林曉瑩 黃浩峰 陳浩
[摘要] 線粒體通過自噬清除受損或多余線粒體以維持線粒體穩(wěn)態(tài)。線粒體分裂融合是線粒體自噬的基礎(chǔ),線粒體融合蛋白-2(MFN2)參與調(diào)節(jié)線粒體分裂融合。MFN2突變會引起線粒體功能障礙,導(dǎo)致腓骨肌萎縮等神經(jīng)退行性疾病。本文主要綜述了近年來MFN2功能及其在線粒體自噬及神經(jīng)退行性疾病領(lǐng)域所取得的研究進(jìn)展,旨在為相關(guān)領(lǐng)域進(jìn)一步的研究提供參考。
[關(guān)鍵詞] 線粒體融合蛋白-2;線粒體;線粒體自噬;神經(jīng)退行性疾病
[中圖分類號] R363 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2019)05(a)-0042-04
Advances in the regulation of mitochondrial dynamic Changes by MFN2
LIN Xiaoying1 HUANG Haofeng1 CHEN Hao2 LI Shupeng3 ZHAO Bin4 ZHONG Wangtao5 FENG Du1
1.Guangdong Medical University, Guangdong Province, Zhanjiang 524000, China; 2.Department of Neurology, the First Afiliated Hospital of Hainan Medical University, Hainan Province, Haikou 570100, China; 3.Department of Neurology, Zengcheng District People′s Hospital, Guangdong Province, Guangzhou 511300, China; 4.Guangdong Key Laboratory of Age-related Cardiac-Cerebral Vascular Disease, Institute of Neurology, the Afiliated Hospital of Guangdong Medical University, Guangdong Province, Zhanjiang 524000, China; 5.Department of Neurology, the Afiliated Hospital of Guangdong Medical University, Guangdong Province, Zhanjiang 524000, China
[Abstract] To maintain mitochondria homeostasis, mitochondria remove damaged or excess mitochondria by autophagy. Mitochondria fission and fusion process is the basis of mitophagy, and mitofusion-2 (MFN2) is involved in the process of regulating mitochondria fission and fusion. Mutations in MFN2 could cause mitochondria dysfunction and even lead to neurodegenerative diseases such as Charcot-Marie-Tooth. This paper review recent research progress of MFN2 function and its effect on mitochondria autophagy and neurodegenerative disease, aiming at providing reference for further research in related fields.
[Key words] Mitofusion-2; Mitochondria; Mitophagy; Neurodegenerative disease
