国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

數(shù)字孿生的模型、問題與進(jìn)展研究

2019-06-11 08:27劉青劉濱王冠張宸梁知行張鵬
河北科技大學(xué)學(xué)報 2019年1期
關(guān)鍵詞:模型數(shù)字系統(tǒng)

劉青 劉濱 王冠 張宸 梁知行 張鵬

摘要:近年來,關(guān)于數(shù)字孿生的研究方興未艾。數(shù)字孿生作為一個新的范式或者方法體現(xiàn)出了巨大的潛力,但是,這一概念的內(nèi)涵和范圍尚不確定,尤其是對數(shù)字孿生模型概念的界定很不清晰。根據(jù)模式類別可以將其分為通用模型和專用模型,其中專用模型仍是當(dāng)前的研究熱點(diǎn),研究內(nèi)容主要體現(xiàn)為對具體項(xiàng)目使用數(shù)字孿生方法進(jìn)行建模,也包括對專用模型進(jìn)行開發(fā)。這些具體項(xiàng)目除了傳統(tǒng)制造業(yè)所涉及的零件測量和質(zhì)量控制,增材制造,設(shè)計和工作過程,以及系統(tǒng)管理外,還包括在生物醫(yī)藥、石油工程領(lǐng)域的應(yīng)用等。開發(fā)專用模型的工具和技術(shù)呈現(xiàn)多元化,有通用工業(yè)軟件、專用工業(yè)軟件、仿真平臺和自研二次開發(fā)工具等等。數(shù)字孿生通用模型的研究對象不針對某一具體項(xiàng)目,而是研究如何將模型受控元素表示為一組通用的對象以及這些對象之間的關(guān)系,從而在不同的環(huán)境之間為受控元素的管理和通信提供一種一致的方法。數(shù)字孿生通用模型的研究主要分為概念研究和通用模型的實(shí)現(xiàn)方法,兩者的研究熱度相當(dāng)。其中概念研究從宏觀角度的產(chǎn)品生命周期管理,到描述系統(tǒng)行為,如一般系統(tǒng)行為和系統(tǒng)重新配置,再到具體工作流,如設(shè)計方法、產(chǎn)品構(gòu)型管理、制造系統(tǒng)、制造過程等,研究內(nèi)容較為發(fā)散,尚沒有出現(xiàn)特別突出的熱點(diǎn)。關(guān)于數(shù)字孿生通用模型實(shí)現(xiàn)方面,主要研究了建模語言的構(gòu)建、模型開發(fā)方法的探索、具體工具的使用、元模型理念的植入和模型算法的探索。數(shù)字孿生模型是數(shù)字孿生研究的核心領(lǐng)域之一,其未來的研究重點(diǎn)是如何將不斷涌現(xiàn)的各不相同的數(shù)字孿生體的外部特征和內(nèi)在屬性歸納為可集成、可交互、可擴(kuò)展的模型,便于更高效地實(shí)現(xiàn)信息在物理世界和數(shù)字世界之間流動,從而實(shí)現(xiàn)數(shù)字孿生的普遍應(yīng)用,繼而支持CPS(網(wǎng)絡(luò)物理空間)和CPPS(網(wǎng)絡(luò)物理生產(chǎn)系統(tǒng))的建設(shè)。因此,數(shù)字孿生模型研究下一步需要解決的問題是如何對接標(biāo)準(zhǔn)參考架構(gòu),如德國提出的工業(yè)4.0參考架構(gòu)模型RAMI4.0和中國的智能制造系統(tǒng)架構(gòu)IMSA等;關(guān)于數(shù)字孿生模型需要建立統(tǒng)一的描述方法并確立一致的結(jié)論,以規(guī)范各自獨(dú)立發(fā)展建立起來的模型,從而改善模型的互操作性和可擴(kuò)展性,否則,隨著系統(tǒng)規(guī)模的擴(kuò)大模型效能會顯著下降;中國數(shù)字孿生模型的研究急需國產(chǎn)專業(yè)工業(yè)軟件和建模軟件的支持,以便中國學(xué)者深入開展更加符合國情的深入研究。

關(guān)鍵詞:系統(tǒng)建模;數(shù)字孿生模型;網(wǎng)絡(luò)物理空間;網(wǎng)絡(luò)物理生產(chǎn)系統(tǒng);工業(yè)4.0

中圖分類號:TB497; TP301.6文獻(xiàn)標(biāo)志碼:A

LIU Qing,LIU Bin,WANG Guan,et al.Research on Digital Twin: Model, problem and progress[J].Journal of Hebei University of Science and Technology,2019,40(1):68-78.Research on Digital Twin: Model, problem and progress

LIU Qing1, LIU Bin1, WANG Guan1, ZHANG Chen2,LIANG Zhixing3, ZHANG Peng4

(1.School of Economics and Management, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China; 2.Ilmenau University of Technology, Department of Mechanical Engineering, Ilmenau D-98693, Germany;3.Jizhou Hebei Middle School,Jizhou,Hebei 053200, China;4.Department of Rail Transit, Beijing ?Jiaotong ?Vocational ?and ?Technical ?College, Bejing,102200,China)

Abstract:In recent years, the research on Digital Twin is in the ascendant. As a new paradigm or concept, it shows great potential. However, the connotation and scope of the Digital Twin concept is still uncertain, especially the Digital Twin Model definition is not clear.

河北科技大學(xué)學(xué)報2019年第1期劉青,等:數(shù)字孿生的模型、問題與進(jìn)展研究According to the pattern category, the Digital Twin Model can be divided into general model and special model, in which the special model is still the focus of current research, and the research content is mainly embodied in the use of Digital Twin method to model specific projects. It also includes concept for developing specialized models. These specific projects in addition to the traditional manufacturing related to parts measurement and quality control, manufacturing, design and work processes, as well as system management, but also in the field of biomedical applications and applications for petroleum engineering and so on. There are many tools and techniques for developing special models, such as general industrial software, special industrial software, simulation platform and self-developed secondary development tools, etc.

The research object of the Digital Twin general model is not specific to a specific project, but how to represent the controlled elements of the model as a group of common objects and the relationships between these objects. This provides a consistent approach to the management and communication of controlled elements between different environments. The research on the general model is mainly divided into the conceptual research and the model implementation method; the research heat of the two directions is almost the same. Conceptual research ranges from product lifecycle management to system behavior description, such as general system behavior and system reconfiguration, and to product configuration management, to specific workflow, such as design methods, manufacturing systems and manufacturing processes. The research content is relatively divergent, and there is no particularly prominent hot spot. The research of Digital Twin general model implementation is mainly reflected in the modeling language construction, the model development methods exploration, the specific tools usage, the Meta-model concept implantation and the model algorithm exploration.

Digital Twin Model is one of the core areas of Digital Twin research. Its future research focuses on how to integrate the external features and intrinsic properties from different Digital Twin artifacts into a model with interoperability, interactivity and scalability for more efficiently realizing the information flow between the physical world and the digital world, thus achieving the universal Digital Twin application, and then supporting the CPS (Cyber Physical Space) and CPPS (Cyber Physical Production System) construction. To this end, the next problem in the Digital Twin Model needing to be solved first is how to dock the standard reference architecture, such as the RAMI4.0 (Reference Architecture Model Industrial 4.0) proposed by Germany and the IMSA (Intelligent Manufacturing System Architecture) by China, etc. Secondly, the Digital Twin Model needs a unified method to describe and it also needs consistent conclusions, in order to standardize the models established by independent development, thus improving the interoperability and scalability of the model. Otherwise, the performance of the model will decrease significantly as the system scales raise. Thirdly, the research on China's Digital Twin Model requires the support of domestic professional industrial software and modeling software, so that the Chinese scholars can carry out in-depth research that is more in line with national conditions.

