胡靜榮 史彩華 石琳琳
摘要 土壤消毒主要用于土壤病蟲草害防控。過去幾十年,土壤主要采用化學(xué)藥品熏蒸消毒,不合理使用容易造成環(huán)境污染。土壤蒸汽消毒、火焰消毒和熱水澆灌等需要專門的儀器設(shè)備,且存在能耗較高、滅生性強、容易破壞土壤結(jié)構(gòu)等缺點。目前,土壤日曬技術(shù)受到意大利、美國、以色列等70多個國家農(nóng)業(yè)科學(xué)家的廣泛關(guān)注,但在中國依然處于初級階段。本文總結(jié)了國內(nèi)外學(xué)者關(guān)于土壤日曬對農(nóng)業(yè)病蟲草害、土壤肥力、農(nóng)作物產(chǎn)量等方面的影響與應(yīng)用,分析了土壤日曬存在的局限性,并對土壤日曬在未來農(nóng)業(yè)綠色防控上的應(yīng)用前景進行了展望,以期為農(nóng)產(chǎn)品無公害生產(chǎn)提供理論依據(jù)和實踐參考。
關(guān)鍵詞 土壤日曬; 土壤消毒; 病蟲草害; 綠色防控
中圖分類號: S 477
文獻標(biāo)識碼: ADOI: 10.16688/j.zwbh.2018344
Abstract Soil disinfection is mainly used for control of soil pathogens, pests and weeds. In the past few decades, soil was mainly disinfected by chemical fumigation, but their misuse has caused environmental pollution. Soil steam disinfection, flame disinfection and hot water irrigation require special equipment. Moreover, these methods have some disadvantages, such as energy consumption, strong inactivation and easy to destroy soil structure, etc. At present, soil solarization attracts wide attention from agricultural scientists over 70 countries such as Italy, the United States and Israel, etc., but it is still in its infancy in China. This paper summarizes the influences and application of soil solarization on plant diseases, pests and weeds in agriculture, soil fertility, crop yield, etc., analyzes the limitations of soil solarization. Furthermore, the application foreground of soil solarization in future green prevention and control is prospected. So it can be expected to provide theoretical basis and practical reference for the pollutionfree production of agricultural products.
Key words soil solarization; soil disinfection; disease, pest and weed; green prevention and control
