrogen. Nitrogen conversion can be further enhanced by expanding cultivation area, installing biological filter and adjusting cultivation mode. In conclusion, the plant density of 45 plants/m2foris an appropriate plant density for greenhouse aquaponics in Fuzhou and other measures should be combined to improve the nitrogen conversion effect.
cultivation; nitrogen; aquaponics; plant density
蔡淑芳,陳 敏,陳永快,包興勝,張 鐘,雷錦桂. 種植密度對魚菜共生系統(tǒng)氮素轉(zhuǎn)化的影響[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(4):132-137. doi:10.11975/j.issn.1002-6819.2019.04.016 http://www.tcsae.org
Cai Shufang, Chen Min, Chen Yongkuai, Bao Xingsheng, Zhang Zhong, Lei Jingui. Effects of plant density on nitrogen transformation in aquaponics system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 132-137. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.04.016 http://www.tcsae.org
2018-06-07
2019-01-15
福建省自然科學(xué)基金項目(2017J01045);福建省農(nóng)業(yè)科學(xué)院院管A類項目(A2018-4);福建省農(nóng)業(yè)科學(xué)院智慧農(nóng)業(yè)創(chuàng)新團(tuán)隊(STIT2017-2-12)。
蔡淑芳,助理研究員,主要從事設(shè)施農(nóng)業(yè)研究。Email:195443125@qq.com
雷錦桂,副研究員,主要從事設(shè)施農(nóng)業(yè)與食用菌研究。Email:leican11@163.com
10.11975/j.issn.1002-6819.2019.04.016
X714
A
1002-6819(2019)-04-0132-06