王毅 陳威 孔祥燕 張朝祥 張樹林 王永良
摘 ?要: 無屏蔽低溫超導(dǎo)心磁圖儀在臨床應(yīng)用推進中逐漸凸顯環(huán)境適應(yīng)性問題,需要對安裝地點進行全面的電磁環(huán)境和地坪震動評估。通過分析心磁圖儀系統(tǒng)理論輸出模型和已具備的噪聲抑制手段,低頻的環(huán)境磁場和震動仍是系統(tǒng)輸出的重要干擾因素。采用磁通門梯度計和加速度計,基于LabVIEW平臺研制開發(fā)環(huán)境監(jiān)測系統(tǒng),實地獲取應(yīng)用環(huán)境的磁場、磁場梯度和地坪震動信息,通過分析采樣數(shù)據(jù)的時域、頻域特征和樣本統(tǒng)計分布特征,優(yōu)選出符合條件的場地,目前已完成兩家醫(yī)院選址評估。心磁系統(tǒng)環(huán)境噪聲采樣經(jīng)多周期平均處理后優(yōu)于2.5 pT,滿足心磁采樣要求,目前兩家醫(yī)院累計完成臨床心磁采樣700余例。結(jié)果表明,此環(huán)境評估方法將有助于加速心磁圖儀應(yīng)用推廣和國內(nèi)首個心磁數(shù)據(jù)庫的籌建。
關(guān)鍵詞: 超導(dǎo)心磁圖儀; 臨床應(yīng)用; 環(huán)境評估; 磁場梯度; 地坪震動; 心磁采樣
中圖分類號: TN03?34; TM936 ? ? ? ? ? ? ? ? ?文獻標(biāo)識碼: A ? ? ? ? ? ? ? ? ? ?文章編號: 1004?373X(2019)10?0001?04
Environmental assessment method for application of
superconducting magnetocardiography
WANG Yi1,2,3, CHEN Wei1,2, KONG Xiangyan1,2,3, ZHANG Chaoxiang1,2, ZHANG Shulin1,2, WANG Yongliang1,2
(1. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of
Sciences, Shanghai 200050, China; 2. Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai 200050, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract: The environmental adaptability problem gradually emerges in the advancement of clinical applications of the unshielded low?temperature superconducting magnetocardiography (MCG), so it is necessary to conduct comprehensive evaluation of electromagnetic environment and ground vibration for installation sites. It is found that the low?frequency environment magnetic field and vibration are considered as the important interference factors of the system output by analyzing the theoretical output model of the MCG system and the available noise suppression methods. The environment monitoring system is developed on the basis of the LabVIEW platform by using the fluxgate gradiometer and accelerometer to obtain the information of magnetic field, magnetic field gradient and ground vibration in the application environment on site. The sites in accordance with the conditions are optimally selected by analyzing the time domain and frequency domain characteristics of the sampling data, and sample statistical distribution characteristics. The site selection assessment of two hospitals has been completed up to now. The environmental noise sampling of the MCG system after multi?period average processing is better than 2.5 pT, which can satisfy the MCG sampling requirement. More than 700 cases of clinical MCG sampling have been completed in the two hospitals up to now. The results show that the environmental assessment method can help speed up the application and promotion of the MCG and the preparation of the first MCG database in China.
