李博 高曉紅 張文通 王天宇 金寶昌
摘要:本文研究了對ZnO薄膜的光致發(fā)光、晶體缺陷、晶粒尺寸和表面形貌的影響。采用PL測試表征材料的缺陷密度,用HR-XRD表征薄膜的結(jié)晶情況,用SEM表征ZnO薄膜材料的表面形貌。結(jié)果表明經(jīng)3%濃度的H2O2處理10s的ZnO薄膜缺陷顯著降低,結(jié)晶情況有所改善,晶粒尺寸增大。利用H2O2處理可以降低ZnO薄膜的缺陷態(tài),提高了其在應(yīng)用中的電學(xué)穩(wěn)定性。
關(guān)鍵詞:射頻磁控濺射;ZnO薄膜;H2O2處理
中圖分類號:G642 文獻(xiàn)標(biāo)識碼:A
文章編號:1009-3044(2019)08-0240-03
Effect of H2O2 on Performance of ZnO Thin Films
LI Bo, GAO Xiao-hong, ZHANG Wen-tong, WANG Tian-yu, JIN Bao-chang
(Jilin Jianzhu University, College of Electrical and Computer Engineering, Changchun 130114, China)
Abstract:The effects of H2O2 treatment on photoluminescence, crystal defects, grain size and surface morphology of ZnO thin films were investigated in this paper. The defect density of the material was characterized by PL test. The crystallization of the film was characterized by HR-XRD. The surface morphology of the ZnO film was characterized by SEM. The results show that the crystal defects of ZnO film treated by 3% concentration of H2O2 for 10s are significantly reduced, the crystallization condition is improved, the grain size is increased. With H2O2 treatment, the defect density of ZnO films is effectively reduced, and thus the electrical stability for application can be improved.
Key words:RF magnetron sputtering;ZnO Thin Films;H2O2 treatment
1 引言
金屬氧化物薄膜晶體管(TFT)具有高場效應(yīng)遷移率、寬工藝窗口、高電流開關(guān)和良好的光學(xué)透明性等優(yōu)異特性,尤其是ZnO基TFT在柔性透明電子器件有十分廣闊的應(yīng)用前景。ZnO作為一種環(huán)保的低成本寬帶隙半導(dǎo)體,具有非常穩(wěn)定的電學(xué),化學(xué)和光學(xué)性能,并已被廣泛用作TFT的有源層材料[1-3]。然而,在ZnO有源層薄膜沉積的過程中,尤其是在低溫制備條件下,ZnO材料不可避免地會存在大量的晶體缺陷,通常認(rèn)為ZnO薄膜材料內(nèi)的主要缺陷是氧空位(Vo)和鋅間隙(Zni)[4,5],使得ZnO薄膜作為有源層的TFT器件電學(xué)性能出現(xiàn)不穩(wěn)定的現(xiàn)象,例如閾值電壓的漂移、偏壓不穩(wěn)定性、滯回不穩(wěn)定性等[6-8]??梢酝ㄟ^離子摻雜、熱處理等方法降低薄膜中的氧缺陷[9,10],使薄膜的結(jié)晶質(zhì)量有所提高,但這些方法不利于器件在柔性襯底上制備,并且有些離子如Ga、In等不僅儲量稀少,更會破壞自然環(huán)境。本文提出了采用H2O2處理ZnO薄膜的方法,利用其氧化性減少ZnO薄膜內(nèi)的氧缺陷,既避免了高溫制備,又不必引入其他雜質(zhì)離子,使其在應(yīng)用時具有更高的電學(xué)穩(wěn)定性。
2 實驗
通過射頻磁控濺射的方法在Si(004)襯底上沉積ZnO薄膜,沉積在室溫下進(jìn)行,未對氧化鋅進(jìn)行任何有意的離子摻雜。首先,將Si襯底放入丙酮中超聲清洗10min,去除有機(jī)分子型沾污,接著用乙醇對Si襯底超聲清洗10min,去除殘余丙酮,最后使用去離子水超聲清洗Si襯底,去除殘余乙醇和離子型沾污,用氮氣將襯底吹干。然后,取2片Si襯底放入Kurt J.Lesker公司的PVD75 型射頻磁控濺射儀中,使用射頻磁控濺射方法在Si襯底上沉積ZnO薄膜,靶材是純度為99.99%的高純ZnO陶瓷靶。先將真空度抽至5×10-5Torr,然后通入純度為99.999%的Ar氣,將氣壓保持在20mTorr,射頻功率設(shè)定在50W對Ar氣進(jìn)行啟輝。接著將Ar:O2設(shè)置為95%:5%,生長時氣體壓強(qiáng)保持在8mTorr,射頻功率為100W,生長時間為360s,整個生長過程在室溫下進(jìn)行。取出后將其中1片樣本放入濃度為3%的H2O2溶液中浸泡10s,然后用去離子水沖洗干凈,用氮氣吹干,另一片樣本未進(jìn)行其他處理作為對比。所用3%濃度的H2O2溶液是使用30%濃度H2O2加入其9倍體積的去離子水稀釋而成。使用Bruker D8 DISCOVER HR-XRD在室溫下測試了ZnO薄膜的X射線衍射譜,使用JEOL JSM-7610F拍攝掃描電子顯微鏡(SEM)圖像;采用日本 HORIBA 公司的光致發(fā)光/拉曼( PL /Raman)光譜儀在室溫下對ZnO薄膜的光學(xué)特性進(jìn)行表征。
