劉晴 董愛榮 鄧世林 鮑彤 劉薇
摘要:為探究短密木霉以及短密木霉、大豆和咪唑乙煙酸相互作用對(duì)土壤蔗糖酶和過氧化氫酶活性的影響,本文采用3,5-二硝基水楊酸法、高錳酸鉀滴定法分別測(cè)定土壤中蔗糖酶和過氧化氫酶的酶活。結(jié)果表明:在土壤中加入短密木霉,5~20 d中土壤蔗糖酶活性均呈現(xiàn)激活趨勢(shì),10 d時(shí)蔗糖酶活性最高為53.85 mg/kg,激活率達(dá)到169.94%;過氧化氫酶活性呈現(xiàn)出激活—抑制—恢復(fù)的趨勢(shì),5 d時(shí)土壤過氧化氫酶活性最高,為2.47 mg/g,激活率達(dá)5.71%,隨后受到抑制,酶活性最低達(dá)2.30 mg/g,抑制率最高達(dá)到17.86%。種植大豆、加入短密木霉,再加入100 mg/kg的咪唑乙煙酸后,土壤蔗糖酶活性呈現(xiàn)激活—恢復(fù)—激活—抑制的趨勢(shì),10 d時(shí)土壤蔗糖酶活性最高,為60.09 mg/kg,激活率達(dá)201.21%,20 d時(shí)蔗糖酶活性被抑制,其活性為68.13 mg/kg,抑制率最高達(dá)62.43%;土壤過氧化氫酶活性呈現(xiàn)抑制—恢復(fù)—激活的趨勢(shì), 20 d時(shí)酶活性最低為2.43 mg/g,抑制率最高達(dá)到17.98%,40 d時(shí)酶活性最高,為2.70 mg/g,激活率最高達(dá)到9.46%。
關(guān)鍵詞:短密木霉;蔗糖酶; 過氧化氫酶
中圖分類號(hào):S158.4文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1006-8023(2019)03-0009-04
Effects of Trichoderma brevicompactum on Soil Enzyme Activity
LIU Qing1, DENG Airong1*, DENG Shilin1, BAO Tong1, LIU Wei2
(1.College of Forestry, Northeast Forestry University, Harbin 150040; 2.Huludao Forestry Development Service Center, Huludao 125000)
Abstract:In order to investigate the effects of Trichoderma brevicompactum and the interaction of Trichoderma brevicompactum, soybean and imazethapyr on the activities of sucrase and catalase in soil, 3.5-dinitrosalicylic acid method and potassium permanganate titration were used to determine the activities of sucrose and catalase in soil respectively. The results showed that, when Trichoderma brevicompactum was added to the soil, in 5-20 days, sucrase activity showed a trend of activation with the highest activity of 53.85 mg/kg in 10 days and the activation rate of 169.94%. Catalase activity showed a trend of activation-inhibition-recovery. The highest catalase activity was 2.47 mg/g and the activation rate was 5.71%. Then it was inhibited. The lowest catalase activity was 2.30 mg/g and the highest inhibition rate was 17.86%. After planting soybean, adding Trichoderma brevicompactum and 100 mg/kg imazethapyr, soil sucrose activity showed the trend of activation-recovery-activation-inhibition. The highest sucrase activity was 60.09 mg/kg in 10 days, the activation rate was 201.21%, and the sucrase activity was in habited in 20 days with the highest sucrase activity of 68.12 mg/kg and the inhibition rate of 62.43%. Soil catalase activity showed a trend of inhibition-recovery-activation, the lowest activity was 2.43 mg/g in 20 days, the highest inhibition rate was 17.98%, the highest activity was 2.70 mg/g in 40 days, and the highest activation rate was 9.46%.