Keywords: superconducting MCG; clinical application; environmental assessment; magnetic field gradient; ground vibration; MCG sampling
超導(dǎo)心磁圖儀是通過測量心臟電生理活動產(chǎn)生的磁場進行功能成像的新型醫(yī)療影像設(shè)備。與傳統(tǒng)心電圖和冠脈造影等手段相比,超導(dǎo)心磁圖具有靈敏度高、特異性好、完全無創(chuàng)、無輻射、無需外加激勵磁場等優(yōu)點,其與結(jié)構(gòu)組織影像結(jié)合使用完成心臟疾病早期診斷,有良好臨床應(yīng)用價值和商業(yè)前景[1?5]。
超導(dǎo)心磁圖儀采用極高磁靈敏度的低溫超導(dǎo)量子干涉器件(Superconducting Quantum Interference Device,SQUID)探測心磁信號。成人心磁信號典型強度為數(shù)十pT(10-12 Τ),遠小于μT(10-5 Τ)量級的城市環(huán)境磁場噪聲,使得獲取高信噪比的心磁信號面臨極大挑戰(zhàn)。
傳統(tǒng)心磁測量需在造價昂貴的電磁屏蔽室內(nèi)進行,嚴(yán)重約束了心磁圖儀的推廣,使得無屏蔽心磁圖儀方案迅速發(fā)展。心磁圖儀應(yīng)用環(huán)境多處于城市樓宇建筑中,環(huán)境的電磁場、震動和溫濕度等都是影響系統(tǒng)性能的潛在因素。其中地球磁場、城市磁場噪聲為主的環(huán)境磁場和震動是主要影響因素。
由于SQUID技術(shù)應(yīng)用的特殊性,臨床應(yīng)用推進中,無屏蔽心磁系統(tǒng)對環(huán)境適應(yīng)性問題逐漸顯現(xiàn)。開展環(huán)境特征研究和評估:一方面,將有助于選址和干擾源的定位排查;另一方面,將輔助系統(tǒng)適用性優(yōu)化。文獻[6?8]分別針對環(huán)境磁場和震動對心磁圖儀影響開展深入研究。國內(nèi)同濟大學(xué)、中科院上海微系統(tǒng)所的科研人員針對環(huán)境磁場抑制研究已取得有效成果[9?11]。采用磁場和震動多傳感參量融合的方法,同時獲取多參量信息,更有助于全面環(huán)境評估。
為了滿足自主研制的多通道心磁圖儀臨床應(yīng)用的選址時環(huán)境評估需求,在保證測試精度和評估效率前提下,本文采用磁通門梯度計和加速度計,基于LabVIEW平臺研制環(huán)境評估系統(tǒng),實地獲取應(yīng)用環(huán)境的磁場場強、梯度和地坪震動信息。目前已完成兩家醫(yī)院選址評估,心磁圖儀系統(tǒng)運行良好。
1 ?測試系統(tǒng)和分析方法
1.1 ?測試原理和系統(tǒng)軟硬件
1.1.1 ?測試原理
超導(dǎo)心磁圖儀系統(tǒng)由SQUID磁傳感器、讀出控制采集電路和計算機等組件構(gòu)成,并輔助有低溫和機械系統(tǒng)。心磁信號采樣是使用超導(dǎo)心磁圖儀系統(tǒng)記錄一定時長心臟磁場強度的空間分布。
無屏蔽心磁圖儀系統(tǒng)主要由SQUID二階硬件梯度計和參考磁強計構(gòu)成,系統(tǒng)輸出可以等效為二階軟件梯度計模型,其理論輸出[Vo]為:
[Vo=VG2-k1,k2,k3·VBx,VBy,VBz-1] (1)
式中:[VG2]是二階硬件梯度計輸出電壓;[VBx],[VBy],[VBz]是三軸磁強計x,y,z軸參考電壓;[k1],[k2],[k3]是軟件算法中[VBx],[VBy],[VBz]參量的可變系數(shù)。
將式(1)在三軸磁強計所在[z0]平面泰勒展開,理論輸出[Vo]可簡化為:
[Vo=k′1?Bz0z0?z+k′2?2Bz0z0?z2] (2)
式中,[k′1]和[k′2]是系數(shù),且[k′1?k′2]。
由式(2)可見,環(huán)境磁場的空間分布,尤其是強電磁脈沖引起的磁場空間梯度分布驟變是影響無屏蔽心磁測量的直接因素,其有可能直接導(dǎo)致心磁信號畸變,或SQUID無法鎖定工作,外界磁矩變動引起的心磁信號基線不穩(wěn);同時,心磁系統(tǒng)機械支架的震動,使SQUID傳感器產(chǎn)生相對微位移切割環(huán)境磁場磁感線,引入噪聲。