線粒體為細(xì)胞正常生長代謝提供必需的能量,參與細(xì)胞眾多的生理活動,例如:氧化磷酸化、三羧酸循環(huán)、脂肪酸代謝、糖異生、增殖、衰老、凋亡等。線粒體自噬對線粒體形態(tài)、數(shù)量和質(zhì)量的調(diào)控起到重要作用,主要是通過自噬清除細(xì)胞內(nèi)受損或多余的線粒體[1]。線粒體分裂融合是線粒體自噬的基礎(chǔ)。線粒體融合過程包括線粒體外膜(OMM)融合和線粒體內(nèi)膜(IMM)融合,在哺乳動物細(xì)胞中,MFN1/2參與線粒體外膜融合,OPA1參與線粒體內(nèi)膜融合。線粒體分裂涉及的蛋白有Drp1、Fis1、MFF等。線粒體融合、分裂相關(guān)蛋白質(zhì)亦參與線粒體自噬,分子突變可引起線粒體功能障礙,導(dǎo)致神經(jīng)退行性疾病,如帕金森病、腓骨肌萎縮等[2]。
1 MFN1/2的結(jié)構(gòu)和功能
1.1 MFN1/2的結(jié)構(gòu)
線粒體融合蛋白在哺乳動物中分為兩種,即MFN1和MFN2。MFN1由位于人3號染色體(3q26.33)上的18個外顯子編碼,741個氨基酸組成;MFN2由人1號染色體(1p36.22)上的20個外顯子編碼,757個氨基酸組成,兩次跨線粒體外膜的線粒體外膜蛋白。MFN1和MFN2具有同源性,有約80%相似的結(jié)構(gòu)相關(guān)序列[3]。MFN1/2結(jié)構(gòu)大致分為氨基末端GTP酶區(qū)域、七肽重復(fù)結(jié)構(gòu)域HR1、跨膜區(qū)域和七肽重復(fù)結(jié)構(gòu)域HR2。GTP酶區(qū)域可連接水解GTP[4]。MFN1和MFN2在GTP酶活性上表現(xiàn)不同,MFN1有較高的GTP酶活性,而MFN2對GTP有較高的親和力[5]。HR1區(qū)域具有干擾脂質(zhì)雙層結(jié)構(gòu)誘導(dǎo)膜融合的作用[6]。HR2區(qū)域介導(dǎo)MFN1-MFN2或者M(jìn)FN2-MFN2寡聚化,形成反式平行卷曲螺旋二聚體,將相鄰的兩個線粒體系鏈以維持線粒體網(wǎng)狀結(jié)構(gòu)[7]。GTP酶區(qū)域、HR2區(qū)域均暴露在胞質(zhì)。
1.2 MFN2的生理功能
MFN2和MFN1共同維持線粒體網(wǎng)狀結(jié)構(gòu),通過MFN1-MFN1相互作用實現(xiàn)有效的線粒體系鏈后[5],依賴GTP酶區(qū)域水解GTP和線粒體膜電位實現(xiàn)線粒體融合[8-9]。MFN2突變可阻礙線粒體融合,引起線粒體系鏈中間體累積[5],這提示線粒體系鏈依賴MFN1,而線粒體融合依賴MFN2。線粒體在MFN1敲除細(xì)胞中呈現(xiàn)均一的球狀,在MFN2敲除細(xì)胞中則是大小不一的顆粒狀[10]。
MFN2影響線粒體能量代謝。在L6E9肌管細(xì)胞中,MFN2表達(dá)量下調(diào)可引起線粒體膜電位降低,細(xì)胞耗氧量減少,葡萄糖氧化受到抑制[11]。MFN2下調(diào)可抑制OXPHOS復(fù)合物Ⅰ、Ⅱ、Ⅲ、Ⅴ亞基的表達(dá),降低其酶活性[12]。心肌細(xì)胞中敲除MFN2,可通過阻礙萜類化合物的合成引起輔酶Q缺乏而影響線粒體氧化呼吸鏈[13]。由此可見,MFN2是線粒體三羧酸循環(huán)和氧化呼吸所必需的。
MFN2影響細(xì)胞葡萄糖水平。MFN2可干擾胰島素信號傳導(dǎo),肝臟組織敲除MFN2后產(chǎn)生糖耐量下降、胰島素抵抗的現(xiàn)象[14]。有研究[15]發(fā)現(xiàn),MFN2上調(diào)可改善棕櫚酸誘導(dǎo)的骨骼肌細(xì)胞胰島素抵抗,MFN2敲低會促進(jìn)氧化應(yīng)激反應(yīng),增加活性氧(ROS)的產(chǎn)生,并增強磷酸化c-Jun氨基末端激酶(JNK)和活化胰島素信號傳導(dǎo)分子NF-κB。MFN2對維持細(xì)胞葡萄糖穩(wěn)態(tài)、穩(wěn)定胰島素敏感性至關(guān)重要。