3 結(jié)果與討論
圖1給出了在Si(004)襯底上沉積的ZnO薄膜的PL光譜的發(fā)光特性,測試在室溫下進(jìn)行,激發(fā)光源波長為325nm。H2O2處理前后的ZnO薄膜均在380nm處觀察到本征發(fā)光峰,可以看出H2O2處理并未對ZnO薄膜的能帶結(jié)構(gòu)造成明顯的改變。在可見光區(qū)的發(fā)光峰為缺陷發(fā)光[11,12],可以明顯看出經(jīng)過H2O2處理的ZnO薄膜缺陷發(fā)光大大低于未經(jīng)過H2O2處理的ZnO薄膜。H2O2可以為ZnO薄膜中的氧空位提供O原子和足夠的結(jié)合能,從而填補(bǔ)氧空位。在ZnO薄膜在應(yīng)用到TFT器件時,這些氧空位會俘獲載流子,造成TFT器件的電學(xué)性能不穩(wěn)定,轉(zhuǎn)移特性曲線出現(xiàn)滯回現(xiàn)象,閾值電壓發(fā)生漂移等,晶體缺陷的減少會使滯回現(xiàn)象降低[13,14]。ZnO薄膜的晶體缺陷主要是氧空位(VO)和鋅間隙(Zni),雖然在濺射時適當(dāng)?shù)纳哐醴謮嚎梢允贡∧こ练e時的氧離子增多,使得沉積的ZnO接近化學(xué)配比,降低氧空位和鋅間隙,但濺射時O2濃度的升高會使粒子與O2的碰撞幾率增大,降低粒子到達(dá)襯底時的結(jié)合能,導(dǎo)致晶體結(jié)構(gòu)松散;并且O2濃度升高生成氧負(fù)離子的幾率會一同升高,氧負(fù)離子會高速轟擊ZnO薄膜造成反濺射,破壞ZnO的晶體結(jié)構(gòu)。而使用H2O2處理ZnO薄膜的方法可以保證薄膜晶體結(jié)構(gòu)致密性,使用化學(xué)的方法彌補(bǔ)氧空位缺陷。
圖2給出了在Si(004)襯底上沉積的ZnO薄膜的XRD 2θ-ω圖譜,可以看出位于34.45°的ZnO(002)峰,表明ZnO薄膜是具有六方纖鋅礦結(jié)構(gòu)的多晶和具有垂直于基底的c軸的優(yōu)選取向[15]??梢酝ㄟ^ZnO(002)峰的強(qiáng)度和半峰寬(FWHM)來評估ZnO膜的結(jié)晶質(zhì)量。經(jīng)H2O2處理的ZnO薄膜的(002)峰強(qiáng)度略高于未經(jīng)H2O2處理的ZnO薄膜,但是半峰寬未觀察到明顯的變化。這表明H2O2處理后的ZnO薄膜結(jié)晶度得到了改善,雖然H2O2對ZnO具有腐蝕性,但低濃度的H2O2短時間內(nèi)并不會破壞ZnO薄膜的結(jié)晶,主要發(fā)生了雙氧水中的O填補(bǔ)氧空位的反應(yīng),對修復(fù)薄膜的晶體缺陷有所幫助。但雙氧水濃度過高或者處理時間過長,H2O2就會與ZnO發(fā)生進(jìn)一步反應(yīng),破壞ZnO的晶體結(jié)構(gòu)并與ZnO生成其他物質(zhì)。因此摸索出適合的處理時間和溶液濃度是這種工藝的關(guān)鍵。
圖3所示是ZnO薄膜的掃描電子顯微鏡照片,可以看出未經(jīng)H2O2處理的ZnO薄膜晶粒尺寸大約為13-15nm,而經(jīng)過H2O2處理的ZnO薄膜晶粒尺寸明顯增加,大約在23-27nm之間,較大的晶粒尺寸有助于減小晶界對載流子造成的散射,提高載流子的弛豫時間,從而提高薄膜的載流子遷移率,高遷移率的材料是制成高刷新率TFT器件的必要條件[16,17]。經(jīng)H2O2處理的ZnO薄膜結(jié)晶度高于未經(jīng)H2O2處理的ZnO薄膜,可能是H2O2的為晶粒融合提供了能量。但薄膜表面變得不平整,是由H2O2對ZnO薄膜的腐蝕作用造成的,不過ZnO薄膜的厚度未發(fā)生明顯改變,表明H2O2未對其造成嚴(yán)重的腐蝕。
4 結(jié)論
在ZnO薄膜的制備過程中經(jīng)常出現(xiàn)氧空位和鋅間隙等晶體缺陷,對其電學(xué)性能的穩(wěn)定性帶來嚴(yán)重的負(fù)面影響。本文通過H2O2處理ZnO薄膜的化學(xué)方法實現(xiàn)了在室溫條件下降低ZnO薄膜晶體缺陷的目的,并且改善了薄膜的結(jié)晶度,增大了ZnO薄膜的晶粒尺寸。薄膜的電學(xué)穩(wěn)定性得到了提高,并且方法簡單易實現(xiàn),沒有大幅度提高制備工藝的復(fù)雜程度和工藝成本。
參考文獻(xiàn):
[1] Kaltenbrunner, M., T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer and T. Someya (2013). "An ultra-lightweight design for imperceptible plastic electronics." Nature 499(7459): 458-463.