Keywords:system modeling; Digital Twin Model; cyber-physical space; cyber-physical production system; industry 4.0

隨著信息技術(shù)水平的提高和數(shù)據(jù)處理能力的飛躍,將生產(chǎn)流程在內(nèi)的各種物理實(shí)體數(shù)字化已是大勢所趨[1-2]。

這一趨勢催生出的代表技術(shù)之一就是數(shù)字孿生(Digital Twin),經(jīng)過十?dāng)?shù)年的發(fā)展,從2017年起相關(guān)研究出現(xiàn)爆炸性的增長,隨著研究熱度的提升,這一概念的外延和內(nèi)涵不斷擴(kuò)展,從最開始的針對工業(yè)生產(chǎn)過程的新管理范式,發(fā)展到現(xiàn)在作為智慧城市的關(guān)鍵技術(shù),這個概念已經(jīng)表現(xiàn)出了很大的研究價值和社會價值。但是對于數(shù)字孿生概念本身,學(xué)術(shù)界還沒形成一致的理解,較通行的解釋即數(shù)字孿生指在數(shù)字虛擬空間定義的一個或一組虛擬事物,其與物理實(shí)體空間中的現(xiàn)實(shí)事物具有映射關(guān)系,且這種映射具備包括形狀、形態(tài)、行為、材質(zhì)等多維度、多角度上高度一致的信息[3-8],如圖1所示。在數(shù)字孿生的概念發(fā)展過程中,研究者們先后提出的各種模型還沒有得到明確界定,鑒于模型在數(shù)字孿生的關(guān)鍵技術(shù),如:信息交換、信息儲存和信息處理中的突出作用,不加以辨析地使用容易造成混淆,故很有必要對已提出的各種模型進(jìn)行比較研究。同樣,在探討數(shù)字孿生如何應(yīng)用時,也發(fā)現(xiàn)了模型與具體應(yīng)用相結(jié)合所產(chǎn)生的問題,關(guān)于其中一些問題的研究已經(jīng)有所進(jìn)展,這些工作同樣需要進(jìn)行總結(jié)歸納,以期為后續(xù)研究提供借鑒。

1數(shù)字孿生的整體研究進(jìn)展

不同于以往計算機(jī)輔助設(shè)計(CAD)為代表的數(shù)字化,也并非是以傳感器網(wǎng)絡(luò)為主要研究對象的物聯(lián)網(wǎng)解決方案,數(shù)字孿生有更廣泛的意涵和潛力[1]。數(shù)字孿生的發(fā)展以2017年劃界,可分為兩個階段:2017年以前,研究的數(shù)量較少,主要集中在概念的討論,提出了少數(shù)幾種模型,研究人員集中在歐美少數(shù)國家。2017年以后的研究數(shù)量有很大增長,中國也有一定數(shù)量的學(xué)者開始參與這項(xiàng)研究,研究者們除了繼續(xù)對概念進(jìn)行討論外,還提出新的模型、使用案例對數(shù)字孿生進(jìn)行驗(yàn)證、提出新的應(yīng)用框架與方式等等,也出現(xiàn)了對數(shù)字孿生成本問題的批評和反思。

河北科技大學(xué)學(xué)報2019年第1期劉青,等:數(shù)字孿生的模型、問題與進(jìn)展研究數(shù)字孿生這一概念最早出現(xiàn)在2003年,由GRIEVES[9]在美國密歇根大學(xué)的產(chǎn)品全生命周期管理課程中提出,當(dāng)時它只是一個與數(shù)字孿生涵義相近的描述。 隨后在2005年,GRIEVES[10]進(jìn)一步引申提出數(shù)字孿生是2個空間之間的映射。繼而,包括GRIEVES本人在內(nèi)開始有學(xué)者倡導(dǎo)將Digital Twin作為一種范式進(jìn)行詮釋和應(yīng)用[10-11]。2014年,CERRONE等[12]首次提出一種關(guān)于Digital Twin的有限元模型,2015年,第1個實(shí)現(xiàn)模型由GRIEVES[3]提出,稱作Digital Twin Implementation Model。同年,ROSEN等[13]提出Digital Twin的實(shí)現(xiàn)路徑應(yīng)為Modularity-Connectivity-Autonomy-Digital Twin,即模塊化-連通性-自治-數(shù)字孿生。2016年,KRAFT[14]提出Digital Twin 這種新興范式能夠在產(chǎn)品生命周期集中應(yīng)用建模能力、知識及工具管理。同年,SCHROEDER等[15]通過案例提出在網(wǎng)絡(luò)物理空間(cyber-physical system)使用Digital Twin概念模擬工業(yè)設(shè)備(傳感器、機(jī)器、CLPs)的虛擬部分,并提出一種基于Web服務(wù)的架構(gòu)用于訪問數(shù)據(jù),接著,SCHROEDER 等[16]進(jìn)一步提出一種基于AutomationML(automation modelling language,自動化建模語言)的交換數(shù)據(jù)模型,用于在Digital Twin和其他系統(tǒng)之間交換數(shù)據(jù)。