MFN2影響細(xì)胞增殖和凋亡。在B細(xì)胞淋巴瘤細(xì)胞系BJAB中,敲低內(nèi)源性MFN2,發(fā)現(xiàn)細(xì)胞增殖速率上升,MFN2可通過N端與Raf-1、C端與Ras相互作用而抑制Ras-Raf-ERK信號傳導(dǎo)通路,從而抑制細(xì)胞增殖[16]。在HeLa細(xì)胞中下調(diào)MFN2,可干擾自噬體和溶酶體融合,阻礙自噬降解過程,從而抑制細(xì)胞增殖[17]。通過探索MFN2與凋亡的關(guān)系,發(fā)現(xiàn)心肌細(xì)胞在氧化應(yīng)激作用下,其MFN2水平增高,引起細(xì)胞凋亡[18],但MFN2下調(diào)亦可通過增強神經(jīng)酰胺的通路引起心肌細(xì)胞凋亡[19]。由此推測,MFN2上調(diào)或者下調(diào)均可引起相同的細(xì)胞反應(yīng),但其涉及的機制可能不同,而在不同的細(xì)胞系中,MFN2可引起不同的細(xì)胞反應(yīng)。MFN2是否存在維持細(xì)胞穩(wěn)態(tài)的調(diào)節(jié)平衡點值得進(jìn)一步研究。
MFN2參與構(gòu)建內(nèi)質(zhì)網(wǎng)-線粒體連接膜[20]。內(nèi)質(zhì)網(wǎng)-線粒體連接膜通過MFN2調(diào)節(jié)線粒體形態(tài)、細(xì)胞器間Ca2+轉(zhuǎn)運[21]、脂質(zhì)運輸、參與內(nèi)質(zhì)網(wǎng)應(yīng)激和線粒體自噬。近期有研究[22]對MFN2在內(nèi)質(zhì)網(wǎng)-線粒體連接膜的系鏈作用持反對意見,即在不同細(xì)胞類型中,突變或消除MFN2反而增加內(nèi)質(zhì)網(wǎng)-線粒體間的偶聯(lián)。因此,MFN2在內(nèi)質(zhì)網(wǎng)-線粒體連接膜中所發(fā)揮的具體作用仍需探討。
2 MFN2與線粒體自噬
2.1 線粒體動態(tài)平衡與線粒體自噬
線粒體網(wǎng)狀結(jié)構(gòu)的維系有賴于分裂融合、自噬的生理活動。線粒體自噬是通過自噬清除受損或多余的線粒體,自噬體膜延伸包裹受損或多余的線粒體形成自噬小體,再與溶酶體融合形成自噬溶酶體降解內(nèi)容物。ROS、缺氧、饑餓、細(xì)胞衰老的刺激條件可引起線粒體自噬[23]。線粒體自噬涉及分子機制中的PINK1-Parkin通路研究較多。PINK1是絲氨酸/蘇氨酸激酶,經(jīng)過線粒體外膜復(fù)合物和線粒體內(nèi)膜復(fù)合物轉(zhuǎn)位,錨定于線粒體內(nèi)膜。在正常的線粒體中,PINK1會被線粒體加工肽酶(MPP)和早老素相關(guān)菱形樣蛋白(PARL)連續(xù)降解,但在膜電位下降的線粒體中,PINK1轉(zhuǎn)位到線粒體內(nèi)膜(IMM)受到抑制,使得PINK1在線粒體外膜處累積,PINK1與外膜轉(zhuǎn)運酶(TOM)形成復(fù)合物,發(fā)生磷酸化。PINK1為Parkin的上游作用分子,Parkin為E3泛素連接酶。磷酸化的PINK1磷酸化Parkin的第175位和第217位蘇氨酸,促進(jìn)Parkin從胞漿移位到受損的線粒體,介導(dǎo)線粒體自噬的發(fā)生[24]。PINK1亦磷酸化泛素分子,PINK1-Parkin促進(jìn)泛素與受損線粒體結(jié)合,進(jìn)而被泛素結(jié)合自噬受體識別,進(jìn)一步活化線粒體自噬途徑[25]。
2.2 MFN2參與線粒體自噬
MFN2可影響線粒體形態(tài)動力學(xué)參與線粒體自噬。PINK1-Parkin可泛素化修飾MFN2,泛素化MFN2經(jīng)蛋白酶體降解增多抑制了線粒體融合,導(dǎo)致線粒體斷裂成顆粒狀,促進(jìn)線粒體自噬。
MFN2可直接參與線粒體自噬。MFN2是Parkin在線粒體上的底物,PINK1可磷酸化MFN2第111位蘇氨酸和第442位絲氨酸,Parkin與磷酸化MFN2結(jié)合定位于線粒體,磷酸化MFN2亦可增強PINK1-Parkin泛素化MFN2的生物效應(yīng)[26]。泛素化MFN2抑制線粒體融合,斷裂的線粒體被自噬小泡包裹形成自噬體,與溶酶體融合降解。另外,在線粒體應(yīng)激條件下,MFN2可被JNK磷酸化,引起Parkin泛素化MFN2,同時誘導(dǎo)Huwe1募集到線粒體,通過其BH3結(jié)構(gòu)域與MFN2相互作用,增強MFN2的降解[27]。
