劉攀道 黃睿 許文茸 羅佳佳 陳志堅 劉國道
摘? 要? 酸性磷酸酶(APase)是酸性條件下(pH < 7.0)能催化磷酸單酯或酸酐裂解從而釋放無機(jī)磷酸根離子的水解酶類。紫色酸性磷酸酶(Purple acid phosphatase,PAP)是一類特殊的酸性磷酸酶,其具有鮮明的特征,如:酶的提取液呈紫色或粉色、酶活性不受酒石酸鹽抑制、氨基酸序列具有5個保守結(jié)構(gòu)域和雙金屬離子催化中心等。已有的研究表明,紫色酸性磷酸酶在植物適應(yīng)低磷脅迫過程中發(fā)揮著重要作用。本文綜述了紫色酸性磷酸酶的生化特性、亞細(xì)胞定位、生物學(xué)功能以及最新研究進(jìn)展。
關(guān)鍵詞? 紫色酸性磷酸酶;有機(jī)磷;低磷脅迫;生物學(xué)功能
中圖分類號? Q945.78? ? ?文獻(xiàn)標(biāo)識碼? A
磷(phosphorus,P)是植物生長發(fā)育的限制性營養(yǎng)元素之一,參與植物的多種新陳代謝過程,如光合作用、能量傳輸、酶活性調(diào)節(jié)、膜磷脂與核酸的合成等[1]。無機(jī)可溶性磷酸鹽(inorganic phosphate,Pi)是植物根系能從土壤中吸收的主要磷形式,但在大多數(shù)耕作土壤中,Pi的濃度只有0.1~10 μmol/L,遠(yuǎn)低于植物最優(yōu)生長所需的Pi濃度(1 mmol/L)[2]。全球近70%的耕地存在有效磷缺乏問題,特別在酸性土壤中低磷脅迫尤為嚴(yán)重[3]。雖然土壤中Pi濃度低,但土壤中存在大量的有機(jī)磷,約占土壤全磷含量的30%~65%,主要以植酸磷(肌醇六磷酸)、DNA(脫氧核糖核酸)、ATP(腺嘌呤核苷三磷酸)和糖磷酯等形式存在[4]。有機(jī)磷難于被植物直接利用,只有被酸性磷酸酶降解后釋放出的Pi才能被植物根系吸收[5]。目前,已鑒定的參與植物適應(yīng)低磷脅迫的酸性磷酸酶,主要屬于紫色酸性磷酸酶(Purple acid phosphatase,PAP)家族[6]。本文將從生化特征、亞細(xì)胞定位及生物學(xué)功能等方面,系統(tǒng)介紹植物PAP相關(guān)研究領(lǐng)域近年來取得的進(jìn)展。
1? 植物紫色酸性磷酸酶的鑒定
酸性磷酸酶(Acid phosphatase,APase;E.C. 3.1.3.2)是一類能催化磷酸單酯或酸酐裂解從而釋放無機(jī)磷酸根離子且最適pH低于7.0的水解酶類[7]。對水稻(Oryza sativa)、小麥(Triticum aestivum)、玉米(Zea mays)、大豆(Glycine max)、菜豆(Phaseolus vulgaris)和柱花草(Stylosanthes guianensis)等的研究表明,增加酸性磷酸酶活性是這些植物中普遍存在的適應(yīng)低磷脅迫機(jī)制[8-13]。利用質(zhì)譜分析技術(shù),對低磷脅迫誘導(dǎo)增強(qiáng)表達(dá)的植物酸性磷酸酶蛋白進(jìn)行鑒定,結(jié)果發(fā)現(xiàn)其中絕大部分屬于PAP家族成員,如番茄(Lycopersicon esculentum)的LeSAP1和LeSAP2[14];擬南芥(Arabidopsis thaliana)的AtPAP12和AtPAP 26 [15];菜豆的PvPAP3[12];白花羽扇豆(Lupinus albus)的LaSAP2[16]等。根據(jù)這些被鑒定的植物PAP的氨基酸序列保守結(jié)構(gòu)域,通過生物信息學(xué)分析,已從不同植物中鑒定到大量的PAP或PAP-like蛋白。目前,在全基因組水平,已對擬南芥、水稻、大豆、玉米和鷹嘴豆(Cicer arietinum)的PAP編碼基因家族進(jìn)行了鑒定,它們分別有PAP家族成員29、26、35、33和25個[8, 10-11, 17-18]。如圖1所示,將擬南芥29個PAP和其他植物中一些已報道功能的PAP進(jìn)行氨基酸多序列比對,并構(gòu)建蛋白進(jìn)化樹,植物PAP蛋白可以被分為I、II和III共3個亞家族。I亞家族可進(jìn)一步被分為Ia-1、Ia-2、Ib-1和Ib-2四個子族;II亞家族可被分為IIa和IIb兩個子族;III亞家族可被分為IIIa和IIIb兩個子族(圖1)。
