張海波,王麗莎,石曉勇,裴紹峰,劉鈺博,唐新宇
?
渤海中部營(yíng)養(yǎng)鹽季節(jié)變化及限制統(tǒng)計(jì)分析
張海波--1,王麗莎1*,石曉勇1,裴紹峰2,劉鈺博1,唐新宇1
(1.中國(guó)海洋大學(xué)化學(xué)化工學(xué)院,山東 青島 266100;2.中國(guó)地質(zhì)調(diào)查局濱海濕地實(shí)驗(yàn)室,山東 青島 266071)
根據(jù)2013年7月(夏季),11月(秋季)和2014年5月(春季)渤海中部海域營(yíng)養(yǎng)鹽數(shù)據(jù)以及溫鹽等數(shù)據(jù),以浮游植物對(duì)營(yíng)養(yǎng)鹽的吸收閾值和化學(xué)計(jì)量關(guān)系為判斷標(biāo)準(zhǔn),對(duì)研究海域營(yíng)養(yǎng)鹽分布、限制狀況以及季節(jié)變化特征進(jìn)行分析,結(jié)果表明:調(diào)查海域內(nèi)各營(yíng)養(yǎng)鹽組分變化均呈現(xiàn)明顯季節(jié)性特征,表現(xiàn)為夏季低秋季上升春季下降的趨勢(shì).夏季受沖淡水影響,海水存在層化現(xiàn)象,溶解無(wú)機(jī)氮(DIN)、PO43--P和SiO32--Si含量分別為(10.33±7.75)、(0.05±0.03)和(3.94±3.19)μmol/L,DIN/P較高,Si/DIN遠(yuǎn)低于1,其中表層和10m層存在P和Si限制站位分別達(dá)93%、93%和40%、20%,限制狀況嚴(yán)重.秋季受底層沉積物擾動(dòng)再懸浮及營(yíng)養(yǎng)鹽礦化釋放等因素影響,各種營(yíng)養(yǎng)鹽含量迅速上升,DIN、PO43--P和SiO32--Si含量為(16.44±6.51)、(0.54±0.20)和(16.94±6.37)μmol/L,分別升高了1.6、10.8和4.3倍,垂向分布差異較小,且僅存在P潛在限制現(xiàn)象.春季由于陸源輸入相對(duì)較少,同時(shí)受浮游植物吸收等因素影響,各營(yíng)養(yǎng)鹽含量急劇下降,DIN、PO43--P和SiO32--Si含量分別為(9.04±8.06)、(0.06±0.04)和(2.47±1.90)μmol/L,分別降低了45%、89%和85%,其中部分站位PO43--P和SiO32--Si含量低于閾值,在表層和10m層海水中存在P和Si限制站位分別達(dá)70%、65%和55%、50%,對(duì)海域內(nèi)硅藻作為優(yōu)勢(shì)種的浮游植物生長(zhǎng)和初級(jí)生產(chǎn)力產(chǎn)生影響.
渤海;營(yíng)養(yǎng)鹽閾值;營(yíng)養(yǎng)鹽比值;硅磷限制;時(shí)空變化
營(yíng)養(yǎng)鹽是浮游植物生長(zhǎng)的物質(zhì)基礎(chǔ),其含量和結(jié)構(gòu)對(duì)浮游植物群落結(jié)構(gòu)和初級(jí)生產(chǎn)力水平具有重要影響,營(yíng)養(yǎng)鹽缺乏會(huì)限制浮游植物的生長(zhǎng)和繁殖,過(guò)高或結(jié)構(gòu)失衡則會(huì)影響浮游植物群落結(jié)構(gòu)穩(wěn)定,甚至?xí)l(fā)赤潮災(zāi)害[1]和缺氧(Hypoxia)現(xiàn)象,進(jìn)而影響海洋漁業(yè)資源[2-3].近海生態(tài)系統(tǒng)位于大洋與陸地交匯地帶,兼有大洋和陸緣淺灘的生態(tài)環(huán)境特征,因其周邊多為經(jīng)濟(jì)發(fā)展較發(fā)達(dá)區(qū)域,受陸源輸入和人類活動(dòng)影響劇烈;同時(shí),近岸海域承載著最為密集的人口和最活躍的社會(huì)經(jīng)濟(jì),其海域生態(tài)系統(tǒng)穩(wěn)定與城市環(huán)境變化相互影響[4].近海營(yíng)養(yǎng)鹽含量及結(jié)構(gòu)和季節(jié)性變化特征對(duì)海區(qū)內(nèi)生態(tài)環(huán)境狀況具有很好的指示作用[5],研究發(fā)現(xiàn)長(zhǎng)江口赤潮爆發(fā)區(qū)高溶解無(wú)機(jī)氮(DIN)或者高DIN/P有利于甲藻生長(zhǎng),而低DIN/Si或者高硅酸鹽(SiO32--Si)含量有利于硅藻在與甲藻的競(jìng)爭(zhēng)中占據(jù)優(yōu)勢(shì)[6],因此關(guān)注近海營(yíng)養(yǎng)鹽對(duì)浮游植物生長(zhǎng)限制狀況對(duì)了解近海生態(tài)環(huán)境具有重要的意義.