為了獲取高信噪比心磁信號,針對不同頻段干擾,系統(tǒng)裝備不同抑制手段,如采用多層超級絕緣包覆無磁杜瓦,實現(xiàn)對射頻干擾抑制;采用數(shù)字信號處理技術(shù),實現(xiàn)對高頻開關(guān)脈沖完全消除、部分濾除低頻干擾(尤其是心磁信號頻段:0.1~100 Hz);采用減震材料,實現(xiàn)對無磁杜瓦的震動部分減弱。雖取得一定效果,仍急需一套完整的評估方法和測試系統(tǒng),實現(xiàn)對低頻段應(yīng)用環(huán)境磁場、一階梯度和震動的監(jiān)測,滿足臨床心磁系統(tǒng)選址的迫切需求。
1.1.2 ?測試系統(tǒng)軟硬件
環(huán)境磁場測試評估系統(tǒng)由下位機硬件部分和上位機軟件組成,系統(tǒng)功能框圖如圖1所示。
圖1 ?測試系統(tǒng)功能框圖
下位機主要實現(xiàn)數(shù)據(jù)采集編碼功能:使用磁通門梯度計和加速度計獲取磁場梯度和震動信號,對模擬信號預(yù)處理并數(shù)字編碼,以數(shù)字信號形式傳至上位機。上位機是基于LabVIEW平臺的測控分析軟件,實現(xiàn)采樣信號的實時顯示、文件存儲和分析評估功能[12?15]。
磁場測量采用Bartington Grad?03?500M型三軸磁通門梯度計,其磁通門傳感器為1 nT分辨率,100 μT量程,DC 2 kHz(-3 dB)帶寬特性,滿足測試需求。震動測量采用941B型單軸超低頻測振儀[16],其具有10-6 m/s2分辨率,10-6 m/s2量程,0.25~80 Hz(-3 dB)帶寬特性,滿足測試需求。數(shù)據(jù)采集設(shè)備是由外部模擬信號轉(zhuǎn)換為數(shù)字信號的核心裝置。采用NI cDAQ?9174型數(shù)據(jù)采集系統(tǒng),多插槽設(shè)計可擴展多測試通道。上位機軟件采用LabVIEW平臺編寫,實現(xiàn)包括數(shù)據(jù)讀取、數(shù)據(jù)處理、實時顯示和數(shù)據(jù)存儲功能。軟件測控流程圖和測試分析界面如圖2所示。
圖2 ?基于LabVIEW測控分析軟件
1.2 ?分析方法和測試數(shù)據(jù)
無屏蔽心磁系統(tǒng)對安裝環(huán)境要求:數(shù)十nT/m量級的豎向磁場梯度,約5 mm/s2的震動強度。由于磁場空間梯度分布是影響無屏蔽心磁測量的直接因素,且支架震動間接引入輸出噪聲。所以,考察全時段磁場一階梯度和震動信號的時域波動、頻譜分布特征和采樣樣本幅值統(tǒng)計特征;將磁場時域波動和震動時域典型值與系統(tǒng)容限值比對,同時考察各頻譜在0.1~100 Hz的分布,避免選擇心磁頻帶出現(xiàn)強振幅的地點。根據(jù)樣本統(tǒng)計特征,獲知樣本幅值的分布和脈沖尖峰出現(xiàn)的頻次和出現(xiàn)時刻,推薦心磁采樣時間,降低遭受電磁脈沖干擾幾率。
對醫(yī)院A和B多處備選場地在下午同時段進行監(jiān)測,選定地的部分測試樣本數(shù)據(jù)如表1所示,環(huán)境磁場一階豎向梯度值為G(Z),豎向地坪震動值為Virb(Z)。
由表1可知,醫(yī)院A和B在有限備選場地中優(yōu)選的場地,其豎向磁場梯度波動遠大于推薦值,且醫(yī)院B樣本值波動更大,與地處市中鬧市區(qū)有直接關(guān)系。較大低頻磁場梯度波動,使得心磁信號的本底噪聲增大或使基線波動,不利于獲取高信噪比心磁信號。同時,醫(yī)院B的地坪震動樣本標(biāo)準(zhǔn)差較醫(yī)院A更大,樣本于均值偏離度更大。兩家醫(yī)院相比較,醫(yī)院A更有利于獲取高信噪比心磁信號。
表1 ?醫(yī)院A和B應(yīng)用環(huán)境測試數(shù)據(jù)
由于心磁系統(tǒng)應(yīng)用地屬開放電磁環(huán)境,需要定期監(jiān)測應(yīng)用地的環(huán)境磁場和地坪震動參數(shù),確保心磁系統(tǒng)處于良好運行狀態(tài)。