2? 紫色酸性磷酸酶的生化結(jié)構(gòu)特征
植物中被鑒定的第一個PAP蛋白是從菜豆中分離純化的KbPAP[19]。隨后,從哺乳動物、真菌和細(xì)菌中也鑒定到了PAP或PAP-like蛋白[20-22]。盡管不同物種之間PAP的蛋白同源性較低,但它們的氨基酸序列均存在5個保守結(jié)構(gòu)域,即DXG、GDXXY、GNH (D/E)、VXXH和GHXH(下劃線表示7個不變的氨基酸殘基)[23]。這7個保守的氨基酸殘基參與了Fe3+-X(X表示二價金屬離子Fe2+、Mn2+或Zn2+)雙金屬離子催化中心的形成[23-24]。在哺乳動物中,PAP雙金屬離子催化中心一般為Fe3+-Fe2+(即:二價金屬離子為Fe2+),而植物PAP的二價金屬離子是可變的,如菜豆KbPAP(即:PvPAP2)、大豆GmSAP和甘薯(Ipomoea batatas)IbPAP2的催化中心為Fe3+-Zn2+(即:二價金屬離子為Zn2+);但甘薯IbPAP1與黃花羽扇豆(Lupinus luteus)LlPPD1的催化中心為Fe3+-Mn2+(即:二價金屬離子為Mn2+)[25-28]。植物PAP雙金屬中心二價離子的可變性,表明其催化機(jī)制的復(fù)雜性[23]。
雖然哺乳動物PAP和植物的PAP都具有由2個夾心β折疊(β-α-β-α-β)構(gòu)成的保守催化結(jié)構(gòu)域,但兩者在分子量大小和低聚物結(jié)構(gòu)上卻存在明顯差異[24]。在哺乳動物和植物中,均存在一類小分子量PAP(35 ku左右),此類PAP以單體形式存在[23-24]。植物的小分子量PAP屬于III亞家族(圖1)。但除小分子量PAP之外,植物中還存在一類大分子量PAP,包括I亞家族PAP(約55 ku)和II亞家族PAP(約75 ku)(圖1),而哺乳動物沒有大分子量PAP[24]。植物的大、小分子量PAP的差異主要為兩個方面,一是大分子量PAP通常以二硫鍵或非共價結(jié)合的方式形成同質(zhì)二聚體或異質(zhì)二聚體,而小分子量PAP則以單體形式存在[23-24];二是大分子量PAP的N-末端存在一個非催化結(jié)構(gòu)域,而小分子量PAP無此結(jié)構(gòu)域[7]。目前,植物大分子量PAP的二聚體存在形式和N-末端非催化結(jié)構(gòu)域?qū)λ鼈兊纳飳W(xué)功能有何影響仍不清楚[7]。
3? 紫色酸性磷酸酶的生化酶學(xué)性質(zhì)
植物PAP對一系列天然或人工合成的磷酸化底物具有廣譜催化活性,包括硝基苯磷酸鹽(ρ-NPP)、磷酸化的能量分子(如ATP和無機(jī)焦磷酸)、磷酸化的糖類和磷酸化的氨基酸等[6-7]。其中,Ia亞家族的PAP普遍對ATP和PEP(磷酸烯醇丙酮酸鹽)具有強(qiáng)催化活性,如擬南芥的AtPAP10、AtPAP12、AtPAP25和AtPAP26[29-30];大豆的GmSAP[26];菜豆的KeACP(即:PvPAP1)和KbPAP(即:PvPAP2)[31-32];甘薯的IbPAP1[26];輪花大戟(Euphorbia characias)的EcPAP[33];洋蔥(Allium cepa)的AcPEPP[34]等。與Ia亞家進(jìn)化樹構(gòu)建采用MEGA 5軟件,PAP蛋白的前2個字母表示物種拉丁名簡寫。