渤海是我國(guó)唯一內(nèi)海,僅通過(guò)渤海海峽的“北進(jìn)南出”密度流同黃海相通[7],水交換速度慢,是重要的魚(yú)蝦等棲息場(chǎng)所,生態(tài)價(jià)值較大.環(huán)渤海沿岸有大小河流40余條,主要分為遼河流域、海河流域以及黃河流域三大水系,每年給渤海帶來(lái)大量的營(yíng)養(yǎng)物質(zhì),于志剛等[8]對(duì)渤海中部營(yíng)養(yǎng)鹽系統(tǒng)研究表明近20年來(lái)營(yíng)養(yǎng)鹽濃度和結(jié)構(gòu)均發(fā)生顯著變化,DIN含量顯著增加而活性磷和硅明顯降低.硅藻作為渤海海域優(yōu)勢(shì)藻種[5],對(duì)渤海海域初級(jí)生產(chǎn)力和物質(zhì)傳輸起到?jīng)Q定性作用[9].近年隨著環(huán)渤海經(jīng)濟(jì)圈快速發(fā)展,近岸海域環(huán)境質(zhì)量日益惡化,同時(shí)陸源輸入氮磷營(yíng)養(yǎng)鹽總量差異以及河流截留導(dǎo)致的硅酸鹽輸入減少等[10],海域內(nèi)營(yíng)養(yǎng)鹽結(jié)構(gòu)失衡且富營(yíng)養(yǎng)化嚴(yán)重導(dǎo)致赤潮頻發(fā)[11-13],給浮游植物群落結(jié)構(gòu)以及生態(tài)結(jié)構(gòu)的穩(wěn)定性帶來(lái)影響.為進(jìn)一步了解近年來(lái)人類活動(dòng)對(duì)渤海生態(tài)環(huán)境的影響,本研究重點(diǎn)關(guān)注渤海中部營(yíng)養(yǎng)鹽含量和結(jié)構(gòu)特征,深入分析和統(tǒng)計(jì)隨著渤海實(shí)行總量控制以來(lái),海域內(nèi)不同季節(jié)營(yíng)養(yǎng)鹽分布、變化以及對(duì)浮游植物生長(zhǎng)限制狀況,以期為國(guó)家環(huán)境控制政策實(shí)施效果提供數(shù)據(jù)支撐.
分別于2013年7月(夏季)、11月(秋季)和2014年5月(春季)搭載東方紅2對(duì)渤海進(jìn)行調(diào)查,站點(diǎn)主要集中在中部以及各灣口海域,現(xiàn)場(chǎng)使用CTD- Niskin聯(lián)用采水和測(cè)定溫度鹽度參數(shù),采樣層次主要為表層、10m層和底層.
圖1 渤海研究區(qū)域及站位設(shè)置
水樣經(jīng)GF/F(Waterman,450℃灼燒4h)過(guò)濾后冷凍保存,使用SEAL-AA3連續(xù)流動(dòng)營(yíng)養(yǎng)鹽分析儀測(cè)定,各營(yíng)養(yǎng)鹽組分均按照海洋調(diào)查規(guī)范方法(GB/T 12763.4-2007)[14]測(cè)定,其中NO3--N和NO2--N采用重氮-偶氮法 (NO3--N銅-鎘還原),NH4+-N使用靛酚藍(lán)法,PO43--P使用磷鉬藍(lán)法,SiO32--Si以硅鉬藍(lán)法測(cè)定.NO3--N、NO2--N、NH4+-N、PO43--P、SiO32--Si檢出限分別為0.02,0.02,0.04,0.02,0.03μmol/L.DIN為NO3--N、NO2--N、NH4+-N三組分之和.
表1 營(yíng)養(yǎng)鹽限制評(píng)價(jià)標(biāo)準(zhǔn)
浮游植物按照一定比例吸收利用生源要素[15],當(dāng)營(yíng)養(yǎng)鹽的含量和結(jié)構(gòu)發(fā)生變化,會(huì)對(duì)浮游植物生長(zhǎng)及群落結(jié)構(gòu)產(chǎn)生影響.本文采用氮磷硅營(yíng)養(yǎng)鹽含量以及三者之間原子比值進(jìn)行判斷營(yíng)養(yǎng)鹽對(duì)浮游植物限制現(xiàn)狀.首先根據(jù)浮游植物對(duì)營(yíng)養(yǎng)鹽吸收動(dòng)力學(xué)研究獲得的閾值[16-17]SiO32--Si=2μmol/L(硅藻), PO43--P=0.03μmol/L,DIN=1μmol/L作為評(píng)價(jià)標(biāo)準(zhǔn),當(dāng)某種營(yíng)養(yǎng)鹽含量低于此閾值則評(píng)定為該項(xiàng)營(yíng)養(yǎng)鹽為限制因子;如果營(yíng)養(yǎng)鹽的含量高于閾值,則根據(jù)Justic等[18]和Dortch等[19]所總結(jié)的浮游植物對(duì)不同營(yíng)養(yǎng)鹽吸收的化學(xué)計(jì)量關(guān)系評(píng)價(jià)營(yíng)養(yǎng)鹽的潛在限制性(表1).