Keywords:Trichoderma brevicompactum; sucrase; catalase
0引言
土壤酶是土壤生態(tài)系統(tǒng)代謝的重要驅(qū)動(dòng)力,土壤中進(jìn)行化學(xué)和生物反應(yīng)是在酶的催化下進(jìn)行的。土壤微生物和土壤酶活性變化作為檢測(cè)土壤質(zhì)量變化的指標(biāo)之一,反映了土壤生態(tài)系統(tǒng)中微生物參與物質(zhì)轉(zhuǎn)化和循環(huán)的能力,因此土壤酶受到人們?cè)絹碓蕉嗟年P(guān)注[1-2]。土壤酶參與土壤中所有的生化反應(yīng),在物質(zhì)轉(zhuǎn)化、能量代謝和污染土壤修復(fù)等過程中發(fā)揮著重要作用[3]。同時(shí)土壤酶作為一項(xiàng)生態(tài)毒理指標(biāo),常用于評(píng)價(jià)土壤健康及生態(tài)環(huán)境風(fēng)險(xiǎn)[4]。有研究表明,土壤酶可參與有機(jī)化合物的降解,因此,它能在治理污染土壤方面得到應(yīng)用[5]。重復(fù)使用一種或幾種類似化學(xué)結(jié)構(gòu)的農(nóng)藥,可能導(dǎo)致農(nóng)藥的迅速降解,很快喪失藥效,土壤酶參與上述過程,被稱為“激活生物降解”[6]。土壤酶降解土壤中的有機(jī)化合物的機(jī)理,一般認(rèn)為涉及幾個(gè)過程:降解、聚合、合成和偶聯(lián)的酶促反應(yīng),形成腐殖質(zhì)復(fù)合體,從而減少土壤中有害有機(jī)物的聚積。
咪唑乙煙酸是在1984年由美國(guó)氰胺公司開發(fā)的咪唑啉酮類除草劑[7],化學(xué)名稱為(RS)-5-乙基-2-(4-異丙基-4-甲基-5-1H-2-咪唑啉-2-基)煙酸[8],該類除草劑具有殺草普廣、活性高和選擇性強(qiáng)等優(yōu)點(diǎn),在農(nóng)藥市場(chǎng)有重要地位[9-10]。咪唑乙煙酸合成抑制劑具有支鏈型氨基酸,它能阻止乙酞羚酸合成酶,防止蛋白質(zhì)合成,從而達(dá)到除草的目的[11]。咪唑乙煙酸能有效的防除豆科農(nóng)田里的雜草,與環(huán)境的相容性較好[12]。但是咪唑乙煙酸在土壤中的殘留時(shí)間很長(zhǎng),會(huì)對(duì)后茬作物造成嚴(yán)重的藥害問題[13],由于咪唑乙煙酸具有長(zhǎng)殘效性,能造成土壤環(huán)境的污染,因此,監(jiān)測(cè)咪唑乙煙酸施用后對(duì)土壤酶活性的影響成為評(píng)價(jià)咪唑乙煙酸生態(tài)環(huán)境安全性的重要指標(biāo)。
土壤蔗糖酶可水解蔗糖,反映土壤有機(jī)碳轉(zhuǎn)化能力[14],與土壤中有機(jī)質(zhì)、氮、磷含量,微生物數(shù)量及土壤呼吸強(qiáng)度有關(guān),其酶促作用產(chǎn)物直接關(guān)系到作物的生長(zhǎng)[15]。土壤過氧化氫酶是生物呼吸、生物代謝過程,以及土壤動(dòng)物、植物根系分泌及殘?bào)w分解中的重要酶類,與土壤性質(zhì)關(guān)系密切,是較好的土壤微生態(tài)環(huán)境指示因子[16-17],其活性可表示土壤氧化過程的強(qiáng)度,并能有效防止土壤及生物體在新陳代謝過程中產(chǎn)生的過氧化氫所造成的毒害[18-19]。