作物種植或移栽前,先用化學(xué)、生物或物理手段進行土壤消毒,可以減少土壤中有害生物的基數(shù),降低作物生長后期被其危害的風(fēng)險[1]。溴甲烷作為風(fēng)靡一時的土壤消毒劑,從19世紀(jì)40年代開始投入使用,因其高效性和廣譜性,60年代至80年代逐漸成為使用最廣泛的土壤熏蒸劑[2]。然而,1992年《蒙特利爾議定書》列出溴甲烷對臭氧層具有破壞作用[3],并要求世界各國分別在2005-2015年期間逐步禁用溴甲烷作為土壤消毒劑[4]。隨后,市場上相繼出現(xiàn)了大量替代溴甲烷的化學(xué)產(chǎn)品[5],如:氯化苦、1,3二氯丙烯、棉隆、威百畝、臭氧、福爾馬林等。這些替代品中,有些對土壤的消毒效果并不理想;有些雖然效果好,但使用成本過高;有些對人畜和環(huán)境有害等[6]。日本學(xué)者Shinmura[7]和荷蘭學(xué)者Blok等[8]在2000年發(fā)展了生物熏蒸技術(shù),通過在地膜下加入有機物,厭氧發(fā)酵生成有害氣體殺滅土壤病原菌和線蟲,然而生物熏蒸需要選擇合適的有機質(zhì)和溫濕度條件,限制了該技術(shù)的廣泛運用。純物理的土壤消毒方法包括蒸汽消毒[9]、火焰消毒[10]、熱水澆灌[11]、土壤日曬[12]等。蒸汽消毒、火焰消毒和熱水澆灌等需要專門的機械設(shè)備,需要專業(yè)的技術(shù)人員操作,在發(fā)達國家應(yīng)用較多,在我國大面積推廣應(yīng)用存在一定的困難。而且這些方法仍有能耗較高,滅生性強[13],容易破壞土壤結(jié)構(gòu)等缺點[1415]。而土壤日曬技術(shù)是通過紫外線、太陽能加熱和光催化三種方式聯(lián)合消毒防治病蟲草害。殺滅土壤內(nèi)有害生物主要依賴太陽能加熱消毒。該方法操作簡單,即選擇陽光充足的夏季,在地面灌水覆膜,膜四周用土壤壓蓋嚴(yán)實,待陽光照射膜面,通過提高膜下土壤溫度將土壤中的有害生物殺死[16]。土壤日曬一般在作物種植或移栽前使用,能夠有效地消滅或降低土壤中原有不耐高溫的有害生物[1718],對許多有益微生物影響較小,對人畜和環(huán)境相對安全,不影響農(nóng)作物正常生長,甚至還能提高農(nóng)作物產(chǎn)量[19]。
土壤日曬技術(shù)最早報道于1976年,以色列學(xué)者 Katan成功利用土壤日曬防治番茄和茄子枯萎病及幾種雜草[2021];后來許多國家根據(jù)各自的條件改進,成為廣泛使用的土壤消毒技術(shù)[22]。目前,土壤日曬技術(shù)受到意大利、美國、以色列、澳大利亞等70多個國家農(nóng)業(yè)科學(xué)家們的廣泛關(guān)注[2324]。中國關(guān)于土壤日曬技術(shù)的研究起步較晚,雖然有高溫悶棚防治病害和線蟲的例子,但研究均不深入,而且主要局限于設(shè)施蔬菜,對露地作物開展土壤日曬消毒的應(yīng)用甚少。本文總結(jié)了國內(nèi)外學(xué)者關(guān)于土壤日曬對農(nóng)業(yè)病蟲草害、土壤肥力、農(nóng)作物產(chǎn)量等影響的研究與應(yīng)用,分析了土壤日曬技術(shù)的局限性和存在的問題,在此基礎(chǔ)上對土壤日曬在未來農(nóng)業(yè)綠色防控方面的應(yīng)用前景進行了展望,以期為我國農(nóng)產(chǎn)品無公害生產(chǎn)提供理論依據(jù)和實踐參考。
1 土壤日曬技術(shù)在控制農(nóng)業(yè)病蟲草害中的應(yīng)用
土壤日曬技術(shù)已經(jīng)成功地運用到某些病蟲草害的防控,其主要機理是通過快速提高土壤溫度,引起生物膜不穩(wěn)定或破壞生物膜功能,導(dǎo)致生物的呼吸酶失活而窒息死亡[25]。
土壤日曬對土壤微生物的種類和結(jié)構(gòu)產(chǎn)生很大的影響[2627]。大量學(xué)者研究表明,溫度超過50℃容易導(dǎo)致病原菌的熱死亡,但也有學(xué)者認(rèn)為45℃是病原菌的亞致死溫度,倘若在45℃條件下持續(xù)更長時間,也能將病原菌殺死,況且有些病原菌對溫度更敏感[2829]。例如,土壤溫度達到39℃時,終極腐霉Pythium ultimum、立枯絲核菌Rhizoctonia solani、根串珠霉Thielaviopsis basicola等繁殖體接近死亡[30]。土壤日曬可以殺滅大多數(shù)植物病原菌[31]。