渤海地處北溫帶,全年降水量在500~600mm,且周邊河流入海徑流量主要集中在7~10月[20].本研究各季節(jié)鹽度在黃河口外受沖淡水影響呈現(xiàn)低鹽海水,鹽度等值線明顯,渤海海峽海域受黃海高鹽海水輸入影響,呈現(xiàn)有明顯的高鹽特征[21].對(duì)比不同水層和季節(jié)變化發(fā)現(xiàn)(表2),受沖淡水的影響,鹽度均表現(xiàn)為由表層向底層逐漸升高的趨勢(shì).夏季(圖2A, B, C)受汛期影響(黃河利津站:2013年6~8月平均流量1110m3/s[22]),海水層化現(xiàn)象明顯,鹽度低于秋季和春季.夏季調(diào)查海域海水平均溫度為(17.96±3.71)℃(表2),有利于浮游植物的生長(zhǎng).秋季和春季受周邊河流徑流量減少(黃河利津站:2013年11月平均流量為332m3/s,2014年5月平均流量為410m3/s[22]),黃海高鹽水輸入影響,海域內(nèi)平均鹽度較夏季升高,分別為29.71±0.90和30.30±0.82.同時(shí)受風(fēng)浪擾動(dòng)影響,海水垂直混合均勻,鹽度垂向差異不顯著,溫度相對(duì)較低不利于浮游植物生長(zhǎng)與光合作用.
圖2 調(diào)查海域不同季節(jié)鹽度分布特征
營(yíng)養(yǎng)鹽作為海洋浮游植物生長(zhǎng)和光合作用的必須生源要素,其含量與結(jié)構(gòu)變化同浮游植物群落結(jié)構(gòu)相互影響.如圖3所示,夏季整個(gè)研究區(qū)域內(nèi), DIN和SiO32--Si受陸源輸入影響明顯,在黃河口外出現(xiàn)明顯高值區(qū),最高值分別達(dá)到32.16和16.05μmol/L,在北部和海峽處呈現(xiàn)低值區(qū),整個(gè)調(diào)查海域內(nèi)平均值分別為(10.33±7.75)和(3.94±3.19) μmol/L;磷酸鹽受“磷負(fù)荷削減”計(jì)劃影響陸源輸入急劇減少[23],同時(shí)受夏季浮游植物對(duì)磷“奢侈消費(fèi)”吸收儲(chǔ)存作用[24]以及北黃海水輸入影響,在研究海域中部和海峽處出現(xiàn)高值,西部呈現(xiàn)低值,整個(gè)海域PO43--P平均值為(0.05±0.03)μmol/L,部分站點(diǎn)低于閾值(0.03μmol/L),對(duì)浮游植物生長(zhǎng)產(chǎn)生磷限制.對(duì)比不同水層營(yíng)養(yǎng)鹽含量發(fā)現(xiàn),DIN在表層濃度范圍為1.23~32.16μmol/L,平均為(11.30±9.83)μmol/L,高于底層[(10.84±6.80)μmol/L]和10m[(8.84±6.49)μmol/ L].SiO32--Si分布同DIN類似,垂向濃度差異小,表層最高[(4.02±4.26)μmol/L]其次為底層和10m (表2),其中表層和10m部分站點(diǎn)中含量低于閾值(2μmol/L),不利于夏季渤海浮游植物優(yōu)勢(shì)種硅藻的生長(zhǎng),限制海洋初級(jí)生產(chǎn)力水平.PO43--P在表層和10m層受消耗影響,平均含量均為(0.04±0.02)μmol/L,低于底層.