本文分別以土壤蔗糖酶和過氧化氫酶為指標(biāo),設(shè)計(jì)盆栽試驗(yàn),通過在土壤中添加短密木霉(高效降解菌),明確短密木霉及短密木霉、大豆和咪唑乙煙酸互相作用對(duì)土壤酶活性的影響,為應(yīng)用短密木霉改善土壤生態(tài)環(huán)境,為修復(fù)農(nóng)藥污染土壤的研究提供理論依據(jù)。
1材料與方法
1.1試驗(yàn)材料
盆栽試驗(yàn)土壤為m(草炭)∶m(沙子)∶m(土)=5∶3∶2的比例進(jìn)行混合所得。大豆品種為黑農(nóng)48。菌種是課題組前期馴化得到的高效降解菌株短密木霉(Trichoderma brevicompactum)。
培養(yǎng)真菌的培養(yǎng)基采用孟加拉紅培養(yǎng)基:蛋白胨5 g、葡萄糖10 g、磷酸二氫鉀1 g、硫酸鎂0.5 g、瓊脂20 g、1/3000孟加拉紅溶液100 mL、蒸餾水1 000 mL、氯霉素0.1 g。
保存菌株采用PDA培養(yǎng)基:馬鈴薯200 g、葡萄糖20 g、瓊脂15~20 g、蒸餾水1000 mL。
1.2盆栽試驗(yàn)
將短密木霉接種于60個(gè)PDA平板中,放入培養(yǎng)箱,在溫度為25 ℃、黑暗條件下培養(yǎng)5 d。待菌株大量產(chǎn)孢后,將菌絲連同孢子刮下,加入到盛有無菌水的燒杯中,放入少量的吐溫80,用玻璃棒充分的攪拌后均勻地混入部分試驗(yàn)用土壤中。再將部分試驗(yàn)用土壤加入5%咪唑乙煙酸水劑,制成咪唑乙煙酸質(zhì)量分?jǐn)?shù)為100 mg/kg的污染土。選擇籽粒飽滿、均勻、無病蟲的大豆種子,每盆放入15個(gè)顆粒,覆土2.0 cm,放在盆栽內(nèi)自然生長(zhǎng)。
以短密木霉為降解菌,按表1設(shè)計(jì)盆栽試驗(yàn)。試驗(yàn)組在處理后5、10、20、30、40 d分別用五點(diǎn)法取土樣,風(fēng)干,過10目篩,放入冰箱4 ℃保存待用。
1.3酶活性的測(cè)定
土壤蔗糖酶活性測(cè)定采用3,5-二硝基水楊酸法[20],過氧化氫酶活性檢測(cè)采用高錳酸鉀滴定法[21]。
土壤酶活性的抑制率(激活率)計(jì)算公式為:
抑制率或激活率(%)= [(A-B)/A]×100。
式中:A為空白對(duì)照的土壤酶活性;B為不同處理所得的土壤酶活性;結(jié)果為正值時(shí)表示激活率,為負(fù)值時(shí)表示抑制率。
1.4數(shù)據(jù)分析
用Excel2010對(duì)數(shù)據(jù)進(jìn)行計(jì)算;運(yùn)用SPSS16.0軟件進(jìn)行差異性分析,并采用鄧肯方法進(jìn)行顯著性差異分析(P<0.05);圖表中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)差。
2結(jié)果與分析
2.1短密木霉及短密木霉、大豆和咪唑乙煙酸三者相互作用對(duì)土壤蔗糖酶活性的影響
由表2可知,在土壤中加入短密木霉后,土壤蔗糖酶活性呈現(xiàn)出激活—恢復(fù)—抑制的趨勢(shì)。在培養(yǎng)期間,A1組與CK組的蔗糖酶活性差異性顯著(P<0.05),土壤蔗糖酶活性在5 d時(shí)顯著高于對(duì)照組,開始有顯著的激活趨勢(shì),到10 d時(shí)蔗糖酶活性最高為53.85 mg/kg,激活率達(dá)到169.94%,20 d時(shí)基本恢復(fù)到對(duì)照水平,30 d后呈現(xiàn)抑制狀態(tài),直到試驗(yàn)結(jié)束。