2017年,ALAM等[17]提出了基于云的Digital Twin架構(gòu)參考模型Cloud based CPS(C2PS)。BRENNER等[18]將Digital Twin用于ESB的物流智慧工廠。 同年,DEBROY等[19]開始嘗試將Digital Twin用于3D打印。FERGUSON等[20]引入西門子STAR CCM+作為工具,使用Digital Twin方法將設(shè)計方案在物理世界真實(shí)條件下的表現(xiàn)直接展示給設(shè)計者,從而增強(qiáng)產(chǎn)品開發(fā)組織的能力。GRAESSLER等[21]把數(shù)字孿生方法用于員工和生產(chǎn)系統(tǒng)之間的溝通協(xié)調(diào)。GRIEVES等[22]提出數(shù)字孿生的實(shí)質(zhì)是把數(shù)字信息嵌入在物理系統(tǒng)本身內(nèi),并在整個系統(tǒng)生命周期內(nèi)與該物理系統(tǒng)鏈接信息的“雙胞胎”,可以減輕復(fù)雜系統(tǒng)中不可預(yù)測的、不受歡迎的緊急情況。HEBER等[23]提出Digital Twin處理復(fù)雜性問題可以由區(qū)塊鏈進(jìn)行賦能。IGLESIAS等[24]提出將數(shù)字孿生用于增強(qiáng)傳統(tǒng)系統(tǒng)的工程分析流程。LI等[25]提出使用動態(tài)貝葉斯網(wǎng)絡(luò)(DBN)的概念建立健康監(jiān)測模型,用于每架飛機(jī)的診斷和預(yù)測,并且通過飛機(jī)機(jī)翼疲勞裂紋擴(kuò)展實(shí)例說明了所提出的方法。MAGARGLE等[26]提出了將模型驅(qū)動開發(fā)用于Digital Twin。PLANA[27]提出對工業(yè)生產(chǎn)來說,Digital Twin的最大意義在于預(yù)測。RENZI等[28]提出將Digital Twin結(jié)合全局性能模型global performance model用于integrity mangagement(完整性管理),可以實(shí)現(xiàn)對資產(chǎn)進(jìn)行自動連續(xù)評估。SCHLEICH等[29]把生產(chǎn)過程管理中Digital Twin的reference model方法進(jìn)行歸納整理,認(rèn)為Digital Twin應(yīng)具有4種特性,即scalability,interoperability,expansibility,fidelity(可伸縮性、互操作性、可擴(kuò)展性、保真度)。SESHADRI等[30]提出通過綜合結(jié)構(gòu)健康管理(SHM)工具和多物理場模型實(shí)現(xiàn)Digital Twin,對航班在正常和不利條件下的受損情況進(jìn)行準(zhǔn)確檢測和預(yù)測。SOEDERBERG等[31]探討了在個性化生產(chǎn)中,如何從設(shè)計、生產(chǎn)前過程到生產(chǎn)過程中對產(chǎn)品物理幾何尺寸使用Digital Twin方法進(jìn)行實(shí)時幾何保證(Geometry Assurance)。SUN等[32]提出使用數(shù)字雙胞胎在線分析,可以用于提高裝配流線的吞吐量。TAVARES等[33]基于Digital Twin方法開發(fā)了MVV Model(model-view-view model),通過使用SARKKIS robotics simulator構(gòu)建模擬器從而試圖尋找一種能夠代表任何工業(yè)工作單元的解決方案。UHLEMANN等[34]分析了當(dāng)前生產(chǎn)過程中多模態(tài)數(shù)據(jù)采集方法的實(shí)用方法、要求和限制,提出通過用于生產(chǎn)過程的Digital Twin方法來實(shí)現(xiàn)生產(chǎn)系統(tǒng)及其數(shù)字等效物的耦合,以此作為規(guī)劃方法優(yōu)化的基礎(chǔ),從而通過對Digital Twin的創(chuàng)造,將數(shù)據(jù)采集時間實(shí)現(xiàn)延遲最小化。他的后續(xù)研究還進(jìn)一步提出了一個基于Digital Twin的學(xué)習(xí)工廠,來展示其實(shí)時數(shù)據(jù)采集和后續(xù)基于數(shù)據(jù)處理的潛力與優(yōu)點(diǎn)[35]。 UM等[36]提出一套面向Digital Twin方法的實(shí)例化通用數(shù)據(jù)模型自動設(shè)置數(shù)字環(huán)境,該環(huán)境基于AutomationML且具備多個裝配模塊。VACHLEK等[37]在PS(prodution simulation,生產(chǎn)模擬)中使用Digital Twin的概念,對汽車行業(yè)內(nèi)現(xiàn)有的生產(chǎn)結(jié)構(gòu)如何通過增強(qiáng)生產(chǎn)和規(guī)劃策略來最有效地利用資源進(jìn)行了探索。WAGNER等[38]提出一個通過Digital Twin實(shí)現(xiàn)滿足工業(yè)4.0條件的工廠架構(gòu)。WERMEFJORD等[39]提出了用于實(shí)現(xiàn)幾何保證方向的Digital Twin所需要的檢查策略,描述了各個部件的形狀以及如何收集、存儲和利用該數(shù)據(jù)的必要輸入方法。YUN等[40]提出了一套結(jié)合Digital Twin方法的駕駛輔助系統(tǒng)。ZAKRAJSEK等[41]提出了一套Digital Twin Model,用于Touchdown Wear Testing 著陸磨損測試。ZHANG等[42]嘗試通過基于數(shù)據(jù)庫和3D圖形引擎進(jìn)行二次開發(fā)建立仿真平臺,從而使用Digital Twin理念對一條中空玻璃生產(chǎn)線的設(shè)計進(jìn)行多目標(biāo)優(yōu)化。陶飛等[43]將信息物理融合作為智能制造落地的關(guān)鍵技術(shù),提出通過物理融合、模型融合、圖2以F15戰(zhàn)斗機(jī)為例的數(shù)字孿生模型

數(shù)據(jù)融合和服務(wù)融合來建立數(shù)字孿生車間。陶飛等[44]在后續(xù)研究中嘗試建立了一間基于Digital Twin的數(shù)字孿生車間。陶劍等[45]結(jié)合Digital Thread(數(shù)字線索)和Digital Twin對生產(chǎn)生命周期過程進(jìn)行了歸納。于勇等[46]參考關(guān)于F15戰(zhàn)斗機(jī)的研究提出將構(gòu)建基于本體的產(chǎn)品數(shù)字孿生模型可以與相應(yīng)的構(gòu)型數(shù)據(jù)關(guān)聯(lián)在一起,如圖2所示。實(shí)際的物理產(chǎn)品研制過程中的相關(guān)技術(shù)狀態(tài)數(shù)據(jù)也可以與之建立關(guān)聯(lián)關(guān)系。

2017年也有文獻(xiàn)對數(shù)字孿生進(jìn)行另類思考,如WEST等[47]通過詳細(xì)的財務(wù)分析,質(zhì)疑Digital Twin的成本和效益不成比例。

2018年后,研究的廣度和深度都有所提升,截至到本文收稿時,這一年的研究發(fā)表數(shù)量已超過2018年之前的歷史總和。其中ANDERL等[48]提出Digital Twin需要進(jìn)行水平和垂直整合的理念。AYANI等[49]提出在機(jī)器修復(fù)過程中加入數(shù)字孿生方法進(jìn)行仿真可提高效能。BOTKINA等[50]建立了針對切削工具的一個數(shù)字孿生體。BROSINSKY等[51]展望了電力系統(tǒng)控制中心的發(fā)展,提出了使用數(shù)字雙胞胎的新概念來設(shè)計控制中心架構(gòu)。CORONADO等[52]描述了由Android設(shè)備和云計算工具提供支持的新MES(制造執(zhí)行系統(tǒng))的開發(fā)和實(shí)現(xiàn),繼而將來自MES的數(shù)據(jù)與來自機(jī)器工具的MTConnect數(shù)據(jù)相關(guān)聯(lián),以支持Digital Twin的發(fā)展。