族不同,Ib-1子族的PAP普遍能水解植酸磷底物,即具有植酸酶活性,如擬南芥的AtPAP15和AtPAP23[35-36];水稻的OsPAPhy_b[37];煙草(Nic oti ana tabacum)的NtPAP[38]、大豆的GmPhy[39];玉米的ZmPAPhy_b[37];大麥的HaPAPhy_a和HaPAPhy_b2[37];小麥的TaPAPhy_a1和TaPA Phy_b1[37]。因此,Ib-1子族的PAP也被稱為紫色酸性植酸酶(Purple acid phytase, PAPhy)[37]。
IIb亞家族的PAP具有核苷酸水解酶活性,根據(jù)其催化活性是否依賴金屬離子激活又可被分為兩類。第一類被命名為PPD(Diphosp honu cleo tide phosphatase/ phosphodiesterase,雙磷酸核苷磷酸酶/磷酸二酯酶),其催化活性依賴金屬離子激活,對綁定于核苷二磷酸的焦磷酸鍵及其他一些有機(jī)磷底物的磷酸二酯鍵具有高親和力,如黃花羽扇豆的LlPPD1和紫云英(Astragalus sinicus)的AsPPD1[28, 40];另一類被命名為NPP(Nucleotide pyrophosphatase/phosphodiesterases,核苷酸焦磷酸酶/磷酸二酯酶),其能催化核苷酸或核苷酸糖類的焦磷酸鍵/磷酸二酯鍵水解,但與PPD不同,NPP的催化活性不依賴于金屬離子激活,如:水稻的OsNPP1(即:OsPAP27b)、OsNPP2(即:OsPAP1b)和OsNPP6(即:OsPAP27a)[41]。此外,IIIb亞家族也有2個PAP被生化表征,即擬南芥的AtPAP17(即:AtACP5)和菜豆的PvPAP3,其中PvPAP3對ATP具有較強(qiáng)水解活性[12]。
近年來,關(guān)于PAP生化酶學(xué)特性的研究,除底物特異性外,對PAP抑制劑與催化劑的研究也取得了諸多進(jìn)展。PAP具有酸性磷酸酶的共性,即酶活性受其催化降解產(chǎn)物Pi的反饋抑制,菜豆的PvPAP3、番茄的LeSAP1、擬南芥的AtPAP25和AtPAP26均具有此特征[12, 14, 30]。但是,PAP也有其他酸性磷酸酶不具備的特性,即PAP的活性不受L-酒石酸鹽抑制[24]。此外,一些二價金屬離子對PAP的催化活性具有激活作用,如:Mg2+能增強(qiáng)PvPAP3、AtPAP26、LeSAP1和LeSAP2的催化活性[12, 14-15];而Mn2+能增強(qiáng)AcPEPP和TaPAPhy_a1催化活性[34-37]。
4? 植物紫色酸性磷酸酶的亞細(xì)胞定位
利用原位雜交、熒光蛋白標(biāo)記分析、蛋白質(zhì)譜分析等研究方法,來源于不同植物的PAP被證實能定位于細(xì)胞質(zhì)、液泡、細(xì)胞質(zhì)膜、細(xì)胞核、細(xì)胞壁、葉綠體、線粒體、質(zhì)外體、過氧化物酶體[7](圖2)。這些已被驗證亞細(xì)胞定位的PAP中,定位于細(xì)胞壁、質(zhì)外體或者根系分泌蛋白質(zhì)組的PAP最多,即屬于細(xì)胞分泌蛋白,如擬南芥的AtPAP10、AtPAP12、AtPAP25、AtPAP2 6 [15, 29-30];大豆的GmSAP和GmPAP1-like[42-43];水稻的OsPAP10c和OsPAP21b[44-45]等(圖2)。其次,已有多個PAP被報道定位于細(xì)胞質(zhì)膜,如少根紫萍(Spirodela oligorrhiza)的SoPAP[46];紫云英的AsPPD1[40];菜豆的PvPAP1和PvPAP3[12-47];柱花草的SgPAP7、SgPAP10和SgPAP26[48](圖2)。值得注意的是,一些PAP被證明具有多細(xì)胞器靶向定位的特征,如AtPAP26除定位于細(xì)胞壁外,也存在于液泡中[49];AtPAP7共定位于內(nèi)質(zhì)網(wǎng)和過氧化物酶體[50];AtPAP2依賴于C-末端的一段疏水性多肽靶向葉綠體外膜、線粒體外膜或細(xì)胞質(zhì)膜[51-52](圖2)。PAP亞細(xì)胞定位的多樣性暗示著其在植物生命活動中可能發(fā)揮著多樣化的生物學(xué)功能。