在土壤中種植大豆、加入100 mg/kg的咪唑乙煙酸,再加入短密木霉后,土壤蔗糖酶呈現(xiàn)激活—恢復(fù)—激活—抑制的趨勢(shì),5 d時(shí)蔗糖酶活性與對(duì)照組基本持平,在10 d時(shí),活性被激活,土壤蔗糖酶活性為60.09 mg/kg,激活率最高達(dá)201.21%,在20 d時(shí),蔗糖酶活性被抑制,蔗糖酶活性為68.13 mg/kg,抑制率最高達(dá)62.43%,在30 d,活性逐漸恢復(fù)后,在40 d又得到抑制。三者互作后,蔗糖酶活性均與對(duì)照組均有顯著的差異性(P<0.05)。
2.2短密木霉及短密木霉、大豆和咪唑乙煙酸三者相互作用對(duì)土壤過氧化氫酶活性的影響
由表3可知,在土壤中加入短密木霉后,土壤過氧化氫酶活性呈現(xiàn)出激活—抑制—恢復(fù)的趨勢(shì)。在培養(yǎng)期間,與CK組的過氧化氫酶活性均差異性顯著(P<0.05)。5 d時(shí)顯著高于對(duì)照組,土壤過氧
化氫酶活性為2.47 mg/g,激活率達(dá)5.71%,但到10~20 d時(shí),過氧化氫酶活性得到了抑制,酶活性最低達(dá)2.30 mg/g,抑制率最高達(dá)到17.86%,30 d時(shí)基本恢復(fù)到對(duì)照水平后又開始出現(xiàn)抑制現(xiàn)象。
在土壤中種植大豆、加入100 mg/kg的咪唑乙煙酸,再加入短密木霉后,土壤過氧化氫酶活性基本呈現(xiàn)抑制—恢復(fù)—激活的趨勢(shì)。5~30 d時(shí)土壤過氧化氫酶活性呈現(xiàn)抑制狀態(tài),而后恢復(fù)至對(duì)照水平,并有激活趨勢(shì), 20 d時(shí)土壤過氧化氫酶活性最低為2.43 mg/g,抑制率最高達(dá)到17.98%,40 d時(shí)土壤過氧化氫酶活性最高達(dá)2.70 mg/g,激活率最高達(dá)到9.46%。
3結(jié)論與討論
本研究表明:在土壤中加入短密木霉后,土壤蔗糖酶活性呈現(xiàn)出激活—恢復(fù)—抑制的趨勢(shì),且與對(duì)照組差異顯著(P<0.05)。過氧化氫酶活性呈現(xiàn)激活—抑制—恢復(fù)的趨勢(shì),且與對(duì)照組差異顯著(P<0.05)。根據(jù)課題組前期研究結(jié)果,加入短密木霉后,10 d時(shí)短密木霉數(shù)量最多,其后占比逐漸下降,且土壤中的真菌總數(shù)量恢復(fù)到對(duì)照水平[22]。上述結(jié)果與短密木霉在土壤中的數(shù)量變化有直接關(guān)系。這與陳建愛等[23]的研究結(jié)果基本一致,黃綠木霉T1010制劑處理日光溫室番茄連作土壤,可有效提高土壤酶活性,改善土壤生態(tài)環(huán)境。
在土壤中種植大豆、加入短密木霉,再加入100 mg/kg的咪唑乙煙酸三者相互作用后,土壤蔗糖酶活性呈現(xiàn)激活—恢復(fù)—激活—抑制的趨勢(shì),土壤過氧化氫酶活性呈現(xiàn)抑制—恢復(fù)—激活的趨勢(shì),且兩種土壤酶活性均與對(duì)照組有一定的差異性(P<0.05)。
【參考文獻(xiàn)】
[1]GARCIAGIL J C, PLAZA C, SOLERROVIRA P, et al. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass[J]. Soil Biology and Biochemmistry, 2000, 32(13): 1907-1913.