通過日曬處理后,土壤真菌的數(shù)量快速減少85%~90%;陰性熒光假單胞菌和革蘭氏陽性細菌(包括芽胞桿菌)的數(shù)量減少78%~86%;放線菌的數(shù)量減少45%~58%[27]。因此,許多地中海國家長期采用土壤日曬技術(shù)防治番茄真菌性土傳病害[32],尤其是土壤日曬可以有效地控制危害番茄的大麗輪枝孢Verticillium dahliae,也可以抑制引起辣椒莖腐爛的尖鐮孢Fusarium oxysporum f.sp. melonis[3334]。土壤日曬技術(shù)還能有效地防控韭蔥白腐病菌Sclerotium cepivorum、蠶豆立枯絲核菌Rhizoctonia solani、羅勒屬植物寄生疫霉Phytophthora nicotianae var. parasitica、辣椒白絹病菌Sclerotium rolfsii、草莓枯萎病菌Fusarium oxysporum、根癌農(nóng)桿菌Agrobacterium tumefacien、番茄潰瘍病菌Clavibacter michiganensis、馬鈴薯瘡痂病菌Streptomyces scabies等[29,3536]。另外,倘若作物種植面積太大,為了降低土壤日曬技術(shù)帶來的經(jīng)濟成本,可以在作物育苗前將苗床進行日曬,培養(yǎng)出健康的移栽苗[37]。例如,孟加拉國農(nóng)民在水稻苗床上應(yīng)用土壤日曬技術(shù),能夠有效地控制水稻苗期病蟲害[38]。
除了防控對作物生長有害的病原菌外,土壤日曬還能增加某些優(yōu)勢菌群的數(shù)量[39]。例如,經(jīng)過土壤日曬處理后,土壤中的假單胞菌Pseudomonas spp.、青霉Penicillium spp.、曲霉Aspergillus spp.、鐮刀菌Fusarium spp.、木霉Trichoderma spp.、踝節(jié)菌Talaromyces flavus等數(shù)量顯著增加[4041]。踝節(jié)菌Talaromyces等有益微生物的增加,可有效地控制由輪枝孢引起的茄子枯萎病[42]。因此,土壤日曬也能通過提高優(yōu)勢菌群的數(shù)量達到間接防治病原菌的效果。
土壤日曬對高溫耐受性不強、活動能力較差的土居害蟲具有顯著的防治效果[43]。史彩華等[44]在我國率先發(fā)明了“日曬高溫覆膜”防治韭菜遲眼蕈蚊Bradysia odoriphaga的新技術(shù),該技術(shù)的操作方法與土壤日曬類似,中國北方在陽光充足的4月底至9月中旬,割除韭菜葉片后覆膜,只要土壤5 cm深處溫度達到40℃且持續(xù)4 h以上,就能將韭菜遲眼蕈蚊100%殺死,同時兼治薊馬、蚜蟲、蝸牛等?!叭諘窀邷馗材ぁ奔夹g(shù)已經(jīng)在山東、河北、河南、天津、甘肅、北京、浙江、安徽、山西等地進行過試驗示范,其防治效果均高達100%,這一結(jié)果充分證明了該技術(shù)防治韭菜遲眼蕈蚊的可行性、高效性和快速性,為土壤日曬可能有效防控其他土居病蟲害提供間接有力的證據(jù)。
土壤日曬也能有效地消滅或減少土壤30 cm深處不同種類的線蟲[4546]。在美國北部,土壤日曬主要用于防治蔬菜和花卉的根結(jié)線蟲Meloidogyne spp.[47]。經(jīng)土壤日曬處理后,番茄根結(jié)指數(shù)顯著降低,根部和土壤中的爪哇根結(jié)線蟲Meloidogyne javanica的數(shù)量分別減少91%和62%[48]。另外,土壤日曬還可以防治馬鈴薯白線蟲Globodera pallida、短體線蟲Pratylenchus spp.、腎形線蟲Rotylenchulus reniformis、大豆孢囊線蟲Heterodera glycines、刺線蟲Belonolaimus spp.、較小擬毛刺線蟲 Paratrichodorus minor、劍線蟲Xiphinema spp.、葡萄輪紋線蟲Criconemella xenoplax、起絨草莖線蟲Ditylenchus dipsaci、馬鈴薯孢囊線蟲Globodera rostochiensis、雙角螺旋線蟲Helicotylenchus digonicus、北方根結(jié)線蟲Meloidogyne hapla、彎鉤針線蟲Paratylenchus hamatus、甜菜異皮線蟲Heterodera schachtii等[4649]。