[2] Rogers, J. A., T. Someya and Y. Huang (2010). "Materials and mechanics for stretchable electronics." Science 327(5973): 1603-1607.
[3] Du, X. and G. S. Herman (2018). "Transparent In-Ga-Zn-O field effect glucose sensors fabricated directly on highly curved substrates." Sensors & Actuators B Chemical 268: 123-128.
[4] Fan, J. C., K. M. Sreekanth, Z. Xie, S. L. Chang and K. V. Rao (2013). "p-Type ZnO materials: Theory, growth, properties and devices." Progress in Materials Science 58(6): 874-985.
[5] Chen, W. T., S. Y. Lo, S. C. Kao, H. W. Zan, C. C. Tsai, J. H. Lin, C. H. Fang and C. C. Lee (2011). "Oxygen-Dependent Instability and Annealing/Passivation Effects in Amorphous In-Ga-Zn-O Thin-Film Transistors." IEEE Electron Device Letters 32(11): 1552-1554.
[6] Ye, Z., Y. Yuan, H. Xu, Y. Liu, J. Luo and W. Man (2017). "Mechanism and Origin of Hysteresis in Oxide Thin-Film Transistor and Its Application on 3-D Nonvolatile Memory." IEEE Transactions on Electron Devices 64(2): 438-446.
[7] Furuta, M., Y. Kamada, T. Hiramatsu, C. Li, M. Kimura, S. Fujita and T. Hirao (2011). "Positive Bias Instability of Bottom-Gate Zinc Oxide Thin-Film Transistors with a SiOx/SiNx-Stacked Gate Insulator." Japanese Journal of Applied Physics 50(3): 03CB09-03CB09-04.
[8] Fuh, C. S., P. T. Liu, W. H. Huang and S. M. Sze (2014). "Effect of Annealing on Defect Elimination for High Mobility Amorphous Indium-Zinc-Tin-Oxide Thin-Film Transistor." IEEE Electron Device Letters 35(11): 1103-1105.
[9] Ding, X., C. Qin, J. Song, J. Zhang, X. Jiang and Z. Zhang (2017). "Erratum to: The Influence of Hafnium Doping on Density-of-States in Zinc Oxide Thin-Film Fransistors Deposited Via Atomic Layer Deposition." Nanoscale Research Letters 12(1): 172.
[10] Teng, L. F., P. T. Liu, Y. J. Lo and Y. J. Lee (2012). "Effects of microwave annealing on electrical enhancement of amorphous oxide semiconductor thin film transistor." Applied Physics Letters 101(13): 488.
[11] Ozgür, U., Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do?an, V. Avrutin, S. J. Cho and H. Morko? (2005). "A Comprehensive Review of ZnO Materials and Devices." Journal of Applied Physics 98(4): 11-11.
[12] Lin, B., Z. Fu and Y. Jia (2012). "Green Luminescent Center in Undoped Zinc Oxide Films Deposited on Silicon Substrates." Applied Physics Letters 100(15): 943.
[13] Tsao, S. W., T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen and W. C. Wu (2010). "Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors." Solid State Electronics 54(12): 1497-1499.
[14] Nomura, K., T. Kamiya, H. Ohta, M. Hirano and H. Hosono (2008). "Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing." Applied Physics Letters 93(19): 488.
[15] Shi, J., H. Ma, G. Ma, H. Ma and J. Shen (2008). "Structure and ultrafast carrier dynamics in n-type transparent Mo:ZnO nanocrystalline thin films." Applied Physics A 92(2): 357-360.
[16] Ito, M., M. Kon, C. Miyazaki, N. Ikeda, M. Ishizaki, R. Matsubara, Y. Ugajin and N. Sekine (2010). "Amorphous oxide TFT and their applications in electrophoretic displays." Physica Status Solid 205(8): 1885-1894.
[17] Fortunato, E., P. Barquinha, A. Pimentel, L. Pereira, G. Gon?alves and R. Martins (2010). "Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs." physica status solidi (RRL) - Rapid Research Letters 1(1): 34-36.
【通聯(lián)編輯:王力】