[2]BURGER M, JACKSON L E. Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates inorganic and conventional cropping systems[J]. Soil Biology and Biochemistry, 2003, 35(1): 29-36.
[3]張莉莉,陳利軍,劉桂芬,等.污染土壤的酶學(xué)修復(fù)研究進(jìn)展[J].應(yīng)用生態(tài)學(xué)報(bào),2003,14(12):2342-2346
ZHANG L L, CHEN L J, LIU G F, et al. Advance in enzymological remediation of polluted soils[J]. Chinese Journal of Applied Ecology, 2003, 14(12): 2342-2346.
[4]崔薈萍,趙桂琴,劉歡.除草劑對(duì)燕麥田土壤脲酶和堿性磷酸酶活性的影響[J].中國(guó)草地學(xué)報(bào),2014,36(1):37-43.
CUI H P, ZHAO G Q, LIU H. Effects of herbicide on the activities of urease and alkaline phosp hatase in oat field[J]. Chinese Journal of Grassland, 2014, 36(1): 37-43.
[5]莫晶,閆文德,劉曙光,等.油茶-花生間作土壤酶活性與養(yǎng)分的關(guān)系[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2017,37(6):89-95.
MO J, YAN W D, LIU S G, et al. Soil enzyme activities and their relations with soil fertility in Camellia oleifera peanut intercropping[J]. Journal of Central South University of Forest & Technology, 2017, 37(6): 89-95.
[6]曾巧云,莫測(cè)輝,蔡全英.農(nóng)業(yè)土壤中鄰苯二甲酸酯的污染現(xiàn)狀與危害[J].廣東農(nóng)業(yè)科學(xué),2009,45(7):90-92.
ZENG Q Y, MO C H, CAI Q Y. Current situation and harmfulness of phthalic acid esters in agricultural soil[J]. Guangdong Agricultural Sciences, 2009, 45(7): 90-92.
[7]程志明,顧保權(quán).咪唑啉酮類除草劑──咪草煙的合成[J].農(nóng)藥,2001,40(9):9-12.
CHENG Z M, GU B Q. The synthesis of herbicides imazethapyr[J]. Agrochemicals, 2001, 40(9): 9-12.
[8]史史偉.咪唑乙煙酸對(duì)土壤微生物、酶活性的影響及其降解真菌的篩選[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院, 2010.
SHI W. Effects of imazethapyr on soil microorganism, enzyme activity and isolation of imazethapyr degrading fungi[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010.
[9]PERUCCI P, SCARPONI L. Effects of the herbicide imazethapyr on soil microbial biomass and various soil enzyme activities[J]. Biology and Fertility of Soils, 1994, 17(3): 237-240.
[10]張昌朋,劉新剛,徐軍,等.咪唑乙煙酸對(duì)土壤微生物生態(tài)的影響[J].農(nóng)藥,2010,49(2):117-119.
ZHANG C P, LIU X G, XU J, et al. Effect of imazethapyr on soil microbial ecology[J]. Agrochemicals, 2010, 49(2): 117-119.
[11]劉維屏,鄭巍,宣日成,等.除草劑咪草煙在土壤上吸附-脫附過程及作用機(jī)理[J].土壤學(xué)報(bào),1998,35(4):475-481.
LIU W P, ZHENG W, XUAN R C, et al. Adsorption-desorption process and interaction mechanism of herbicide imazethapyr with soils[J]. Acta Pedologica Sinica, 1998, 35(4): 475-481.
[12]唐慶紅,張一賓.除草劑咪草煙的合成方法探討[J].上?;?,1998,23(13):31-33.
TANG Q H, ZHANG Y B. The method for synthesizing imazethapyr[J]. Shanghai Chemical Industry, 1998, 23(13): 31-33.