DAWKINS等[53]考察了位于英國伊麗莎白女王奧林匹克公園的東部地區(qū)新的UCL校園的Digital Twin創(chuàng)建和使用過程。GERIS等[54]提出了將Digital Twin應(yīng)用于醫(yī)學(xué)工程領(lǐng)域。GRAESSLER等[55]研究了同時包含一個工作場所和與一名員工互動的Digital Twin,探討了其對現(xiàn)有技術(shù)裝置控制系統(tǒng)產(chǎn)生影響的可能性。GUO等[56]提出了一種基于Digital Twin的工廠設(shè)計,以提升設(shè)計師快速評估不同的設(shè)計并找到設(shè)計缺陷的能力,由此節(jié)省時間并助益于設(shè)計項(xiàng)目的完善。HAAG等[57]構(gòu)建了一個數(shù)字孿生體:cyber-physical bending beam test bench(網(wǎng)絡(luò)物理彎曲梁試驗(yàn)臺)。HE等[58]將數(shù)字孿生方法應(yīng)用到超高壓電力網(wǎng)格的管理監(jiān)控。HU等[59]開發(fā)并研究了一種構(gòu)建基于云的數(shù)字孿生(CB Digital Twin)的新方法,以適應(yīng)數(shù)字孿生高效整合進(jìn)入網(wǎng)絡(luò)-物理云制造(CPCM)系統(tǒng),符合相應(yīng)的要求如減少開銷及節(jié)省資源。KUNATH等[60]討論了一種基于制造系統(tǒng)的數(shù)字孿生決策支持系統(tǒng),重點(diǎn)是該系統(tǒng)在訂單管理過程中的概念框架和潛在應(yīng)用。 LIU等[61]提出了一種由Digital Twin驅(qū)動的設(shè)計方法,用于快速個性化設(shè)計自動化流水作業(yè)制造系統(tǒng),通過該系統(tǒng)將位于現(xiàn)實(shí)世界的制造系統(tǒng)進(jìn)行虛擬,使用虛擬模型驗(yàn)證并彌合其設(shè)計與真實(shí)制造系統(tǒng)之間的差距。LIU等[62]探討了Digital Twin用于飛機(jī)預(yù)測性維護(hù)的概念和相關(guān)框架。LOHTANDER等[63]研究并描述了MMU(微制造單元)模型所需的主要特征和限制,繼而將MMU模型作為一個整體元素,通過使用Digital Twin方法,最終將微制造單元的真實(shí)行為表現(xiàn)在數(shù)字模型上。LUO等[64]提出了一個CNCMT(computer numerical control machine tool,計算機(jī)數(shù)控機(jī)器工具)面向Digital Twin建模和應(yīng)用的框架,運(yùn)用統(tǒng)一建模的多域建模方法提出了語言和制圖策略,利用Digital Twin策略研究故障診斷和預(yù)測,并借助案例進(jìn)行了驗(yàn)證。MACCHI等[65]研究了Digital Twin在資產(chǎn)生命周期管理中在支持決策方面的作用。MILLER等[66]提出使用一種空間增強(qiáng)計算機(jī)輔助設(shè)計模型,來改善與數(shù)字孿生模型互連性相關(guān)的非幾何數(shù)據(jù)。NAPLEKOV等[67]通過結(jié)合血流動力學(xué)和剪切應(yīng)力的研究成果,成功創(chuàng)建出冠狀心臟血管的Digital Twin。PADOVANO等[68]研究了“服務(wù)導(dǎo)向的數(shù)字孿生”,將Digital Twin作為服務(wù)提供者。QI等[69]比較了大數(shù)據(jù)和數(shù)字孿生之間的差異、互補(bǔ)性以及如何將它們整合到一起。SAINI等[70]對石油鉆井的輸送過程進(jìn)行了Digital Twin的創(chuàng)建、實(shí)施和測試。SCAGLIONI等[71]研究了作為機(jī)床工作過程的Digital Twin設(shè)置的基本組,并開發(fā)了機(jī)床動態(tài)模型Mandelli M5。SIERLA等[72]研究了使用Digital Twin自動執(zhí)行裝配規(guī)劃并協(xié)調(diào)制造單元中的生產(chǎn)資源。TALKHESTANI等[73]提出了一個基于數(shù)字雙胞胎的模型集成在PLM(product lifecycle management,產(chǎn)品生命周期管理)中的工程概念,以及IT-Platform和Anchor-Point方法用于在數(shù)字模型和物理系統(tǒng)之間的協(xié)同,以檢測機(jī)電數(shù)據(jù)結(jié)構(gòu)的差異。TAO等[74]針對復(fù)雜設(shè)備的預(yù)測和健康管理提出了5種模型,即Digital Twin包括PE,VE,Ss,DD,CN,其中PE是物理實(shí)體模型(physical entity model),VE是虛擬設(shè)備模型(virtual equipment model),Ss指服務(wù)模型(services model),DD指數(shù)字孿生數(shù)據(jù)模型(digital twin data model),CN是連接模型(connection model)。VATHOOPAN等[75]引入了一種新的模塊化糾正性維護(hù)方法,使用了數(shù)字雙胞胎自動化模塊。ZHENG等[76]探討了全參數(shù)虛擬建模的實(shí)現(xiàn)過程和Digital Twin應(yīng)用與子系統(tǒng)的構(gòu)建思路,建立并研究了焊接生產(chǎn)線的Digital Twin案例。ZHUANG等[77]提出了一個數(shù)字框架,用于構(gòu)建復(fù)雜產(chǎn)品裝配車間的數(shù)字孿生智能生產(chǎn)管理和控制方法,并在此基礎(chǔ)上提出了在衛(wèi)星裝配車間場景中的基于數(shù)字孿生對詳細(xì)實(shí)施過程進(jìn)行智能生產(chǎn)管理和控制的方法。戴晟等[78]對數(shù)字孿生和數(shù)字樣機(jī)進(jìn)行了比較,提出了數(shù)字孿生下一步的發(fā)展趨勢。德勤[1]分析了數(shù)字孿生蘊(yùn)含的商業(yè)價值。郭東升等[79]以企業(yè)航天結(jié)構(gòu)件制造車間為案例,展開數(shù)字孿生技術(shù)在制造車間的應(yīng)用驗(yàn)證,通過對案例結(jié)果的對比與分析,驗(yàn)證了數(shù)字孿生制造車間可有效地提高生產(chǎn)效率。林雪萍等[80-81]分析梳理了Digital Twin相關(guān)的概念及其對制造業(yè)的意義。秦曉珠等[82]提出將Digital Twin理念用于物質(zhì)文化遺產(chǎn)保護(hù)領(lǐng)域的框架。于勇等[83]探討了Digital Twin用于工藝設(shè)計的方法。張玉良等[84]探討了面向航天器在軌裝配的數(shù)字孿生技術(shù)。

除了上述針對個別問題的研究外,還有一些研究從不同角度對數(shù)字孿生進(jìn)行了綜述。NEGRI等[4]分析了科學(xué)文獻(xiàn)中Digital Twin的定義,其從最初的航空領(lǐng)域概念轉(zhuǎn)化到制造領(lǐng)域的最新解釋,更具體地說,是在工業(yè)4.0和智能制造研究中的涵義。KRITZINGER等[5]對數(shù)字孿生文獻(xiàn)進(jìn)行分析后,得出對數(shù)字孿生研究現(xiàn)狀的總結(jié):大多數(shù)(55%)的評論文獻(xiàn)可歸類為“概念”類型,其中一些包含簡要的案例研究,但其主要部分是概念開發(fā)和描述,而且其中大部分概念表明,有關(guān)數(shù)字孿生的研究尚處于起步階段,許多研究人員目前正在推出各種概念。26%的文獻(xiàn)可歸類為案例研究,其中重點(diǎn)主要是描述案例研究本身以及討論其結(jié)果。陶飛等[6]分析了數(shù)字孿生的概念以及應(yīng)用情況。張龍[7]分析了智能制造和數(shù)字孿生的關(guān)系。趙敏[8]研究分析了數(shù)字孿生的英文概念和中文概念的差異。

2數(shù)字孿生模型的理論研究進(jìn)展

2.1數(shù)字孿生模型文獻(xiàn)比較

在上述82篇文獻(xiàn)中,有31篇涉及到了模型或模型開發(fā),占總數(shù)的37.8%,說明模型的研究在數(shù)字孿生研究中比較受關(guān)注。表1中列出了對數(shù)字孿生模型相關(guān)文獻(xiàn)如模型名稱、提出者及模式等相關(guān)信息的比較。