MFN2可影響自噬體和溶酶體融合參與線粒體自噬。自噬體與溶酶體融合受阻可導(dǎo)致自噬體累積,阻礙自噬降解。在心肌細(xì)胞中敲除MFN2,可導(dǎo)致自噬體大量積累[28]。在神經(jīng)元缺血/再灌注模型中,亦發(fā)現(xiàn)MFN2下調(diào)可通過抑制自噬體與溶酶體融合加劇缺血再灌注損傷,過表達(dá)MFN2可逆轉(zhuǎn)自噬體累積的現(xiàn)象[29]。
MFN2可通過影響內(nèi)質(zhì)網(wǎng)-線粒體連接膜的系鏈參與線粒體自噬。PINK1-Parkin可通過磷酸化泛素化MFN2使MFN2復(fù)合物上的p97解體,破壞線粒體-內(nèi)質(zhì)網(wǎng)偶聯(lián)結(jié)構(gòu),導(dǎo)致線粒體與內(nèi)質(zhì)網(wǎng)解離,從而促進(jìn)線粒體自噬,加速線粒體降解[30]。
3 MFN2與神經(jīng)退行性疾病
越來越多研究認(rèn)為線粒體與神經(jīng)退行性疾病密切相關(guān),例如:帕金森病、腓骨肌萎縮。然而,MFN2是否與其發(fā)病機制相關(guān)呢?
3.1 帕金森病
帕金森?。≒D)是以運動和精神改變?yōu)榕R床特征的神經(jīng)退行性疾病。在特發(fā)性PD患者的黑質(zhì)組織中,其MFN2表達(dá)降低,線粒體分裂呈增加的趨勢,而在百草枯(PQ)誘導(dǎo)的PD模型中亦發(fā)現(xiàn)類似的變化,而過表達(dá)MFN2可阻斷PQ引起的線粒體斷裂,并抑制了多巴胺能神經(jīng)元缺失[31]。MFN2是否參與到PD發(fā)病機制中?近期有研究[32]發(fā)現(xiàn),MitoQ可通過激活過氧化物酶體增殖物激活受體γ輔激活子1α(PGC-1α)以增強MFN2依賴的線粒體融合途徑,進(jìn)而保護6-羥基多巴胺(6-OHDA)誘導(dǎo)的PD模型中的多巴胺能神經(jīng)元。由此推測,MFN2在PD中起到調(diào)節(jié)線粒體融合保護神經(jīng)元的作用,但其涉及的機制仍需進(jìn)一步探究。
3.2 腓骨肌萎縮
腓骨肌萎縮(CMT)是以遠(yuǎn)端肌肉萎縮和感覺喪失為臨床特征的神經(jīng)退行性疾病,分為脫髓鞘型(CMT1)和軸突型(CMT2)。在中國,MFN2突變在CMT2發(fā)病中占到18%,是最常見的病因[33],有常染色體顯性遺傳傾向。野生型MEF細(xì)胞中線粒體沿著細(xì)胞骨架正常順向或逆向運動,但在MFN2KO MEF細(xì)胞中,線粒體融合障礙,斷裂腫脹成球形,出現(xiàn)不協(xié)調(diào)運動。CMT2A患者大多可檢測到MFN2蛋白錯構(gòu),GTP酶區(qū)域約占50%,但不影響GTP酶結(jié)合水解GTP[34]。由此推測,CMT2A的線粒體融合受損有可能是涉及GTP酶區(qū)域的蛋白質(zhì)之間相互作用引起,但仍需進(jìn)一步研究。MFN2蛋白錯構(gòu)亦可發(fā)生在HR2區(qū)域[35],影響線粒體融合。有研究[36-37]設(shè)計微肽調(diào)節(jié)MFN2的HR1-HR1非活性狀態(tài)轉(zhuǎn)變到NR2-HR2活性狀態(tài),促進(jìn)線粒體融合,逆轉(zhuǎn)CMT2A中的線粒體融合障礙,這為治療CMT2A提供了調(diào)節(jié)線粒體融合的治療角度。
4 討論與展望
近年來,關(guān)于MFN2的研究越來越多,逐漸發(fā)現(xiàn)MFN2參與了線粒體新陳代謝、線粒體自噬、MAMs的構(gòu)成、細(xì)胞能量生成、信號傳導(dǎo)、增殖凋亡等生理活動,對細(xì)胞的生長發(fā)育有著重要意義。MFN2異常可導(dǎo)致線粒體功能障礙并引起細(xì)胞代謝異常,甚至產(chǎn)生病理性改變,如2型糖尿病、肥胖等代謝性疾病、腫瘤、心腦血管疾病、神經(jīng)退行性疾病等。然而,目前關(guān)于MFN2在各細(xì)胞生理活動、疾病發(fā)生發(fā)展中涉及的分子通路和具體作用機制的研究并不完善,仍有未知的領(lǐng)域等待探索。
[參考文獻(xiàn)]
[1] Yoo SM,Jung YK. A Molecular Approach to Mitophagy and Mitochondrial Dynamics [J]. Mol Cells,2018,41(1):18-26.