5? 紫色酸性磷酸酶參與植物適應(yīng)低磷脅迫
通過分子生物學(xué)、正向或反向遺傳學(xué)等研究方法,多個胞外PAP(定位于質(zhì)外體、細(xì)胞壁、細(xì)胞質(zhì)膜或根系分泌蛋白)已被證明在植物適應(yīng)低磷脅迫過程中發(fā)揮著重要作用[6]。將擬南芥根系分泌的3個主要PAP基因(AtPAP10、AtPAP12和AtPAP26)突變,將導(dǎo)致突變體對DNA和ADP的利用能力降低[29, 53];超量表達(dá)水稻的OsPAP10a、OsPAP10c和OsPAP21b,能顯著增強(qiáng)轉(zhuǎn)基因株系對外源ATP的利用[44-45, 54];我們課題組的研究中,利用菜豆毛根轉(zhuǎn)基因體系,分別超量表達(dá)GmPAP1-like、PvPAP1、PvPAP3、SgPAP7、SgPAP10和SgPAP26,能顯著提高轉(zhuǎn)基因材料對外源dNTP的利用能力[43, 47-48]。此外,少數(shù)幾個植物PAP被證明參與外源植酸磷的活化利用,包括截形苜蓿的MtPHY1、大豆的GmPAP4和GmPAP14[55-57]。除胞外PAP外,胞內(nèi)PAP也被認(rèn)為參與了植物對低磷脅迫的適應(yīng),如AtPAP26被證明參與衰老葉片液泡中貯存磷的活化利用[58]。
6? 紫色酸性磷酸酶的其他生物學(xué)功能
植物PAP除了在低磷脅迫下參與有機(jī)磷活化利用之外,已被證實還具有其他生物學(xué)功能。在Ia亞家族中,煙草的NtPAP12通過催化細(xì)胞壁中的α-木糖苷酶和β-葡糖苷酶脫磷酸化參與細(xì)胞壁的生物合成[59];AtPAP5參與調(diào)控擬南芥的抗病性[60];GmPAP3參與調(diào)控大豆的耐鹽性[61]。在Ib-1亞家族中,多個PAPhy被證明在種子或花粉萌發(fā)過程中,參與植物組織中儲藏植酸磷的活化,如AtPAP15、GmPhy、HaPAPhy_a、TaPAPhy_a1和TaPAPhy_b1等[37, 39, 62]。此外,AtPAP15還被報道參與抗壞血酸的合成[35]。在II亞家族中,AtPAP2被證實參與調(diào)控植物的碳代謝,超量表達(dá)AtPAP2能顯著提高轉(zhuǎn)基因擬南芥、馬鈴薯(Solanum tuberosum)和亞麻薺(Camelinasativa)的生物量[51, 63-64];AsPPD1參與調(diào)控紫云英根瘤的形成[40];OsNPP1則對水稻地上部淀粉的積累有負(fù)調(diào)控作用[41]。
7? 展望
雖然近年來植物PAP相關(guān)的研究已取得諸多進(jìn)展,但仍有許多科學(xué)問題有待更加深入的探索,主要包括以下幾個方面:(1)植物PAP基因的轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)研究。目前,僅擬南芥的AtPHR1和水稻的OsPHR2這2個轉(zhuǎn)錄因子,分別被證明靶向AtPAP10與OsPAP21b的啟動子,正調(diào)控PAP基因的表達(dá)[45, 65]。鑒定調(diào)控植物PAP的轉(zhuǎn)錄因子將有助于解析植物適應(yīng)低磷脅迫的分子網(wǎng)絡(luò)。(2)植物PAP蛋白的翻譯后修飾研究。已純化的植物PAP蛋白中普遍存在N-糖基化修飾的現(xiàn)象,如KeACP、AtPAP25、AtPAP26、LlPPD1、LeIAP、LeSAP1和LeSAP2等[6-7]。N-糖基化修飾對植物PAP的功能發(fā)揮有何調(diào)控作用將是今后的研究重點之一。(3)植物體內(nèi)PAP靶標(biāo)底物的鑒定。當(dāng)前對PAP的底物特異性研究,主要基于體外實驗,絕大多數(shù)PAP在植物活體內(nèi)直接催化的底物仍未鑒定,這阻礙了全面解析PAP的生物學(xué)功能[7]。