圖3 夏季各水層營(yíng)養(yǎng)鹽分布特征
營(yíng)養(yǎng)鹽濃度單位:mmol/L,下同
秋季入海徑流量減少,沖淡水現(xiàn)象減弱,海水溫度下降光照強(qiáng)度降低,浮游植物對(duì)營(yíng)養(yǎng)鹽的消耗減少,同時(shí)消亡的浮游生物逐漸礦化釋放營(yíng)養(yǎng)鹽[25],各種營(yíng)養(yǎng)鹽含量升高.如圖4所示,DIN分布呈現(xiàn)從黃河口和萊州灣口向東北降低的趨勢(shì),高值區(qū)集中在黃河口和萊州灣灣口,濃度范圍為7.83~30.38μmol/L,平均為(16.44±6.51) μmol/L.PO43--P受混合影響,整體呈現(xiàn)由南部萊州灣外向北升高的趨勢(shì),高值區(qū)集中在灤河河口外以及中部海域,較夏季PO43--P濃度急劇升高,含量范圍為0.15~0.98μmol/L,平均為(0.54±0.20)μmol/L. SiO2-3-Si分布同PO43--P類似,從南向北部逐漸升高,其高值區(qū)在遼東灣灣口外海域,受擾動(dòng)懸浮以及釋放影響,濃度范圍為3.10~28.06μmol/L,平均(16.94± 6.37)μmol/L.對(duì)比不同水層濃度發(fā)現(xiàn),11月份(秋季)受風(fēng)浪(平均波高0.9m[26])擾動(dòng)影響,海水垂直混合均勻,各營(yíng)養(yǎng)鹽在不同水層內(nèi)差異不明顯.
圖4 秋季各水層營(yíng)養(yǎng)鹽分布
圖5 春季各水層營(yíng)養(yǎng)鹽分布特征
春季受光照強(qiáng)度和水溫升高的影響,浮游植物快速生長(zhǎng)[27],各營(yíng)養(yǎng)鹽組分被迅速消耗吸收.如圖5所示,DIN分布呈現(xiàn)黃河口向中部降低的趨勢(shì),高值區(qū)集中在黃河口外海域,相比較秋季[(16.44± 6.51)μmol/L]濃度降低,范圍在0.24~26.66μmol/L之間,平均為(9.04±8.06)μmol/L,表層中DIN平均值為(8.91±8.22)μmol/L,低于底層和10m(表2).PO43--P整體濃度在未檢出~0.21μmol/L之間,平均為(0.06± 0.04)μmol/L,相對(duì)于秋季[(0.54±0.20)μmol/L],其含量下降明顯,部分站位含量低于閾值,各水層間差異較小. SiO32--Si作為硅藻所必須的生源要素,在黃河口和海峽西北部出現(xiàn)高值區(qū),中部為低值區(qū)(圖5),整體濃度在0.30~7.96μmol/L之間,平均為(2.47±1.90)μmol/L,相比于秋季[(16.94±6.37)μmol/ L],其含量下降了85%,且在調(diào)查海域中部和北部海域較多站點(diǎn)低于閾值,對(duì)春季占浮游植物生物量達(dá)51%[27]的硅藻生長(zhǎng)和繁殖產(chǎn)生限制,各水層中營(yíng)養(yǎng)鹽濃度差異不明顯(圖6).
圖6 不同季節(jié)營(yíng)養(yǎng)鹽垂向分布變化特征
對(duì)整個(gè)調(diào)查海域內(nèi)營(yíng)養(yǎng)鹽限制分布狀況統(tǒng)計(jì)分析發(fā)現(xiàn)(表2):調(diào)查海域內(nèi)全年P(guān)限制狀況明顯(圖7),夏季在表層、10m和底層各有93%、93%和80%站位存在P限制,其中PO43--P含量低于閾值(0.03μmol/L)分別有53%、30%和20%,P限制狀況嚴(yán)重.秋季隨著浮游植物吸收作用減弱以及營(yíng)養(yǎng)鹽釋放影響,PO43--P含量明顯升高(圖6),不存在低于閾值的站位,僅在表層、10m和底層各有53%、33%和33%站位存在P潛在限制,且位置主要集中在渤海灣和萊州灣灣口海域.春季隨著浮游植物現(xiàn)存量的增加[27],營(yíng)養(yǎng)鹽被快速消耗,PO43--P含量迅速降低,在表、10m和底層各有70%、65%和68%站位存在P限制狀況,其中低于閾值的站位分別有30%、25%和21%,P限制狀況嚴(yán)重.對(duì)Si限制狀況分析發(fā)現(xiàn),受到浮游植物硅藻生長(zhǎng)吸收影響,夏季表層、10m和底層各有40%、20%和27%站位SiO32--Si含量低于閾值(2μmol/L),春季分別有55%、50%和32%站位含量低于閾值,Si限制狀況明顯,秋季含量較高,不存在Si限制.DIN僅在春季渤海海峽10m層存在一個(gè)低于閾值(1μmol/L)站位(圖7),在夏季和秋季不存在DIN限制.