2.2數(shù)字孿生模型研究的現(xiàn)狀分析

根據(jù)表1中論及的研究現(xiàn)狀,其中通用模型的概念研究有8篇,占全部模型研究的25.8%,這些研究各有側(cè)重點(diǎn),從宏觀的產(chǎn)品生命周期管理到描述系統(tǒng)行為,如一般系統(tǒng)行為和系統(tǒng)重新配置,再到產(chǎn)品構(gòu)型管理和具體工作流,如設(shè)計方法、制造系統(tǒng)、制造過程等。這些研究已取得一定進(jìn)展,但在描述方法上還遠(yuǎn)沒有達(dá)到統(tǒng)一,也不涉及真正的實(shí)現(xiàn)方法。

有7篇研究涉及了通用模型的實(shí)現(xiàn)方法,占全部研究的22.6%,是對未來模型在數(shù)字孿生領(lǐng)域如何進(jìn)一步應(yīng)用的有益探索,其中應(yīng)用最多的建模語言是AutomationML,此外還有UML,SysML和XML,也進(jìn)行了MBD(基于模型的開發(fā)方法)的應(yīng)用探索,在具體工具的選擇上有直接基于CAD制作插件plug-in的研究,也有利用專用工具如Qfsm,6DOF,Work Cell Simulator和Eye Shot Ultimate 10等進(jìn)行開發(fā)的研究。還有個別研究嘗試了使用元模型的理念。模型算法呈現(xiàn)多元化,涉及到的主要有貝葉斯網(wǎng)絡(luò)、模糊邏輯等。

剩余的16篇文獻(xiàn)都是以專用模型為研究重點(diǎn),其中15篇文獻(xiàn)聚焦于對某個具體系統(tǒng)或工程項(xiàng)目實(shí)現(xiàn)數(shù)字孿生方法上,占專用模型研究的93.75%,在全部模型研究中占有一半數(shù)量,這說明當(dāng)前模型實(shí)現(xiàn)的研究熱點(diǎn)在于具體項(xiàng)目使用數(shù)字孿生方法的建模上。這些專用模型的用途除了傳統(tǒng)的關(guān)于制造業(yè)的涉及零件測量和質(zhì)量控制(3篇)、增材制造(2篇)、設(shè)計和工作過程(3篇)以及系統(tǒng)管理(3篇)外,已不僅僅限于制造業(yè),如有2篇文獻(xiàn)探討在生物醫(yī)藥領(lǐng)域的應(yīng)用,1篇文獻(xiàn)探討鉆井平臺上輸送過程的數(shù)字孿生,此外還有1篇文獻(xiàn)探討使用Simplorer (ANSYS, 2016)進(jìn)行專用模型開發(fā)的方法。

專業(yè)模型研究使用的工具更加多元化,有西門子的STAR CCM +,Inverter base on Siemens 840D axis control scheme,ANSYS Fluent 14.0,MWorks, MTConnect protocol,MTCAgent,F(xiàn)lexsim等。使用到的模型和建模語言有Finite Element Model, Modelica Language,XML等。

綜上所述,關(guān)于數(shù)字孿生模型已經(jīng)開展了一定的研究,取得較大進(jìn)展的主要是各個方向的輔助技術(shù),如物理行為研究、無損材料測定技術(shù)、量化誤差與置信評估研究以及參數(shù)的確定、行為約束的構(gòu)建以及模型精度的驗(yàn)證,但整體上還沒有形成一致的結(jié)論[6],對于作為數(shù)字孿生核心要素之一的模型目前也沒有統(tǒng)一的描述方法。

3數(shù)字孿生模型研究存在的問題

首先,數(shù)字孿生從它誕生以來就不是孤立存在的,而是建設(shè)CPS(網(wǎng)絡(luò)物理空間)和CPPS(網(wǎng)絡(luò)物理生產(chǎn)系統(tǒng))的一部分[8],數(shù)字孿生模型也同樣如此。德國提出了工業(yè)4.0的參考架構(gòu)模型RAMI4.0[85],如圖3所示。2018年中國出臺的國家智能制造體系建設(shè)標(biāo)準(zhǔn)指南中也提出了一種智能制造系統(tǒng)架構(gòu)IMSA[86],如圖4所示。數(shù)字孿生模型需要符合上述架構(gòu)模型的要求,這方面的研究目前還不多見。

其次,因?yàn)闆]有統(tǒng)一的描述方法和一致的結(jié)論,在此背景下各自獨(dú)立發(fā)展建立起來的數(shù)字孿生模型不論是通用模型還是專用模型,在數(shù)字孿生的4大特征之中(可伸縮性、互操作性、可擴(kuò)展性、保真度)[29],互操作性和可擴(kuò)展性的實(shí)現(xiàn)是有難度的,這一問題將隨著系統(tǒng)規(guī)模的擴(kuò)大而更加顯著。

再次,綜合研究現(xiàn)狀可以發(fā)現(xiàn),中國數(shù)字孿生模型的研究嚴(yán)重缺乏國產(chǎn)專業(yè)工業(yè)軟件和建模軟件的支持,相關(guān)軟件是中國學(xué)者深入開展符合國情研究的一塊短板。

4未來研究展望

為了在理論和實(shí)踐中解決數(shù)字孿生模型研究存在的問題,需要繼續(xù)深入開展以下相關(guān)研究。

1)數(shù)字孿生模型與參考架構(gòu)模型的融合

目前出現(xiàn)的各種參考架構(gòu)模型普遍是宏觀結(jié)構(gòu)和建設(shè)愿景,為了使數(shù)字孿生模型與其匹配,還需要從2個方向進(jìn)行研究,即參考架構(gòu)模型可操作性詳細(xì)模型的設(shè)計以及數(shù)字孿生模型的重構(gòu)。

2)數(shù)字孿生模型的統(tǒng)一描述方法的構(gòu)建

模型統(tǒng)一描述方法在一些領(lǐng)域,如計算機(jī)軟件開發(fā)等已經(jīng)基本實(shí)現(xiàn),通過使用UML,SYSML等統(tǒng)一建模語言以及從實(shí)踐中總結(jié)而來的面向?qū)ο箝_發(fā)、模型驅(qū)動開發(fā)等方法體系,可以高效地將反映現(xiàn)實(shí)世界具體需求的系統(tǒng)轉(zhuǎn)化為可集成、可交互、可擴(kuò)展的抽象模型系統(tǒng),其效率大大超過通過簡單代碼的堆疊而進(jìn)行的具體系統(tǒng)的構(gòu)建。數(shù)字孿生模型的進(jìn)一步發(fā)展同樣需要對統(tǒng)一建模語言、統(tǒng)一建模方法進(jìn)行探索。

3)建模工具軟件和工業(yè)軟件的開發(fā)

中國工業(yè)應(yīng)用軟件的整體水平相對落后,尤其體現(xiàn)在涉及工業(yè)設(shè)計、生產(chǎn)制造系統(tǒng)、關(guān)鍵控制系統(tǒng)等的軟件方面。為數(shù)字孿生提供支持離不開建模工具軟件的進(jìn)步,因此對相關(guān)軟件的研究不僅有著理論意義也有著重大現(xiàn)實(shí)意義。