2 ?無屏蔽心磁圖儀運行性能
醫(yī)院A和B安裝同型心磁圖儀系統(tǒng),分別對應(yīng)用環(huán)境和志愿者甲采樣,心磁系統(tǒng)采樣數(shù)據(jù)經(jīng)軟件多周期平均處理后的信號如圖3所示。圖3a)和3c)顯示,心磁系統(tǒng)抑制環(huán)境干擾效果明顯,且心磁系統(tǒng)輸出噪聲波動在2.5 pT內(nèi),輸出信號的基線平穩(wěn);對比醫(yī)院A和B,醫(yī)院A的系統(tǒng)輸出噪聲波動更小,基線更平穩(wěn),更容易獲得高信噪比心磁信號。
圖3 ?無屏蔽超導(dǎo)心磁圖儀系統(tǒng)輸出
圖3b)和圖3d)顯示,心磁系統(tǒng)可以獲取完整心磁信號,且各波段輪廓清晰;相比較于圖3b)信號,由于醫(yī)院B環(huán)境時域噪聲經(jīng)軟件多周期平均處理后仍偏高,基線相對不穩(wěn),導(dǎo)致圖3d)心磁信號出現(xiàn)部分畸變。
3 ?結(jié) ?語
本文立足超導(dǎo)無屏蔽心磁圖儀系統(tǒng)選址需求,探索應(yīng)用環(huán)境評估方法,制備了一套環(huán)境測試系統(tǒng),并使用該測試系統(tǒng)和評估方法應(yīng)用到醫(yī)院A和B的選址,在選址地安裝的心磁系統(tǒng)穩(wěn)定工作,并已開展心磁測量。超導(dǎo)心磁圖儀系統(tǒng)輸出受環(huán)境中多因素影響,下一步工作是探究不同特征磁源對心磁系統(tǒng)輸出的影響,總結(jié)其規(guī)律,反饋到信息系統(tǒng)優(yōu)化中。環(huán)境測試系統(tǒng)除滿足心磁應(yīng)用選址,一方面還在心磁系統(tǒng)運行中磁擾源排查發(fā)揮作用,為心磁探測應(yīng)用推廣奠定基礎(chǔ);另一方面,對壓磁器件、磁材料研究和檢測等相關(guān)領(lǐng)域有重要意義。
注:本文通訊作者為孔祥燕。
參考文獻
[1] SENTHILNATHAN S, SELVARAJ R J, PATEL R, et al. Non?invasive determination of HV interval using magnetocardiography [J]. Pacing and clinical electrophysiology, 2017, 40(5): 568?577.
[2] LI Y, CHE Z, QUAN W, et al. Diagnostic outcomes of magnetocardiography in patients with coronary artery disease [J]. International journal of clinical and experimental medicine, 2015, 8(2): 2441?2446.
[3] YOSHIDA K, OGATA K, INABA T, et al. Ability of magnetocardiography to detect regional dominant frequencies of atrial fibrillation [J]. Journal of arrhythmia, 2015, 31(6): 345?351.
[4] 孫慧娜,唐發(fā)寬,黃驍,等.心磁圖的主要臨床應(yīng)用及研究進展[J].中國循證心血管醫(yī)學(xué)雜志,2014,6(4):499?500.
SUN Huina, TANG Fakuan, HUANG Xiao, et al. The main clinical application and research progress of magnetocardiography [J]. Chinese journal of evidence?based cardiovascular medicine, 2014, 6(4): 499?500.
[5] 周志文,鄭宏超,繆培智,等.心磁圖在冠心病和心律失常中的研究進展[J].中國心血管雜志,2016,21(1):60?64.