[2] Rodolfo C,Campello S,Cecconi F. Mitophagy in neurodegenerative diseases [J]. Neurochem Int,2018,117:156-166.
[3] Santel A,F(xiàn)rank S,Gaume B,et al. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells [J]. J Cell Sci,2003,116(Pt 13):2763-2774.
[4] Bourne HR,Sanders DA,McCormick F. The GTPase superfamily: conserved structure and molecular mechanism [J]. Nature,1991,349(6305):117-127.
[5] Ishihara N,Eura Y,Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity [J]. J Cell Sci,2004,117(Pt 26):6535-6546.
[6] Daste F,Sauvanet C,Bavdek A,et al. The heptad repeat domain 1 of Mitofusin has membrane destabilization function in mitochondrial fusion [J]. EMBO Rep,2018,19(6).pii:e43637.
[7] Koshiba T,Detmer SA,Kaiser JT,et al. Structural basis of mitochondrial tethering by mitofusin complexes [J]. Science,2004,305(5685):858-862.
[8] Meeusen S,McCaffery JM,Nunnari J. Mitochondrial fusion intermediates revealed in vitro [J]. Science,2004,305(5691):1747-1752.
[9] Cao YL,Meng S,Chen Y,et al. MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion [J]. Nature,2017,542(7641):372-376.
[10] Chen H,Detmer SA,Ewald AJ,et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development [J]. J Cell Biol,2003,160(2):189-200.
[11] Bach D,Pich S,Soriano FX,et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity [J]. J Biol Chem,2003,278(19):17 190-17 197.
[12] Pich S,Bach D,Briones P,et al. The Charcot-Marie-Tooth type 2A gene product,Mfn2,up-regulates fuel oxidation through expression of OXPHOS system [J]. Hum Mol Genet,2005,14(11):1405-1415.
[13] Mourier A,Motori E,Brandt T,et al. Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels [J]. J Cell Biol,2015,208(4):429-442.
[14] Sebastian D,Hernandez-Alvarez MI,Segales J,et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis [J]. Proc Natl Acad Sci U S A,2012,109(14):5523-5528.