表2 調(diào)查海域鹽度、溫度、營(yíng)養(yǎng)鹽濃度及營(yíng)養(yǎng)鹽限制站點(diǎn)比例
圖7 調(diào)查海域PO43--P限制狀況分布和季節(jié)變化
●:無(wú)限制; △:絕對(duì)限制; □:潛在限制
圖8 調(diào)查海域SiO32--Si限制狀況分布和季節(jié)變化
●:無(wú)限制; △:絕對(duì)限制; □:潛在限制
圖9 調(diào)查海域DIN限制狀況分布和季節(jié)變化
●:無(wú)限制; △:絕對(duì)限制; □:潛在限制
對(duì)比3個(gè)季節(jié)溫度鹽度以及營(yíng)養(yǎng)鹽分布和變化發(fā)現(xiàn):研究海域夏季受沖淡水影響明顯,各參數(shù)垂向存在差異,海水層化現(xiàn)象明顯,表層硅磷絕對(duì)限制區(qū)域相似,均主要分布在遼東灣口和海峽處,且此區(qū)域?yàn)镈IN的低值區(qū).秋季受到氣候影響,溫度下降,垂向混合均勻,各營(yíng)養(yǎng)鹽組分含量均明顯升高,營(yíng)養(yǎng)鹽限制狀況減弱,P潛在限制區(qū)域主要集中在渤海灣-黃河口-萊州灣口沿線.春季隨著光照條件和溫度升高,浮游植物消耗對(duì)營(yíng)養(yǎng)鹽產(chǎn)生明顯的影響,各營(yíng)養(yǎng)鹽組分明顯下降,硅磷呈現(xiàn)明顯的限制狀態(tài),其中P在表層限制區(qū)域主要集中在調(diào)查海域南部和海峽處,而Si限制區(qū)域則主要集中在西北部海域渤海灣灣口和遼東灣口海域.
表3 渤海不同海域內(nèi)營(yíng)養(yǎng)鹽的研究進(jìn)展(μmol/L)
對(duì)比渤海其他海區(qū)營(yíng)養(yǎng)鹽狀況(表3),渤海各海區(qū)內(nèi)營(yíng)養(yǎng)鹽的季節(jié)變化均為春季向夏季降低秋季迅速升高趨勢(shì).其中春季,遼東灣營(yíng)養(yǎng)鹽濃度最高,其次為渤海灣、萊州灣和渤海中部,夏季,DIN分布同春季,而PO43--P和SiO32--Si受陸源輸入和浮游植物吸收利用影響較大,分布特征和變化趨勢(shì)不一致.對(duì)比營(yíng)養(yǎng)鹽結(jié)構(gòu),渤海各海區(qū)DIN濃度均處于相對(duì)較高水平,而PO43--P受“磷負(fù)荷削減”計(jì)劃影響含量下降, DIN/P升高,磷酸鹽成為渤海浮游植物主要限制因子,隨著環(huán)渤海周邊河流建壩截留和工農(nóng)業(yè)用水激增等因素影響,硅酸鹽輸入量減少,春夏季受浮游植物硅藻吸收利用影響, SiO32--Si濃度迅速下降,Si/P和Si/DIN下降,硅酸鹽限制狀況明顯增加.隨著渤海周邊入海徑流量輸入硅磷營(yíng)養(yǎng)鹽的減少,渤海中部海域磷和硅限制狀況必將進(jìn)一步發(fā)展.
3.1 渤海受沿岸徑流和黃海高鹽水輸入影響明顯,夏季受沖淡水影響,鹽度相對(duì)較低水溫較高,海水呈現(xiàn)明顯的層化現(xiàn)象,而秋季和春季受擾動(dòng)影響,混合均勻,溫鹽垂向差異不明顯.
3.2 各營(yíng)養(yǎng)鹽受陸源輸入和浮游植物吸收利用等因素影響,各營(yíng)養(yǎng)鹽均呈現(xiàn)夏季低秋季升高春季迅速下降的趨勢(shì).
3.3 PO4--P受浮游植物吸收利用等因素影響,春夏季節(jié)各水層內(nèi)濃度較低,導(dǎo)致DIN/P(春150.7,夏147.6)和Si/P (41.2,春; 56.3,夏)比值較高,且低于閾值站位較多,P限制狀況嚴(yán)重.秋季受礦化再釋放等因素影響,各站點(diǎn)PO43--P濃度均高于閾值,不存在P絕對(duì)限制,但DIN/ P(30.4)和Si/P(31.4)比值大,存在明顯的P潛在限制.
3.4 SiO32--Si夏季和春季濃度較低,Si/DIN(0.4, 0.3)較低.夏季表層中40%站位SiO32--Si濃度低于閾值,春季表層則達(dá)到55%,硅藻作為渤海優(yōu)勢(shì)藻種,受Si限制狀況嚴(yán)重.秋季受再懸浮影響含量較高,不存在Si限制.
3.5 DIN呈現(xiàn)河口高遠(yuǎn)岸低的趨勢(shì),DIN整體含量較高,僅春季10m層1個(gè)站位中含量低于閾值,不存在DIN潛在限制狀況,限制現(xiàn)象不明顯.
[1] Anderson D M, Cembella A D, Hallegraeff G M. Progress in understanding harmful Algal Blooms: Paradigm shifts and new technologies for research, monitoring, and management [J]. Annual Review of Marine Science, 2012,4:143-176.