5結(jié)語

應(yīng)用數(shù)字孿生技術(shù)不但可以利用人類已有理論和知識建立虛擬模型,而且可以利用虛擬模型的仿真技術(shù)探討和預(yù)測未知世界,發(fā)現(xiàn)和尋找更好的方法與途徑[6]。作為一種新興的工具,數(shù)字孿生的進(jìn)步依賴學(xué)術(shù)界和工業(yè)界對數(shù)字孿生模型的進(jìn)一步探索。這種探索不僅對數(shù)字孿生的發(fā)展有著直接意義,還將有力地促進(jìn)CPS和CPPS的形成,最終大大提升整個人類認(rèn)識和改造物理世界的能力。

筆者總結(jié)了數(shù)字孿生理論研究的進(jìn)展,也分析了其模型研究的現(xiàn)狀、問題和不足,同時從智能制造全局的角度出發(fā),提出數(shù)字孿生模型下一步發(fā)展的重點(diǎn),期望能為相關(guān)學(xué)者進(jìn)一步開展數(shù)字孿生理論、模型開發(fā)和應(yīng)用研究提供啟發(fā)及參考。

參考文獻(xiàn)/References:

[1]德勤. 制造業(yè)如虎添翼:工業(yè)4.0與數(shù)字孿生[R]. Deloitt:德勤大學(xué)出版社, 2018.

[2]王飛躍, 張軍, 張俊, 等. 工業(yè)智聯(lián)網(wǎng):基本概念、關(guān)鍵技術(shù)與核心應(yīng)用[J]. 自動化學(xué)報, 2018, 44(9): 1606-1617.

WANG Feiyue, ZHANG Jun, ZHANG Jun, et al. Industrial internet of minds: Concept, technology and application[J]. Acta Automa-tica Sinica, 2018, 44(9): 1606-1617.

[3]GRIEVES M. Mitigating systems complexity unintended systems emergent behaviors through NASA''s digital twin strategy[C]// PI Congress Dusseldorf.[S.l.]:[s.n.], 2015.

[4] NEGRI E, FUMAGALLI L, MACCHI M. A review of the roles of digital twin in CPS-based production systems[J]. Procedia Manufacturing, 2017, 11: 939-948.

[5]KRITZINGER W, KARNER M, TRAAR G, et al. Digital twin in manufacturing: A categorical literature review and classification[J]. IFAC-PapersOnLine, 2018, 51(11): 1016-1022.

[6] 陶飛, 劉蔚然, 劉檢華, 等. 數(shù)字孿生及其應(yīng)用探索[J]. 計算機(jī)集成制造系統(tǒng), 2018, 24(1): 1-18.

TAO Fei, LIU Weiran, LIU Jianhua, et al. Digital twin and its potential application exploration[J]. Computer Integrate Manufacturing Systems, 2018, 24(1): 1-18.

[7]張龍. 從智能制造發(fā)展看數(shù)字孿生[J]. 軟件和集成電路, 2018(9): 59-62.

[8]趙敏. 探求數(shù)字孿生的根源與深入應(yīng)用[J]. 軟件和集成電路, 2018(9): 50-58.

[9] GRIEVES M. PLM-beyond lean manufacturing[J]. Manufacturing Engineering, 2003, 130(3): 23-25.

[10]GRIEVES M W. Product lifecycle management: The new paradigm for enterprises[J]. International Journal of Product Development, 2005, 2(1/2): 71-84.

[11]GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and U.S. air force vehicles[C]// 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA.[S.l.]:[s.n.], 2012: 1818.

[12]CERRONE A, HOCHHALTER J, HEBER G, et al. On the effects of modeling as-manufactured geometry: Toward digital twin[J]. International Journal of Aerospace Engineering, 2014,2014:1-10.

[13]ROSEN R, von WICHERT G, LO G, et al. About the importance of autonomy and digital twins for the future of manufacturing[J]. IFAC-PapersOnLine, 2015, 48(3): 567-572.

[14]KRAFT E M. The air force digital thread/digital twin-life cycle integration and use of computational and experimental knowledge[C]// 54th AIAA Aerospace Sciences Meeting.[S.l.]:[s.n.], 2016: 0897.

[15]SCHROEDER G, STEINMETZ C, PEREIRA C E, et al. Visualising the digital twin using web services and augmented reality[C]// 2016 IEEE 14th International Conference on Industrial Informatics (INDIN). [S.l.]:[s.n.],2016: 522-527.

[16]SCHROEDER G N, STEINMETZ C, PEREIRA C E, et al. Digital twin data modeling with automationml and a communication methodology for data exchange[J]. IFAC-PapersOnLine, 2016, 49(30): 12-17.

[17]ALAM K M, SADDIK A E. C2ps: A digital twin architecture reference model for the cloud-based cyber-physical systems[J]. IEEE Access, 2017, 5: 2050-2062.

[18]BRENNER B, HUMMEL V. Digital twin as enabler for an innovative digital shopfloor management system in the ESB logistics learning factory at reutlingen-university[J]. Procedia Manufacturing, 2017, 9: 198-205.

[19]DEBROY T, ZHANG W, TURNER J, et al. Building digital twins of 3D printing machines[J]. Scripta Materialia, 2017, 135: 119-124.

[20]FERGUSON S, BENNETT E, IVASHCHENKO A. Digital twin tackles design challenges[J]. World Pumps, 2017(4): 26-28.

[21]GRAESSLER I, POEHLER A. Integration of a digital twin as human representation in a scheduling procedure of a cyber-physical production system[C]// 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM).[S.l.]:[s.n.], 2017: 289-293.

[22]GRIEVES M, VICKERS J.Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems[J]. Transdisciplinary Perspectives on Complex Systems, 2017: 85-113.

[23]HEBER D, GROLL M. Towards a digital twin: How the blockchain can foster E/E-traceability in consideration of model-based systems engineering[C]// Proceedings of the 21st International Conference on Engineering Design (ICED 17). Vancouver:[s.n.], 2017: 321-330.

[24]IGLESIAS D, BUNTING P, ESQUEMBRI S, et al. Digital twin applications for the JET divertor[J]. Fusion Engineering Design, 2017, 125: 71-76.

[25]LI C, MAHADEVAN S, LING Y, et al. A dynamic bayesian network approach for digital twin[C]// 19th AIAA Non-Deterministic Approaches Conference.[S.l.]:[s.n.], 2017: 1566.

[26]MAGARGLE R, JOHNSON L, MANDLOI P, et al. A simulation-based digital twin for model-driven health monitoring and predictive maintenance of an automotive braking system[C]//The 12th International Modelica Conference. Prague:[s.n.], 2017: 35-46.

[27]PLANA R. 工業(yè)新宣言:數(shù)字孿生與生態(tài)系統(tǒng)[J]. 軟件和集成電路, 2017(8): 92-93.

[28]RENZI D, MANIAR D, MCNEILL S, et al. Developing a digital twin for floating production systems integrity management[C]// OTC Brasil.[S.l.]:[s.n.], 2017:10.4043/28012-MS.

[29]SCHLEICH B, ANWER N, MATHIEU L, et al. Shaping the digital twin for design and production engineering[J]. CIRP Annals, 2017, 66(1): 141-144.

[30]SESHADRI B R, KRISHNAMURTHY T. Structural health management of damaged aircraft structures using digital twin concept[C]// 25th AIAA/AHS Adaptive Structures Conference. [S.l.]:[s.n.], 2017: 1675.