[13]孫建光,姜瑞波,任天志,等.我國(guó)農(nóng)田和水體污染及微生物修復(fù)前景[J].中國(guó)農(nóng)業(yè)資源與區(qū)劃,2008,29(1):41-47.
SUN J G, JIANG R B, REN T Z, et al. Prospect for farmland and water pollution and microorganism repair in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2008, 29(1): 41-47.
[14]范昆,王開運(yùn),王東,等.1,3-二氯丙烯對(duì)土壤脲酶和蔗糖酶活性的影響[J].農(nóng)藥學(xué)學(xué)報(bào),2006,8(2):139-142.
FAN K, WANG K Y, WANG D, et al. The effect of 1, 3-dichloropropene on activities of soil urease and invertase[J]. Chinese Journal of Pesticide Science, 2006, 8(2): 139-142.
[15]曹慧,孫輝,楊浩,等.土壤酶活性及其對(duì)土壤質(zhì)量的指示研究進(jìn)展[J].應(yīng)用與環(huán)境生物學(xué)報(bào).2003,9(1):105-109.
CAO H, SUN H, YANG H, et al. A review soil enzyme activity and its indication for soil quality[J]. Chinese Journal of Applied and Environmental Biology, 2003, 9(1): 105-109.
[16]BANDICK A K, DICK R P. Field management effects on soil enzyme activities[J]. Soil Biology and Biochemistry, 1999, 31(11): 1471-1479.
[17]ZIMMERMANN S, FREY B. Soil respiration and microbial properties in an acid forest soil: effects of wood ash[J]. Soil Biology and Biochemistry, 2002, 34(11): 1727-1737.
[18]劉昌玲,王國(guó)慶.細(xì)菌過氧化氫酶的分離、結(jié)晶及性質(zhì)[J].生物化學(xué)與生物物理進(jìn)展,1990,17(5):380-383.
LIU C L, WANG G Q. Isolation, crystallization and properties of bacterial catalase[J]. Progress in Biochemistry and Biophysics, 1990, 17(5): 380-383.
[19]黃永洪,花慧,沈國(guó)強(qiáng),等.豬肝過氧化氫酶提取條件的研究[J].生物技術(shù)通訊,2005,16(1):40-42.
HUANG Y H, HUA H, SHEN G Q, et al. Study on extraction of catalase from pig liver[J]. Letters in Biotechnology, 2005, 16(1): 40-42.
[20]關(guān)松蔭.土壤酶及其研究法[M].北京:農(nóng)業(yè)出版社,1986.
GUAN S Y. Soil enzymes and its methodlog[M]. Beijing: Agricultural Press, 1986.
[21]周禮愷.土壤酶學(xué)[M].北京:科學(xué)出版社, 1987.
ZHOU L K. Soil enzymology[M]. Beijing: Science Press, 1987.
[22]李志國(guó),霍璐陽,劉宇彤,等.短密木霉、大豆和咪唑乙煙酸對(duì)土壤真菌多樣性及農(nóng)藥殘留的影響[J].東北林業(yè)大學(xué)學(xué)報(bào).2018,46(3):87-91.
LI Z G, HUO L Y, LIU Y T, et al. Effects of Trichoderma brevicompactun, soybean, and imazethapr on soil fungal diversity and pesticide residues[J]. Journal of Northeast Forestry University, 2018, 46(3): 87-91.
[23]陳建愛,陳為京,楊煥明,等.黃綠木霉T1010對(duì)日光溫室耕層土壤酶活性的調(diào)控效應(yīng)[J].天津農(nóng)業(yè)科學(xué).2013,19(1):20-23.
CHEN J A, CHEN W J, YANG H M, et al. Regulating effect of Trichoderma aureoviride 1010 on enzyme activity in the solar-greenhouse soil[J]. Tianjin Agricultural Sciences, 2013, 19(1): 20-23.