[2] Pondaven P, Pivière P, Ridame C, et al. C, N and P stoichiometric mismatch between resources and consumers influence the dynamics of a marine microbial food web model and its response to atmospheric N and P inputs [J]. Biogeosciences Discussions, 2014,11(11):2933–2971.
[3] 李大鵬,張 碩,黃 宏.海州灣海洋牧場(chǎng)的長(zhǎng)期環(huán)境效應(yīng)研究 [J]. 中國(guó)環(huán)境科學(xué), 2018,38(1):303-310. Li D P, Zhang S, Huang H. Study on long-term environmental effects of marine ranching in Haizhou Bay [J]. China Environmental Science, 2018,38(1):303-310.
[4] Bernhardt J R, Leslie H M. Resilience to climate change in coastal marine ecosystems [J]. Annual Review of Marine Science, 2013,5(1): 371-392.
[5] 孫 軍,劉東艷,楊世民,等.渤海中部和渤海海峽及鄰近海域浮游植物群落結(jié)構(gòu)的初步研究 [J]. 海洋與湖沼, 2002,33(5):461-471. Sun J, Liu D Y, Yang S M, et al. The preliminary study on phytoplankton community structure in the central Bohai sea and the Bohai strait and its adjacent area [J]. Oceanologia Et Limnologia Sinica, 2002,33(5):461-471.
[6] 李 京.東海赤潮高發(fā)區(qū)營(yíng)養(yǎng)鹽結(jié)構(gòu)及對(duì)浮游植物優(yōu)勢(shì)種演替的作用研究 [D]. 青島:中國(guó)海洋大學(xué), 2008. Li J, the research of nutrient structure and its function on the succession of phytoplankton predominant in the high frequent harmful algae blooms occurrence area in east China sea [D]. Qingdao: The Ocean Univesity of China, 2008.
[7] 黃大吉,蘇紀(jì)蘭,張立人.渤海冬夏季環(huán)流的數(shù)值研究 [J]. 空氣動(dòng)力學(xué)學(xué)報(bào), 1998,(1):115-121. Huang D J, Su J L, Zhang L R. Numerical study of the winter and summer circulation in the Bohai Sea [J]. Acta Aerodynamica Sinica, 1998, (1):115-121.
[8] 于志剛,米鐵柱,謝寶東,等.二十年來(lái)渤海生態(tài)環(huán)境參數(shù)的演化和相互關(guān)系 [J]. 海洋環(huán)境科學(xué), 2000,19(1):15-19. Yu Z G, Mi T Z, Xie B L, et al. Changes of the environmental parameters and their relationship in recent twenty years in the Bohai Sea [J]. Marine Environmentalence, 2000,19(1):15-19.
[9] Krause J W, Nelson D M, Brzezinski M A. Biogenic silica production and the diatom contribution to primary production and nitrate uptake in the eastern equatorial Pacific Ocean [J]. Deep Sea Research Part II Topical Studies in Oceanography, 2011,58(3):434-448.
[10] 顧家偉.黃河營(yíng)養(yǎng)鹽輸送與河口近海生態(tài)健康研究進(jìn)展 [J]. 人民黃河, 2018,40(2):81-87. Gu J W. Reviewon the nutrients transportation of yellow river and its ecological impacts in the estuary [J]. Yellow River, 2018,40(2): 81-87.
[11] 宋南奇,王 諾,吳 暖,等.基于GIS的我國(guó)渤海1952~2016年赤潮時(shí)空分布 [J]. 中國(guó)環(huán)境科學(xué), 2018,(3):1142-1148. Song N Q, Wang N, Wu N, et el. Temporal and spatial distribution of harmful algal blooms in the Bohai Sea during 1952~2016based on GIS [J]. China Environmental Science, 2018,38(3):1142-1148.
[12] Ning X, Lin C, Su J, et al. Long-term environmental changes and the responses of the ecosystems in the Bohai Sea during 1960-1996 [J]. Deep Sea Research Part II Topical Studies in Oceanography, 2010, 57(11):1079-1091.
[13] 李俊龍,鄭丙輝,張鈴松,等.中國(guó)主要河口海灣富營(yíng)養(yǎng)化特征及差異分析 [J]. 中國(guó)環(huán)境科學(xué), 2016,36(2):506-516. Li J L, Zheng B H, Zhang L S, et el. Eutrophication characteristics and variation analysis of estuaries in China [J]. China Environmental Science, 2016,36(2):506-516.
[14] GB/T. 12763.3-2007 海洋調(diào)查規(guī)范 [S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社, 2007. GB/T. 12763.3-2007 Specfication of oceanographic investigation [S]. Beijing: China Standards Press, 2007.
[15] Redfield A C. The influence of organisms on the composition of sea-water [J]. Sea, 1963,40(6):640-644.
[16] Laws E A, Pei S, Bienfang P. Phosphate-limited growth of the marine diatom Thalassiosira weissflogii (Bacillariophyceae): evidence of non- monod growth kinetics [J]. Journal of Phycology, 2013,49(2):241- 247.