土壤日曬還可以控制雜草生長。該技術(shù)防治雜草最早起源于印度[50],即炎熱的夏季,在濕潤的土壤上覆蓋塑料薄膜,持續(xù)4~6周可以殺死90%的雜草,尤其是一年生雜草[51]。例如苘麻Abutilon theophrasti、反枝莧Amaranthus retroflexus、野燕麥 Avena fatua、黑芥Brassica nigra、藜Chenopodium album、田旋花Convolvulus arvensis、銀膠菊Parthenium hysterophorus、列當(dāng)Orobanche coerulescens、臭薺Coronopus didymus、龍爪茅Dactyloctenium aegyptium、光頭稗Echinochloa colonum、蒼耳 Xanthium strumarium 等[52]。土壤日曬對多年生雜草的防除效果較差,只能殺死多年生雜草的葉部,對根和球莖等部位的作用較小,即使葉部死亡,后期根莖部位依然可以恢復(fù)生長,甚至加速生長,如香附子Cyperus rotundus、馬唐Digitaria sanguinalis等[53],其主要原因可能是多年生雜草的根系埋藏較深,深層次土壤溫度又難以大幅度提升,從而導(dǎo)致溫度達不到雜草根系的死亡閾值[54]。另外,土壤日曬對雜草的防治效果還受其他因素的影響,包括覆蓋膜的顏色、雜草的生長時期和土壤濕度等,例如:透明聚乙烯膜覆蓋對雜草的控制效果顯著高于黑色聚乙烯膜;休眠中的雜草和土層深處的雜草種子不受日曬的影響;潮濕土壤實施日曬技術(shù)對雜草的控制效果比干燥土壤更好等[55]。
2 日曬對土壤肥力和作物產(chǎn)量的影響
土壤日曬能夠引起土壤產(chǎn)生諸多復(fù)雜的物理化學(xué)和生物學(xué)特性變化。比如分解有機質(zhì),提高土壤可溶性氮(NH+4, NO-3)、鉀、鎂、鈣、鈉等元素的含量,降低土壤中錳的含量[56]。土壤日曬可以促進有機質(zhì)大量分解,也可以導(dǎo)致硝化細菌大量死亡,從而提高可溶性氮的積累[57]。另外,土壤日曬改善土壤理化性質(zhì),影響土壤微生物系和土壤動物群體內(nèi)的酶活系統(tǒng)[58],最終促進作物生長和提高產(chǎn)量[59]。大量研究表明,經(jīng)過土壤日曬后NH4N和 NO3N的濃度在0~15 cm的土壤層中增加[57],暗示土壤溫度的增加提高了土壤有機氮[56]。Morra等[56]的研究表明,土壤日曬提高了土壤有機碳含量,有利于綠葉蔬菜的生長。例如:經(jīng)土壤日曬處理后,秋葵Abelmoschus esculentus葉部組織中的碳、鉀、氮、鎂的含量更高,磷和鋅的含量降低[4]。
土壤日曬在不同程度上促進作物生長,提高作物產(chǎn)量[33,60]。主要原因可能包括3個方面:其一,土壤日曬有效地控制了土壤中的病蟲草害;其二,土壤日曬改善了土壤的結(jié)構(gòu);其三,土壤日曬增加了作物可吸收的有效氮和其他營養(yǎng)物質(zhì)[2]。例如,土壤日曬使花生Arachis hypogaea、馬鈴薯Solanum tuberosum和茄子Solanum melongena的產(chǎn)量分別提高了123%、35%和215%[20]。另外,土壤日曬也分別增加了棉花Gossypium spp.、洋蔥Allium cepa、胡蘿卜Daucus carota、黃瓜Cucumis sativus、萵苣Lactuca sativa和草莓Fragaria ananassa等作物的產(chǎn)量[6164]。
3 土壤日曬的受限因子及存在的問題