ZHOU Zhiwen, ZHENG Hongchao, MIAO Peizhi, et al. Progress of magnetocardiography in coronary artery disease and cardiac arrhythmias [J]. Chinese journal of cardiovascular medicine, 2016, 21(1): 60?64.
[6] ZHANG Y, WOLTERS N, SCHUBERT J, et al. HTS SQUID gradiometer using substrate resonators operating in an unshielded environment: a portable MCG system [J]. IEEE transactions on applied superconductivity, 2003, 13(2): 389?392.
[7] KANG C S, LEE Y H, YU K K, et al. Measurement of MCG in unshielded environment using a second?order SQUID gradiometer [J]. IEEE transactions on magnetics, 2009, 45(6): 2882?2885.
[8] SHANEHSAZZADEH F, FARDMANESH M. Low noise active shield for SQUID?based magnetocardiography systems [J]. IEEE transactions on applied superconductivity, 2018, 28(4): 205?208.
[9] 陳亮,蔣式勤,謝曉明.超導(dǎo)梯度計及其對環(huán)境噪聲的抑制能力[J].功能材料與器件學(xué)報,2008,14(6):971?976.
CHEN Liang, JIANG Shiqin, XIE Xiaoming. Environmental noise cancellation of superconducting gradiometers [J]. Journal of functional materials and devices, 2008, 14(6): 971?976.
[10] KONG Xiangyan, ZHANG Shulin, WANG Yongliang, et al. Multi?channel magnetocardiogardiography system based on low?Tc SQUIDs in an unshielded environment [J]. Physics procedia, 2012, 36: 286?292.
[11] 張樹林,張國峰,王永良,等.新型超導(dǎo)量子干涉器件在生物磁探測中的應(yīng)用[J].科學(xué)通報,2013,58(21):2046?2048.
ZHANG Shulin, ZHANG Guofeng, WANG Yongliang, et al. Application of a novel superconducting quantum interference device in biological magnetic detection [J]. Chinese science bulletin, 2013, 58(21): 2046?2048.
[12] 陳科山,崔興斌,陶冬,等.基于虛擬儀器的振動信號采集與處理系統(tǒng)[J].現(xiàn)代電子技術(shù),2011,34(22):144?146.
CHEN Keshan, CUI Xingbin, TAO Dong, et al. Vibration signal acquisition and processing system based on virtual instrument [J]. Modern electronics technique, 2011, 34(22): 144?146.
[13] 謝冰,陳昌鑫,鄭賓.基于LabVIEW的數(shù)據(jù)采集與信號處理系統(tǒng)設(shè)計[J].現(xiàn)代電子技術(shù),2011,34(14):173?175.
XIE Bing, CHEN Changxin, ZHENG Bin. Design of data acquisition and signal processing system based on LabVIEW [J]. Modern electronics technique, 2011, 34(14): 173?175.
[14] 伍俊,榮亮亮,王永良,等.圖形化系統(tǒng)設(shè)計平臺在超導(dǎo)地球物理勘探中的應(yīng)用研究[J].儀器儀表學(xué)報,2014,35(z1):21?26.
WU Jun, RONG Liangliang, WANG Yongliang, et al. Application of graphical system design platform for superconducting geophysical exploration [J]. Chinese journal of scientific instrument, 2014, 35(S1): 21?26.
[15] 李鑫,竇子優(yōu),馬明,等.基于NI CompactRIO的多通道磁場采集系統(tǒng)的設(shè)計與實現(xiàn)[J].傳感技術(shù)學(xué)報,2017,30(9):1447?1453.
LI Xin, DOU Ziyou, MA Ming, et al. Design and implementation of multi channel magnetic field acquisition system based on NI CompactRIO [J]. Chinese journal of sensors and actuators, 2017, 30(9): 1447?1453.
[16] 楊巧玉,婁良瓊,楊立志.941B型超低頻測振儀的研究[J].地震工程與工程振動,2005,25(4):174?179.
YANG Qiaoyu, LOU Liangqiong, YANG Lizhi. Model 941B ultra?low frequency vibration gauge [J]. Earthquake engineering and engineering vibration, 2005, 25(4): 174?179.