[17] Nelson D M, Brzezinski M A. Kinetics of silicic acid uptake by natural diatom assemblages in two Gulf Stream warm-core rings [J]. Marine Ecology Progress, 1990,62(3):283-292.
[18] Justi? D, Rabalais N N, Turner R E, et al. Changes in nutrient structure of river-dominated coastal waters: stechiometric nutrient balance and its consequences [J]. Estuarine Coastal & Shelf Science, 1995,40(3): 339-356.
[19] Dortch Q, Whitledge T E. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? [J]. Continental Shelf Research, 1992,12(11):1293-1309.
[20] 張 翠,韓 美,史麗華.黃河入海徑流量變化特征及其對(duì)氣候變化的響應(yīng) [J]. 人民黃河, 2015,37(5):10-14. Zhang C, Han M, Shi L H. Runoff into the sea of the Yellow River: Characteristics and its response to climate change [J]. Yellow River, 2015,37(5):10-14.
[21] 馮士笮,張 經(jīng),魏 皓.渤海環(huán)境動(dòng)力學(xué)導(dǎo)論 [M]. 北京:科學(xué)出版社, 2007:1-15. Feng S Z, Zhang J, Wei H. Introduction to environmental dynamics of Bohai Sea [M]. Beijing: Science Press, 2007:1-15.
[22] 黃河水文網(wǎng).水情日?qǐng)?bào),利津站 [Z/OL]. 來(lái)源:http://61.163.88.227: 8006/ hwsq.aspx. Yellow River hydrological network. Daily water situation report, Lijin hydrological station [Z/OL]. available from: http://61.163.88.227: 8006/hwsq. aspx.
[23] 張潔帆,陶建華,李清雪,等.渤海灣氮磷營(yíng)養(yǎng)鹽年際變化規(guī)律研究 [J]. 安徽農(nóng)業(yè)科學(xué), 2007,35(7):2063-2064. Zhang J F, Tao J H, Li Q X, et el. Studis on the interannual variation law of the nutrient salts of nitrogen and phosphorus in Bohai Bay [J]. Journal of Anhui Agricultural Sciences, 2007,35(7):2063-2064.
[24] Kuenzler E J, Ketchum B H. Rate of phosphorus uptake by phaeodactylum tricornutum [J]. Biological Bulletin, 1962,123(1): 134-145.
[25] 趙 亮,魏 皓,馮士筰.渤海氮磷營(yíng)養(yǎng)鹽的循環(huán)和收支 [J]. 環(huán)境科學(xué), 2002,23(1):78-81. Zhao L, Wei H, Feng S Z. Annual cycle and budgets of nutrients in the Bohai sea [J]. Environmental Science, 2002,23(1):78-81.
[26] 國(guó)家海洋局北海分局.2013年北海區(qū)海洋災(zāi)害公報(bào). [Z/OL] http: //www.ncsb.gov.cn/n1/n128/n239/n261/index_11.html.North sea branch of state oceanic administration (SOA). 2013 north sea marine disaster bulletin. [Z/OL]//www.ncsb.gov.cn/n1/n128/n239/ n261/index_11.html.
[27] 張 瑩.渤海中部浮游植物與環(huán)境因子的空間關(guān)系及季節(jié)差異分析 [D]. 煙臺(tái):中國(guó)科學(xué)院煙臺(tái)海岸帶研究所, 2016. Zhang Y. Spatial correlation and seasonal variation of phytoplankton and environmental factors in the central Bohai Sea [D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2016.
[28] 沈志良.渤海灣及其東部水域的水化學(xué)要素 [J]. 海洋科學(xué)集刊, 1999,(41):55-63. Shen Z L. Hydrochemical elements in Bohai Bay and its eastern part waters [J]. Studia Marina Sinica, 1999,(41):55-63.
[29] Wang X, Cui Z, Guo Q, et al. Distribution of nutrients and eutrophication assessment in the Bohai Sea of China [J]. Chinese Journal of Oceanology and Limnology, 2009,27(1):177-183.
[30] 李桂菊,馬玉蘭,李 偉,等.春季渤海灣營(yíng)養(yǎng)鹽分布及潛在性富營(yíng)養(yǎng)化評(píng)價(jià) [J]. 天津科技大學(xué)學(xué)報(bào), 2012,(5):22-27. Li G J, Ma Y L, Li W, et al. Distribution of inorganic nutrients and potential eutrophication assessment in bohai bay in spring [J]. Journal of Tianjin University of Science and Technology, 2012,(5):22-27.
[31] 張海波,裴紹峰,祝雅軒,等.初夏渤海灣營(yíng)養(yǎng)鹽結(jié)構(gòu)特征及其限制狀況分析 [J]. 中國(guó)環(huán)境科學(xué), 2018,38(9):3524-3530. Zhang H B, Pei S F, Zhu Y X, et el. Nutrient structure and nutrient limitation for phytoplankton growth in Bohai bay in the early summer [J]. China Environmental Science, 2018,38(9):3524-3530.