[31]SOEDERBERG R, WAERMEFJORD K, CARLSON J S, et al. Toward a digital twin for real-time geometry assurance in individualized production[J]. CIRP Annals, 2017, 66(1): 137-140.

[32]SUN Heqing, LI Cheng, FANG Xinyu, et al. Optimized throughput improvement of assembly flow line with digital twin online analytics[C]// 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). [S.l.]:[s.n.], 2017: 1833-1837.

[33]TAVARES P, SILVA J A, COSTA P, et al. Flexible work cell simulator using digital twin methodology for highly complex systems in industry 4.0[C]// Iberian Robotics conference. [S.l.]:[s.n.], 2017: 541-552.

[34]UHLEMANN T H-J, LEHMANN C, STEINHILPER R. The digital twin: Realizing the cyber-physical production system for industry 4.0[J]. Procedia CIRP, 2017, 61: 335-340.

[35]UHLEMANN T H-J, SCHOCK C, LEHMANN C, et al. The digital twin: Demonstrating the potential of real time data acquisition in production systems[J]. Procedia Manufacturing, 2017, 9: 113-120.

[36]UM J, WEYER S, QUINT F. Plug-and-simulate within modular assembly line enabled by digital twins and the use of automationML[J]. IFAC-PapersOnLine, 2017, 50(1): 15904-15909.

[37]VACHLEK J, BARTALSKY L, ROVNY O, et al. The digital twin of an industrial production line within the industry 4.0 concept[C]// 2017 21st International Conference on Process Control (PC). [S.l.]:[s.n.] ,2017: 258-262.

[38]WAGNER C, GROTHOFF J, EPPLE U, et al. The role of the industry 4.0 asset administration shell and the digital twin during the life cycle of a plant[C]// 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). [S.l.]:[s.n.], 2017: 1-8.

[39]WERMEFJORD K, SODERBERG R, LINDKVIST L, et al. Inspection data to support a digital twin for geometry assurance[C]// ASME 2017 International Mechanical Engineering Congress and Exposition. [S.l.]:[s.n.],2017: 70398.

[40]YUN S, PARK J H, KIM W T. Data-centric middleware based digital twin platform for dependable cyber-physical systems[C]// 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN). [S.l.]:[s.n.] ,2017: 922-926.

[41]ZAKRAJSEK A J, MALL S. The development and use of a digital twin model for tire touchdown health monitoring[C]// 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. [S.l.]:[s.n.], 2017: 0863.

[42]ZHANG Hao, LIU Qiang, CHEN Xin, et al. A digital twin-based approach for designing and multi-objective optimization of hollow glass production line[J]. IEEE Access, 2017, 5: 26901-26911.

[43]陶飛, 程穎, 程江峰, 等. 數(shù)字孿生車間信息物理融合理論與技術(shù)[J]. 計算機(jī)集成制造系統(tǒng), 2017, 23(8): 1603-1611.

TAO Fei, CHENG Ying, CHENG Jiangfeng, et al.Theories and technologies for cyber-physical fusion in digital twin shop-floor[J].Computer Integrated Manufacturing Systems, 2017, 23(8): 1603-1611.

[44]陶飛, 張萌, 程江峰, 等. 數(shù)字孿生車間——一種未來車間運(yùn)行新模式[J].計算機(jī)集成制造系統(tǒng), 2017, 23(1): 1-9.

TAO Fej, ZHANG Meng, CHENG Jiangfeng, et al.Digital twin workshop: A new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23(1): 1-9.

[45]陶劍, 戴永長, 魏冉. 基于數(shù)字線索和數(shù)字孿生的生產(chǎn)生命周期研究[J].航空制造技術(shù), 2017 (21): 26-31.

TAO Jian, DAI Yongchang, WEI Ran. Study on production lifecycle based on digital thread and digital twin[J]. Aeronautical Manufacturing Technology, 2017(21): 26-31.

[46]于勇, 范勝廷, 彭關(guān)偉,等. 數(shù)字孿生模型在產(chǎn)品構(gòu)型管理中應(yīng)用探討[J]. 航空制造技術(shù), 2017(7): 41-45.

YU Yong, FAN Shengting, PENG Guanwei, et al. Study on application of ?digital twin model in product configuration management[J]. Aeronautical Manufacturing Technology, 2017(7): 41-45.

[47]WEST T D, BLACKBURN M. Is digital thread/digital twin affordable? A systemic assessment of the cost of DoDs latest manhattan project[J]. Procedia Computer Science, 2017,114:47-56.

[48]ANDERL R, HAAG S, SCHUETZER K, et al. Digital twin technology:An approach for industrie 4.0 vertical and horizontal lifecycle integration[J]. Information Technology, 2018, 60(3): 125-132.

[49]AYANI M, GANEBACK M, NG A H C. Digital twin: Applying emulation for machine reconditioning[J].Procedia CIRP,2018,72: 243-248.

[50]BOTKINA D, HEDLIND M, OLSSON B, et al. Digital twin of a cutting tool[J]. Procedia CIRP, 2018, 72: 215-218.

[51]BROSINSKY C, WESTERMANN D, KREBS R. Recent and prospective developments in power system control centers: Adapting the digital twin technology for application in power system control centers[C]// 2018 IEEE International Energy Conference (ENERGYCON). [S.l.]:[s.n.],2018: 1-6.

[52]CORONADO P D U, LYNN R, LOUHICHI W, et al. Part data integration in the shop floor digital twin: Mobile and cloud technologies to enable a manufacturing execution system[J]. Journal of Manufacturing Systems, 2018, 48:25-33.

[53]DAWKINS O, DENNETT A, HUDSON-SMITH A. Living with a Digital Twin: Operational Management and Engagement Using IoT and mixed realities at UCLs Here East Campus on the Queen Elizabeth Olympic Park[R]. [S.l.]:[s.n.], 2018.

[54]GERIS L, LAMBRECHTS T, CARLIER A, et al. The future is digital: In silico tissue engineering[J]. Current Opinion in Biomedical Engineering, 2018, 6:92-98.

[55]GRAESSLER I, POEHLER A. Intelligent control of an assembly station by integration of a digital twin for employees into the decentralized control system[J]. Procedia Manufacturing, 2018, 24: 185-189.

[56]GUO Jiapeng, ZHAO Ning, SUN Lin, et al. Modular based flexible digital twin for factory design[J]. Journal of Ambient Intelligence Humanized Computing, 2018: 1-12.

[57]HAAG S, ANDERL R. Digital twin:Proof of concept[J]. Manufacturing Letters, ?2018, 15: 64-66.

[58]HE Yuan, GUO Junchen, ZHENG Xiaolong. From surveillance to digital twin: Challenges and recent advances of signal processing for industrial internet of things[J]. IEEE Signal Processing Magazine, 2018, 35(5): 120-129.

[59]HU L, NGUYEN N T, TAO W, et al. Modeling of cloud-based digital twins for smart manufacturing with mt connect[J]. Procedia Manufacturing, 2018, 26: 1193-1203.

[60]KUNATH M, WINKLER H. Integrating the digital twin of the manufacturing system into a decision support system for improving the order management process[J]. Procedia CIRP, 2018, 72(1): 225-231.

[61]LIU Qiang, ZHANG Hao, LENG Jiewu, et al. Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system[J]. International Journal of Production Research, 2018: 1471243.