PAP除了能水解有機(jī)磷底物供給植物所需的磷素營養(yǎng)外,一些PAP已被證明具有蛋白磷酸酶功能,如AtPAP25通過調(diào)控蛋白的脫磷酸化參與擬南芥適應(yīng)低磷脅迫[30]。此外,多個植物PAP除酸性磷酸酶活性外,已被證明具有堿性過氧化物酶活性,如菜豆的KeACP、番茄的LeIAP、擬南芥的AtPAP17和AtPAP26等[14, 24, 31, 66]。但PAP的堿性過氧化物酶活性在植物生長發(fā)育過程中的功能仍不清楚。隨著生命科學(xué)技術(shù)的進(jìn)步,這些問題有望在將來的研究中被解決。
參考文獻(xiàn)
梁翠月, 廖? 紅. 植物根系響應(yīng)低磷脅迫的機(jī)理研究[J]. 生命科學(xué), 2015, 27(3): 389-397.
Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource[J]. New Phytologist, 2003, 157: 423-447.
López-Arredondo D L, Leyva-González M A, González-Morales S I, et al. Phosphate nutrition: improving low-phosphate tolerance in crops[J]. Annual Review of Plant Biology, 2014, 65: 95-123.
Shen J, Yuan L, Zhang J, et al. Phosphorus dynamics: from soil to plant[J]. Plant Physiology, 2011, 156: 997-1005.
黃? 宇, 張海偉, 徐芳森. 植物酸性磷酸酶的研究進(jìn)展[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報, 2008, 27(1): 148-154.
Wang L, Liu D. Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants[J]. Plant Science, 2018, 271: 108-116.
Tian J, Liao H. The role of intracellular and secreted purple acid phosphatases in plant phosphorus scavenging and recycling[M]//Plaxton W C, Lambers H. Annual Plant Reviews, Volume 48: Phosphorus metabolism in plants. Hoboken, New Jersey: Wiley-Blackwell, 2015: 265-287.
Zhang Q, Wang C, Tian J, et al. Identification of rice purple acid phosphatases related to phosphate starvation signalling[J]. Plant Biology, 2011, 13: 7-15.
George T S, Gregory P J, Hocking P, et al. Variation in root-associated phosphatase activities in wheat contributes to the utilization of organic P substrates in vitro, but does not explain differences in the P-nutrition of plants when grown in soils[J]. Environmental and Experimental Botany, 2008, 64: 239-249.