土壤日曬的核心是提高土壤溫度殺死一些耐受性較差的病蟲草[19]。然而,影響土壤升溫的因素較多,如土壤濕度、土壤顏色、土壤結(jié)構(gòu)、太陽光照強度、大氣溫度、膜材質(zhì)、膜顏色、膜厚度等[65]。另外,土壤溫度提升與膜的密閉性、膜內(nèi)外溫差和日曬期間的氣候條件等有關(guān)[4]。在密閉的環(huán)境下,覆膜面積越大,引起膜內(nèi)外環(huán)境溫差越大,土壤升溫效果越好[66]。Castronuovo等[67]的研究表明,在密閉的溫室條件下,土壤升溫效果比露地快。Ham等[68]的研究表明,覆膜比未覆膜的土壤平均高出6℃,且它們之間的差異隨著土壤深度變化而變化。Pinkerton等[69]的研究表明,土壤日曬期間,白天土壤5~30 cm深處的最大溫度比未覆膜的高8~16℃,但夜間相差較小,僅為2~4℃。為了明確土壤日曬的最佳時期,有學(xué)者研究表明,覆膜后土壤10 cm深處的最高溫度在白天超過35℃,且覆膜與未覆膜土壤的平均溫差超過10℃,就可進行土壤日曬處理[4]。
土壤日曬受土壤濕度影響較大[70]。大多數(shù)學(xué)者認(rèn)為,水能夠很好地吸收紅外輻射,根據(jù)水的物理性質(zhì),濕潤土壤的吸熱效果比干燥土壤更強[7172]。另外,土壤濕度有利于提高熱傳導(dǎo)性,促使熱量快速進入深層土壤,消滅深層土壤中的病蟲草[73]。因此,日曬期間保持土壤濕潤至關(guān)重要。濕潤土壤可以提高雜草種子和土壤微生物的新陳代謝,打破其休眠,待土壤溫度升高至一定程度后,破壞其細胞,導(dǎo)致其死亡[71]。前人研究表明,隨著土壤濕度增加,熱能和熱傳導(dǎo)也隨之增加[74]。然而,AlKaraghouli等[75]的研究表明,日曬期間的最大土溫隨著土壤濕度的進一步增加而降低;Bohra等[76]的研究表明,日曬期間,干旱土壤5 cm深處的溫度增加10℃,濕潤土壤僅增加7℃。以上暗示在覆膜之前對土壤澆水非常重要,但水量不能太大,避免土壤成泥沾染在薄膜表面,影響陽光透射。DeVay等[77]認(rèn)為土壤60 cm深處的含水量達70%可獲得最佳的日曬效果。
土壤日曬也受土壤生態(tài)影響,例如土壤類型、土壤顏色、土壤結(jié)構(gòu)、有機質(zhì)含量等[78]。前人研究表明,黑土比淺色土壤更容易吸收陽光輻射[79],暗示土壤有機肥力過于貧乏,也會影響日曬效果。因此,在土壤中增加動物糞便或植物殘渣,改善土壤質(zhì)地,有助于提高土壤日曬的效果。其主要原因可能包括3個方面:其一,有機質(zhì)增加了土壤濕度,提高了土壤的導(dǎo)熱性;其二,有機質(zhì)中微生物的熱反應(yīng)可以提高土壤溫度1~3℃;其三,日曬升溫加速了有機質(zhì)分解,產(chǎn)生的生物毒素可能具有熏蒸殺死土壤有害微生物的作用[80]。前人研究表明,土壤日曬時加入甘藍Brassica napus殘渣,其釋放的芥子油苷和代謝產(chǎn)物對土壤中尖孢鐮刀菌Fusarium oxysporum具有很好的熏蒸防控效果[81]。另外,土壤日曬受土層深度的影響較大,一般近地表的溫度最高,隨著土壤深度增加溫度降低[82]。土壤0~5 cm深處的溫度可超過50℃,10~15 cm深處的溫度可達40~50℃,但是土壤20~30 cm深處的溫度僅達36~40℃[83]。當(dāng)土壤溫度達到42℃時,大部分土傳病害和土壤昆蟲失去活力,甚至死亡[50]。暗示常規(guī)的土壤日曬可以控制土壤20 cm左右的病蟲草害。倘若防治更深土層的病蟲草,需要配合其他輔助手段來增加更深土層的溫度。
塑料材質(zhì)與土壤升溫效果的關(guān)系十分緊密[84]。低密度聚乙烯和乙炔醋酸乙烯對土壤的升溫效果最好[85];乙炔醋酸乙烯膜對土壤的升溫效果比聚乙烯膜更好[72]。然而,聚乙烯膜在農(nóng)業(yè)上的應(yīng)用較早,1939年已經(jīng)開始規(guī)?;a(chǎn)。因此,目前聚乙烯膜在農(nóng)業(yè)上的應(yīng)用非常普遍。塑料膜顏色是獲得太陽輻射能量,減少長波輻射返回的重要參數(shù)[7, 54]。黑色、不透明或半透明的塑料膜減少了太陽輻射能量的透過,大部分能量被返回到大氣中,少量的熱能進入土壤中[86]。因此,膜的透明度影響了土壤的升溫效果。前人研究表明,透明膜升溫效果最佳,其次是黑色膜,最差的是白色膜[75]。AlKaraghouli等[87]的研究表明,聚乙烯膜的透射率依次為:透明膜>紅色膜>綠色膜>黃色膜>藍色膜>黑色膜,也進一步間接證實了透明膜對土壤的升溫效果最佳。膜的厚度也是影響土壤升溫的關(guān)鍵因子。