[62]LIU Z, MEYENDORF N, MRAD N. The role of data fusion in predictive maintenance using digital twin[C]// AIP Conference Proceedings.[S.l.]:[s.n.], 2018: 020023.

[63]LOHTANDER M, AHONEN N, LANZ M, et al. Micro manufacturing unit and the corresponding 3D-model for the digital twin[J]. Procedia Manufacturing, 2018, 25: 55-61.

[64]LUO Weichao, HU Tianliang, ZHANG Chengrui, et al. Digital twin for CNC machine tool: Modeling and using strategy[J]. Journal of Ambient Intelligence Humanized Computing, 2018: 1-12.

[65]MACCHI M, RODA I, NEGRI E, et al. Exploring the role of digital twin for asset lifecycle management[J]. IFAC-PapersOnLine, 2018, 51(11): 790-795.

[66]MILLER A M, ALVAREZ R, HARTMAN N. Towards an extended model-based definition for the digital twin[J]. Computer-Aided DesignApplications, 2018: 1-12.

[67]NAPLEKOV I, ZHELEZNIKOV I, PASHCHENKO D, et al. Methods of computational modeling of coronary heart vessels for its digital twin[C]// MATEC Web of Conferences.[S.l.]:[s.n.], 2018: 01009.

[68]PADOVANO A, LONGO F, NICOLETTI L, et al. A digital twin based service oriented application for a 4.0 knowledge navigation in the smart factory[J]. IFAC-PapersOnLine, 2018, 51(11): 631-636.

[69]QI Qinglin, TAO Fei. Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison[J]. IEEE Access, 2018, 6: 3585-3593.

[70]SAINI G, ASHOK P, VAN OORT E, et al. Accelerating well construction using a digital twin demonstrated on unconventional well data in north america[C]// Unconventional Resources Technology Conference. Houston:[s.n.],2018: 3264-3276.

[71]SCAGLIONI B, FERRETTI G. Towards digital twins through object-oriented modelling: A machine tool case study[J]. IFAC-PapersOnLine, 2018,51(2): 613-618.

[72]SIERLA S, KYRKI V, AARNIO P, et al. Automatic assembly planning based on digital product descriptions[J]. Computers in Industry, 2018, 97: 34-46.

[73]TALKHESTANI B A, JAZDI N, SCHLOEGL W, et al. Consistency check to synchronize the digital twin of manufacturing automation based on anchor points[J]. Procedia CIRP, 2018, 72: 159-164.

[74]TAO Fei, ZHANG Meng, LIU Yushan, et al. Digital twin driven prognostics and health management for complex equipment[J]. CIRP Annals, 2018,67(1): 169-172.

[75]VATHOOPAN M, JOHNY M, ZOITL A, et al. Modular fault ascription and corrective maintenance using a digital twin[J]. IFAC-PapersOnLine, 2018, 51(11): 1041-1046.

[76]ZHENG Yu, YANG Sen, CHENG Huanchong. An application framework of digital twin and its case study[J]. Journal of Ambient Intelligence Humanized Computing, 2018: 1-13.

[77]ZHUANG Cunbo, LIU Jianhua, XIONG Hui. Digital twin-?based smart production management and control framework for the complex product assembly shop-floor[J]. International Journal of Advanced Manufacturing Technology, 2018, 96(1/2/3/4): 1149-1163.

[78]戴晟, 趙罡, 于勇, 等. 數(shù)字化產(chǎn)品定義發(fā)展趨勢:從樣機(jī)到孿生[J]. 計算機(jī)輔助設(shè)計與圖形學(xué)學(xué)報, 2018, 30(8): 1554-1562.

DAI Sheng, ZHAO Gang, YU Yong, et al. Trend of digital product definition: From mock-up to twin[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(8): 1554-1562.

[79]郭東升, 鮑勁松, 史恭威, 等. 基于數(shù)字孿生的航天結(jié)構(gòu)件制造車間建模研究[J]. 東華大學(xué)學(xué)報(自然科學(xué)版), 2018, 44(4): 578-585.

GUO Dongsheng, BAO Jinsong, SHI Gongwei, et al. Research on modeling of aerospace structural parts manufacturing workshop based on digital twin[J]. Journal of Donghua University(Natural Science), 2018, 44(4): 578-585.

[80]林雪萍. 數(shù)字孿生,神助制造業(yè)[J]. 企業(yè)研究, 2018 (10): 12-15.

[81]林雪萍, 趙光. CIO必讀:論數(shù)字孿生的十大關(guān)系[J].軟件和集成電路, 2018 (9): 34-41.

[82]秦曉珠, 張興旺. 數(shù)字孿生技術(shù)在物質(zhì)文化遺產(chǎn)數(shù)字化建設(shè)中的應(yīng)用[J]. 情報資料工作, 2018(2): 103-111.

QIN Xiaozhu, ZHANG Xingwang. Application of digital twin technology in the digital construction of material cultural heritage[J]. Information and Documentation Services, 2018(2): 103-111.

[83]于勇, 胡德雨, 戴晟, 等. 數(shù)字孿生在工藝設(shè)計中的應(yīng)用探討[J]. 航空制造技術(shù), 2018, 61(18): 26-33.

YU Yong, HU Deyu, DAI Sheng, et al. Study on application of digital twin in process planning[J]. Aeronautical Manufacturing Technology, 2018, 61(18): 26-33.

[84]張玉良, 張佳朋, 王小丹, 等. 面向航天器在軌裝配的數(shù)字孿生技術(shù)[J]. 導(dǎo)航與控制, 2018, 17(3): 75-82.

ZHANG Yuliang, ZHANG Jiapeng, WANG Xiaodan, et al. Digital twin technology for spacecraft on-orbit assembly[J]. Navigation and Control, 2018,17(3): 75-82.

[85]ZVEI. The Reference Architectural Model Industrie 4.0 (RAMI 4.0)[EB/OL]. https://www.zvei.org/en/press-media/publications/the-reference-architectural-model-industrie-40-rami-40/, 2015-04.

[86]工業(yè)和信息化部、國家標(biāo)準(zhǔn)化管理委員會.國家智能制造標(biāo)準(zhǔn)體系建設(shè)指南[EB/OL]. http://www.miit.gov.cn/n1146285/n1146352/n3054355/n3057585/n3057589/c6013753/part/6013772.pdf,2018-10-12.

猜你喜歡
模型數(shù)字系統(tǒng)
自制空間站模型
一種無人機(jī)緩沖系統(tǒng)
品“助讀系統(tǒng)”之妙
直擴(kuò)系統(tǒng)中的窄帶干擾抑制
直擴(kuò)系統(tǒng)中的窄帶干擾抑制
答數(shù)字
模型小覽(二)
圓周運(yùn)動與解題模型
數(shù)字看G20
離散型隨機(jī)變量分布列的兩法則和三模型
达孜县| 高安市| 乐昌市| 凤庆县| 石首市| 丰原市| 隆子县| 东丰县| 威远县| 巍山| 巨鹿县| 祁门县| 伽师县| 南昌市| 山东省| 马山县| 崇州市| 永兴县| 永安市| 安国市| 伊宁市| 洛浦县| 宁乡县| 红安县| 涿鹿县| 岳普湖县| 习水县| 夏津县| 高阳县| 独山县| 宿迁市| 西乡县| 开原市| 浙江省| 博罗县| 屏东县| 陈巴尔虎旗| 汤阴县| 望江县| 嵊州市| 乌兰浩特市|