González-Mu?oz E, Avenda?o-Vázquez A, Montes R A C, et al. The Maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase gene family[J]. Frontiers in Plant Science, 2015, 6: 341.
Li C, Gui S, Yang T, et al. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis[J]. Annals of Botany, 2012, 109: 275-285.
Liang C, Tian J, Lam H M, et al. Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization[J]. Plant Physiology, 2010, 152: 854-865.
劉攀道, 董榮書, 丁西朋, 等. 不同磷效率柱花草基因型對外源DNA活化利用能力的比較分析[J]. 分子植物育種, 2018, 16(4): 1085-1091.
Bozzo G G, Raghothama K G, Plaxton W C. Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersicon esculentum) cell cultures[J]. Biochemical Journal, 2004, 377: 419-428.
Tran H T, Qian W, Hurley B A, et al. Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana[J]. Plant, Cell & Environment, 2010, 33: 1789-1803.
Miller S S, Liu J, Allan D L, et al. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin[J]. Plant Physiology, 2001, 127: 594-606.
Li D, Zhu H, Liu K, et al. Purple acid phosphatases of Arabidopsis thaliana: comparative analysis and differential regulation by phosphate deprivation[J]. Journal of Biological Chemistry, 2002, 277: 27772–27781.
Bhadouria J, Singh A P, Mehra P, et al. Identification of purple acid phosphatases in chickpea and potential roles of CaPAP7 in seed phytate accumulation[J]. Scientific Reports, 2017, 7: 11012.
Beck J L, McConachie L A, Summors A C, et al. Properties of a purple phosphatase from red kidney bean: a zinc-iron metalloenzyme[J]. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1986, 869: 61–68.
Schenk G, Guddat L W, Ge Y, et al. Identification of mammalian-like purple acid phosphatases in a wide range of plants[J]. Gene, 2000, 250: 117-125.
Schenk G, Korsinczky M L J, Hume D A, et al. Purple acid phosphatases from bacteria: similarities to mammalian and plant enzymes[J]. Gene, 2000, 255: 419-424.
Flanagan J U, Cassady A I, Schenk G, et al. Identification and molecular modeling of a novel, plant-like, human purple acid phosphatase[J]. Gene, 2006, 377: 12-20.
Schenk G, Mitic N, Hanson G R, et al. Purple acid phosphatase: a journey into the function and mechanism of a colorful enzyme[J]. Coordination Chemistry Reviews, 2013, 257: 473-482.
Tran H T, Hurley B A, Plaxton W C. Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition[J]. Plant Science, 2010,179: 14-27.
Durmus A, Eicken C, Sift B H, et al. The active site of purple acid phosphatase from aweet potatoes (Ipomoea batatas): metal content and spectroscopic characterization[J]. European Journal of Biochemistry, 1999, 260: 709-716.
Schenk G, Ge Y, Carrington L E, et al. Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean[J]. Archives of Biochemistry and Biophysics,1999, 370: 183-189.
Schenk G, Gahan L R, Carrington L E, et al. Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphatase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 273-278.
Antonyuk S V, Olczak M, Olczak T, et al. The structure of a purple acid phosphatase involved in plant growth and pathogen defence exhibits a novel immunoglobulin-like fold[J]. IUCrJ, 2014, 1: 101-109.
Wang L, Li Z, Qian W, et al. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation[J]. Plant Physiology, 2011, 157: 1283-1299.
Del Vecchio H A, Ying S, Park J, et al. The cell wall-targeted purple acid phosphatase AtPAP25 is critical for acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation[J]. The Plant Journal, 2014, 80: 569-581.
Yoneyama T, Shiozawa M, Nakamura M, et al. Characterization of a novel acid phosphatase from embryonic axes of kidney bean exhibiting vanadate-dependent chloroperoxidase activity[J]. Journal of Biological Chemistry, 2004, 279: 37477–37484.