薄塑料膜能夠透過太陽光短波,而阻擋地面的長波傳回大氣層,長波輻射被轉(zhuǎn)換成波長更長的紅外能量,產(chǎn)生溫室效應(yīng)[88]。因此,薄塑料膜的升溫效果比厚塑料膜好。Katan[1]的研究表明,塑料膜厚度為25~30 μm時升溫效果更好,而且雙層膜比單層膜效果更好。當(dāng)然,膜的選擇與使用也需要結(jié)合農(nóng)事實際情況,綜合考慮膜的結(jié)實性和實用性等。另外,一般膜邊緣溫度較低,為了減少邊際效應(yīng),膜面積盡量大于田塊面積,覆膜也要盡量均勻,避免在膜內(nèi)形成空氣泡影響升溫效果。
土壤日曬升溫最主要依靠太陽光的輻射能量[89]。因此,選擇日曬的時期至關(guān)重要,不同地區(qū)選擇日曬的時期不盡相同。夏威夷4-8月是最佳日曬季節(jié)[50];中國北方4月底至9月中旬均可進行土壤日曬[44];地中海、沙漠、熱帶氣候等在夏季空氣溫度較高的時期進行土壤日曬效果最佳[90]。無論什么地域,一般選擇太陽輻射較強的天氣覆膜4~6周;若碰到陰雨天氣,可延長覆膜時間至10~14周或者更長[86,91]。然而,有些學(xué)者認(rèn)為土壤日曬的時間一般持續(xù)18~33 d(平均24 d),如果時間過長,將會導(dǎo)致土壤有益微生物缺氧死亡,而且覆膜時間太長,直接影響農(nóng)民的種植計劃[4]。當(dāng)然,土壤日曬時間與防治的對象有關(guān),針對淺土層不耐高溫的病蟲草害,可以適當(dāng)減少覆膜時間,如史彩華等[44]選擇太陽光照強烈的天氣覆膜,僅僅只要土壤溫度達到40℃且維持4 h則可100%殺死韭蛆。土壤濕度、太陽光照強度、塑料膜材質(zhì)、土壤質(zhì)地、覆膜時間等均能影響土壤日曬的效果[92],尤其太陽光照強度更是重中之重。
4 展望
土壤日曬技術(shù)可有效地殺滅土壤中不耐高溫的病蟲草害,具有操作簡單、經(jīng)濟有效、對環(huán)境安全友好等優(yōu)點,而且易學(xué)易培訓(xùn),它的應(yīng)用可以顯著降低化學(xué)農(nóng)藥施用量,適合有機農(nóng)業(yè)或其他低能耗的農(nóng)業(yè)系統(tǒng)。在不影響種植計劃的前提下,我國農(nóng)民可以選擇每年的4-9月移栽或種植新作物之前,進行土壤日曬,不僅能夠消滅或降低土壤中原有不耐高溫的病蟲草,也能增加土壤中有機質(zhì)的分解速率,改善土壤團粒結(jié)構(gòu),提高作物的吸收利用率,促進作物生長并提高產(chǎn)量與品質(zhì)。另外,倘若能夠?qū)⑼寥廊諘窦夹g(shù)配套機械化操作,將進一步降低人工勞動成本,提高工作效率。總體而言,科學(xué)合理地利用土壤日曬技術(shù),在綠色植?;蛴袡C農(nóng)業(yè)中存在巨大潛力。
當(dāng)然,土壤日曬技術(shù)也存在明顯的局限性,對病蟲草害的防控效果受諸多外界環(huán)境因素的影響。例如,土壤日曬對高溫耐受性較強的病蟲草害防控效果較差;土壤覆膜時可能要求停止生產(chǎn),而且覆膜時間要求較長,可能影響農(nóng)民的種植計劃;土壤日曬后容易造成膜污染,雖然降解聚乙烯膜解決了這一難題,但也提高了使用成本等[70]。由于病蟲草害所在土層的溫度是影響土壤日曬防治效果的關(guān)鍵,若能快速高效地提高土壤溫度達到病蟲草的致死閾值,或許能夠更加徹底地殺死土壤中的有害生物,同時也能縮短覆膜時間,保證種植計劃正常進行。因此,科學(xué)家們要繼續(xù)努力,在土壤升溫和保溫所用材料上加大研發(fā)力度。