[32] 吳金浩,徐雪梅,楊 爽,等.2007年春、秋遼東灣北部營(yíng)養(yǎng)鹽及影響因素 [J]. 海洋科學(xué)進(jìn)展, 2012,30(4):477-486. Wu J H, Xu X M, Yang S, et al. Nutrients status and its influencing factors in north part of liaodong bay in spring and autumn of 2007 [J]. Advances in Marine Science, 2012,30(4):477-486.
[33] 孫丕喜,王 波,張朝暉,等.萊州灣海水中營(yíng)養(yǎng)鹽分布與富營(yíng)養(yǎng)化的關(guān)系 [J]. 海洋科學(xué)進(jìn)展, 2006,24(3):329-335. Sun P X, Wang B, Zhang C H, et al. Relationship between nutrient distributions and eutrophication in seawater of the laizhou bay [J]. Advances in Marine Science, 2006,24(3):329-335.
[34] 趙玉庭,劉 霞,李佳蕙,等.2013年萊州灣海域營(yíng)養(yǎng)鹽的平面分布及季節(jié)變化規(guī)律 [J]. 海洋環(huán)境科學(xué), 2016,35(1):95-99. Zhao Y T, Liu X, Li J H, et al. Distribution and seasonal variation in nutrients in Laizhou Bay, 2013 [J]. Marine Environmental Science, 2016,35(1):95-99.
Spatial distributions and seasonal variations of nutrients and statistical analysis of nutrient limitation in the center of the Bohai Sea,China.
ZHANG Hai-bo1, WANG Li-sha1*, SHI Xiao-yong1, PEI Shao-feng2, LIU Yu-bo1, TANG Xin-yu1
(1College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China;2.Key Lab of Coastal Wetland Biogeosciences, China Geological Survey, Qingdao 266071, China)., 2019,39(4):1579~1588
Based on nutrients and hydrological data collected in the center of the Bohai Sea in July 2013, November 2013 and May 2014, nutrient spatial distributions and seasonal variations were examined in this study, and the nutrient limitation conditions for phytoplankton growth were also analyzed according to the minimum threshold of nutrients required by phytoplankton and their stoichiometric compositions. Results showed that nutrient concentrations and compositions varied significantly with a seasonal cycling. Nutrient concentrations were high in the autumn but relatively low in the summer and spring. In the summer, influenced by diluted water influx, seawater stratification was formed. Concentrations of dissolved inorganic nitrogen (DIN), reactive phosphate (PO43--P) and reactive silicate (SiO32--Si) were (10.33±7.75), (0.05±0.03) and (3.94±3.19) μmol/L, respectively. And DIN/P ratios were high and Si/DIN ratios were far below 1. In the surface and 10-m layers, stations with P limitation accounted for 93% of all stations, stations with Si limitation accounted for 40% and 20%, respectively, revealing serious limitation status of P and Si for phytoplankton growth. Due to the sediment resuspension and organic matter decomposition in the autumn, concentrations of DIN, PO43--P and SiO32--Si increased dramatically by 1.6, 10.8 and 4.3times, relative to the summer, to be (16.44±6.51), (0.54±0.20) and (16.94±6.37)μmol/L, respectively. The vertical variations of nutrients were small and only PO43--P showed potential limitation to phytoplankton growth. In the spring, concentrations of DIN, PO43--P and SiO32--Si decreased by 45%, 89% and 85%, compared to those in the autumn, to be (9.04±8.06), (0.06±0.04) and (2.47±1.90)μmol/L, respectively, because of the decreasing of riverine outflow and increasing phytoplankton uptake. At some stations, concentrations of PO43--P and SiO32--Si were below the nutrient threshold of 0.03μmol/L and 2μmol/L for phytoplankton growth, respectively. In the surface and 10m layers, 70% and 65% of surveyed stations were in the status of P limitation, meanwhile 55% and 50% of stations were in the status of Si limitation, therefore, the primary production and diatom-dominant phytoplankton structure might be affected in the study area.
Bohai Sea;nutrient threshold;nutrient stoichiometric ratios;silicate and phosphate limitations;temporal and spatial variations
X55
A
1000-6923(2019)04-1579-10
2018-09-30
國(guó)家重點(diǎn)研發(fā)計(jì)劃課題(2016YFC1402101);國(guó)家海洋局項(xiàng)目(2014AA060);國(guó)家自然科學(xué)基金資助項(xiàng)目(41306175)
*責(zé)任作者, 高級(jí)實(shí)驗(yàn)師, lishawang@ouc.edu.cn
張海波(1990-),男,山東棗莊人,博士研究生,主要研究方向?yàn)楹Q笊鷳B(tài)環(huán)境.發(fā)表論文4篇.