Cashikar A G, Kumaresan R, Rao N M. Biochemical characterization and subcellular localization of the red kidney bean purple acid phosphatase[J]. Plant Physiology, 1997, 114: 907-915.
Pintus F, Spano D, Corongiu S, et al. Purification, primary structure, and properties of Euphorbia characias latex purple acid phosphatase[J]. Biochemistry (Moscow), 2011, 76: 694-701.
Shinano T, Yonetani R, Ushihara N, et al. Characteristics of phosphoenolpyruvate phosphatase purified from Allium cepa[J]. Plant Science, 2001, 161: 861-869.
Liang C, Sun L, Yao Z, et al. Comparative analysis of PvPAP gene family and their functions in response to phosphorus deficiency in common bean[J]. PLoS One, 2012, 7: 65-65.
Liu P D, Xue Y B, Chen Z J, et al. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes[J]. Journal of Experimental Botany, 2016, 67: 4141-4154.
Hurley B A, Tran H T, Marty N J, et al. The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of Arabidopsis to nutritional phosphate deprivation[J]. Plant Physiology, 2010, 153: 1112-1122.
Kataya A R A, Schei E, Lillo C. Towards understanding peroxisomal phosphoregulation in Arabidopsis thaliana[J]. Planta, 2016, 243: 699-717.
Sun F, Suen P K, Zhang Y, et al. A dual-targeted purple acid phosphatase in Arabidopsis thaliana moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield[J]. New Phytologist, 2012, 194: 206-219.
Sun Q, Li J, Cheng W, et al. AtPAP2, a unique member of the PAP family, functions in the plasma membrane[J]. Genes. 2018, 9(5).
Robinson W D, Park J, Tran H T, et al. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana[J]. Journal of Experimental Botany, 2012, 63: 6531-6542.
Tian J, Wang C, Zhang Q, et al. Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice[J]. Journal of Integrative Plant Biology, 2012, 54: 631-639.
Xiao K, Harrison M J, Wang Z Y. Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis[J]. Planta, 2005, 222: 27-36.
Kong Y, Li X, Ma J, et al. GmPAP4, a novel purple acid phosphatase gene isolated from soybean (Glycine max), enhanced extracellular phytate utilization in Arabidopsis thaliana[J]. Plant Cell Reports, 2014, 33: 655-667.
Kong Y, Li X, Wang B, et al. The soybean purple acid phosphatase GmPAP14 predominantly enhances external phytate utilization in plants[J]. Frontiers in Plant Science, 2018, 9: 292.
Robinson W D, Carson I, Ying S, et al. Eliminating the purple acid phosphatase AtPAP26 in Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization[J]. New Phytologist, 2012, 196: 1024-1029.
Kaida R, Satoh Y, Bulone V, et al. Activation of β-glucan synthases by wall-bound purple acid phosphatase in tobacco cells[J]. Plant Physiology, 2009, 150: 1822-1830.
Ravichandran S, Stone S L, Benkel B, et al. Purple acid phosphatase 5 is required for maintaining basal resistance against pseudomonas syringae in Arabidopsis[J]. BMC Plant Biology, 2013, 13: 1-12.
Li W F, Shao G, Lam H M. Ectopic expression of GmPAP3 alleviates oxidative damage caused by salinity and osmotic stresses[J]. New Phytologist, 2008, 178: 80-91.
Kuang R, Chan K, Yeung E, et al. Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase activity, in Arabidopsis[J]. Plant Physiology, 2009, 151: 199-209.
Zhang Y, Yu L, Yung K F, et al. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield[J]. Biotechnology for Biofuels, 2012, 5:19.
Zhang Y, Sun F, Fettke J, et al. Heterologous expression of AtPAP2 in transgenic potato influences carbon metabolism and tuber development[J]. FEBS Letters, 2014, 588: 3726-3731.
Sun L, Song L, Zhang Y, et al. Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation[J]. Plant Physiology, 2016, 170: 499-514.
Del Pozo J C, Allona I, Rubio V, et al. A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions[J]. The Plant Journal, 1999, 19: 579-589.