土壤日曬存在固有的局限性,導(dǎo)致日曬效果并不穩(wěn)定。因此,可以將土壤日曬技術(shù)與其他一些生物、化學(xué)和物理的手段聯(lián)合使用,提高土壤日曬對有害生物的防治效果[4]。例如,事先采用有機質(zhì)修復(fù)土壤,然后再覆膜,這樣可以顯著降低有害生物的致害活力。張廣榮等[93]在土壤中添加麥草和雞糞后進行日曬,土壤5 cm處的溫度顯著高于對照組,最高溫度甚至超過60℃且持續(xù)5 h以上,土壤日曬處理一次能夠100%控制第一茬和第二茬的黃瓜根結(jié)線蟲;焦永剛等[94]進行悶棚土壤日曬,并在土壤中添加有機肥和速腐劑,發(fā)現(xiàn)茄子的產(chǎn)量顯著提高。單純的土壤日曬或堆肥發(fā)酵不能完全防治萵苣上的南方根結(jié)線蟲,但是將土壤日曬和堆肥結(jié)合起來使用,可以徹底防治南方根結(jié)線蟲,提高萵苣的產(chǎn)量[95];施用雞糞與土壤日曬聯(lián)合作用,顯著減輕土傳病害炭腐病的發(fā)生,提高作物產(chǎn)量[96]。以上暗示土壤日曬技術(shù)有可能解決未來秸稈還田帶來的病蟲草害問題,尤其是田塊連作問題。曾經(jīng)農(nóng)民焚燒多余的秸稈,除了燒死秸稈中殘留的病蟲草,也可改善土壤肥力。如今禁止焚燒秸稈,鼓勵秸稈粉碎還田,積累了大量的病蟲草害。倘若秸稈還田后,配套土壤日曬技術(shù),其作用或許類似秸稈焚燒,甚至可以加速土壤中其他病蟲草害死亡,同時也可腐熟秸稈提高土壤中有機肥的含量。張廣榮等[93]的研究表明,土壤日曬時添加甘藍葉,對黃瓜地第一茬和第二茬的根結(jié)線蟲防治率分別達100%和50%,雖然對第二茬的根結(jié)線蟲防效較低,但是大面積種植甘藍的地區(qū),有大量甘藍葉尾菜需要處理,如果與土壤日曬聯(lián)合起來,既可變廢為寶,不使用或減少使用化學(xué)農(nóng)藥,保護環(huán)境,降低農(nóng)藥殘留,又可以增加有機肥,改良土壤結(jié)構(gòu),防治病蟲害等。以上暗示作物收獲后剩下不好處理的殘枝落葉等均可作為填充物,試著與土壤日曬聯(lián)合作用,變廢為寶,特別適合大面積種植蔬菜的區(qū)域。同時,土壤日曬技術(shù)也可與化學(xué)熏蒸劑、殺蟲劑和除草劑等聯(lián)合使用,破壞生物體的呼吸系統(tǒng)或?qū)е缕浜粑甘Щ疃劳鯷97]。劉敏艷等[98]的研究表明,高溫悶棚與多菌靈聯(lián)合作用對西瓜枯萎病和茄子黃萎病的防治效果均超過90%,而用多菌靈灌根對西瓜枯萎病和茄子黃萎病的防治效果僅分別為67.08%和68.86%。董海龍等[99]的研究表明,高溫悶棚時在土壤中添加石灰氮,與單一悶棚組進行比較,120 d后對黃瓜根結(jié)線蟲的防治率提高了60%,產(chǎn)量增加了5.7%。因此,防治地下害蟲時,也可以考慮在塑料膜下安裝滴管施藥,與土壤日曬聯(lián)合作用,既可減少藥劑的用量,又可加速害蟲死亡。此外,土壤日曬還可以與其他物理設(shè)備聯(lián)合使用,如日曬時澆灌熱水加速或協(xié)同升溫消滅土壤中的病蟲草害[72]。2018年,北京理工大學(xué)和中國農(nóng)業(yè)科學(xué)院合作研發(fā)出利用菲涅爾透鏡聚光器再生太陽能的土壤消毒裝置,可將土壤最高溫度保持在85℃,有效殺滅土壤中的病原菌、害蟲和卵[43]。
總體而言,目前土壤日曬技術(shù)在我國農(nóng)業(yè)生產(chǎn)上的應(yīng)用仍然處于初級階段。因此,土壤日曬的實用價值還需要進一步評估,比如對病蟲草害的防治管理[4]、對作物生長和產(chǎn)量的影響[100]、對農(nóng)藥和肥料減量的可預(yù)見性[101]、對經(jīng)濟成本和經(jīng)濟效益的評價[102]等。另外,也要考慮有害生物對土壤日曬產(chǎn)生的抗性[103105]。隨著人們對食品安全、生活環(huán)境、生態(tài)健康的廣泛關(guān)注,土壤日曬技術(shù)配套其他有害生物的防治途徑在農(nóng)業(yè)上的作用將變得越來越重要。土壤日曬技術(shù)作為一種經(jīng)濟易學(xué)、操作簡單、綠色環(huán)保的農(nóng)業(yè)技術(shù),與其他物理、化學(xué)和生物防治手段配合使用,或?qū)⒊蔀榻窈笫澜甾r(nóng)業(yè)綠色防治道路上的一項新舉措,意義深遠,潛力巨大。
[15]MURASE J, SHINOHARA Y, YOKOE K, et al. Impact of soil solarization on the ciliate community structure of a greenhouse soil [J]. Soil Science and Plant Nutrition, 2015, 61(6): 927933.