[15] Nie Q,Wang C,Song G,et al. Mitofusin 2 deficiency leads to oxidative stress that contributes to insulin resistance in rat skeletal muscle cells [J]. Mol Biol Rep,2014,41(10):6975-6983.
[16] Chen KH,Dasgupta A,Ding J,et al. Role of mitofusin 2 (Mfn2) in controlling cellular proliferation[J]. FASEB J,2014,28(1):382-394.
[17] Ding Y,Gao H,Zhao L,et al. Mitofusin 2-deficiency suppresses cell proliferation through disturbance of autophagy [J]. PLoS One,2015,10(3):e0121328.
[18] Shen T,Zheng M,Cao C,et al. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis [J]. J Biol Chem,2007,282(32):23 354-23 361.
[19] Parra V,Eisner V,Chiong M,et al. Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis [J]. Cardiovasc Res,2008,77(2):387-397.
[20] de Brito OM,Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria [J]. Nature,2008,456(7222):605-610.
[21] Bidaux G,Gordienko D,Shapovalov G,et al. 4TM-TRPM8 channels are new gatekeepers of the ER-mitochondria Ca(2+) transfer [J]. Biochim Biophys Acta,2018,1865(7):981-994.
[22] Filadi R,Greotti E,Turacchio G,et al. Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling [J]. Proc Natl Acad Sci U S A,2015,112(17):E2174-E2181.
[23] Vigie P,Camougrand N. [Role of mitophagy in the mitochondrial quality control] [J]. Med Sci(Paris),2017,33(3):231-237.
[24] Eiyama A,Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells [J]. Curr Opin Cell Biol,2015,33:95-101.
[25] Harper JW,Ordureau A,Heo JM. Building and decoding ubiquitin chains for mitophagy [J]. Nat Rev Mol Cell Biol,2018,19(2):93-108.
[26] Chen Y,Dorn GW. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria [J]. Science,2013,340(6131):471-475.
[27] Leboucher GP,Tsai YC,Yang M,et al. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis [J]. Mol Cell,2012,47(4):547-557.
[28] Zhao T,Huang X,Han L,et al. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes [J]. J Biol Chem,2012,287(28):23 615-23 625.
[29] Peng C,Rao W,Zhang L,et al. Mitofusin 2 Exerts a Protective Role in Ischemia Reperfusion Injury Through Increasing Autophagy [J]. Cell Physiol Biochem,2018,46(6):2311-2324.
[30] McLelland GL,Goiran T,Yi W,et al. Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy [J]. Elife,2018,7:e32866.
[31] Zhao F,Wang W,Wang C,et al. Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: Implications for idiopathic Parkinson′s disease [J]. Biochim Biophys Acta,2017,1863(6):1359-1370.
[32] Xi Y,F(xiàn)eng D,Tao K,et al. MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1alpha [J]. Biochim Biophys Acta,2018,1864(9):2859-2870.
[33] Xie Y,Li X,Liu L,et al. MFN2-related genetic and clinical features in a cohort of Chinese CMT2 patients [J]. J Peripher Nerv Syst,2016,21(1):38-44.
[34] Beresewicz M,Boratynska-Jasinska A,Charzewski L,et al. The Effect of a Novel c.820C>T (Arg274Trp) Mutation in the Mitofusin 2 Gene on Fibroblast Metabolism and Clinical Manifestation in a Patient [J]. PLoS One,2017, 12(1):e0169999.
[35] Dankwa L,Richardson J,Motley WW,et al. A mutation in the heptad repeat 2 domain of MFN2 in a large CMT2A family [J]. J Peripher Nerv Syst,2018,23(1):36-39.
[36] Franco A,Kitsis RN,F(xiàn)leischer JA,et al. Correcting mitochondrial fusion by manipulating mitofusin conformations [J]. Nature,2016,540(7631):74-79.
[37] Rocha AG,F(xiàn)ranco A,Krezel AM,et al. MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A [J]. Science,2018, 360(6386):336-341.
(收稿日期:2018-10-11 本文編輯:王 蕾)