[16]LUVISI A, PANATTONI A, MATERAZZI A. Heat treatments for sustainable control of soil viruses [J]. Agronomy for Sustainable Development, 2015, 35(2): 657666.
[17]CHAUHAN H, DHRUJ I U, CHAUHAN P M. Development of soil profile temperature prediction models for bare and solarized field conditions [J]. Scientific Journal Agricultural Engineering, 2015, 2: 8190.
[18]KATAN J. Diseases caused by soilborne pathogens: biology, management and challenges[J]. Journal of Plant Pathology, 2017, 99(2): 305315.
[19]CANDIDO V, DADDABBO T, MICCOLIS V, et al. Weed control and yield response of soil solarization with different plastic films in lettuce [J].Scientia Horticulturae,2011,130(3):491497.
[20]KATAN J, GREEBERGER A, ALSON H, et al. Solar heating by polyethylene mulching for the control of diseases caused by soilborne pathogens[J]. Phytopathology, 1976, 66(5): 683688.
[21]FENOLL J, HELLIN P, FLORES P, et al. Solarization and biosolarization using organic wastes for the bioremediation of soil polluted with terbuthylazine and linuron residues [J]. Journal of Environmental Management, 2014, 143: 106112.
[22]YUCEL S, OZARSLANDAN A, CAN C. Effect of soil solarization combined with reduced doses of the fumigant metam sodium on management of some soil borne pathogens and rootknot nematode of pepper grown in greenhouse [J]. Net Journal of Agricultural Science, 2017, 5(2): 3137.
[23]SIMMONS C W, GUO H, CLAYPOOL J T, et al. Managing compost stability and amendment to soil to enhance soil heating during soil solarization [J].Waste Management,2013,33:10901096.
[24]ACHMON Y, HARROLD D R, CLAYPOOL J T, et al. Assessment of tomato and wine processing solid wastes as soil amendments for biosolarization [J]. Waste Management, 2016, 48: 156164.
[25]FERNANDEZBAYO J D, ACHMON Y, HARROLD D R, et al. Assessment of two solid anaerobic digestate soil amendments for effects on soil quality and biosolarization efficacy [J].Agricultural and Food Chemistry,2017,65(17):34343442.
[26]YOKOE K, MAESAKA M, MURASE J, et al. Solarization makes a great impact on the abundance and composition of microbial communities in soil [J]. Soil Science and Plant Nutrition, 2015, 61(4): 641652.
[27]KANAAN H, MINZ D, MEDINA S, et al. The interdependent effects of solar disinfestation and compost maturity level on soil microbial activity [J]. Phytoparasitica, 2016, 44(1): 5564.
[28]HANSON K, MAHATO T, SCHUCH U K. Soil solarization in high tunnels in the semiarid southwestern united states [J]. HortScience, 2014, 49(9): 11651170.
[29]NARESH P, RATAN V, KUMAR V, et al. Effect of soil solarisation for the control soil born pathogen S. rolfsii causing stem rot of chilli (Capsicum annuum L.)[J]. International Journal of Current Microbiology and Applied Sciences, 2017, 6(10): 49134917.
[30]CASTELLO I, DEMILIO A, RAVIV M, et al. Soil solarization as a sustainable solution to control tomato Pseudomonads infections in greenhouses [J]. Agronomy for Sustainable Development, 2017, 37(6): 59.
[31]KANAAN H, MEDINA S, KRASSNOVSKY A, et al. Survival of Macrophomina phaseolina s.l. and Verticillium dahliae during solarization as affected by composts of various maturities [J]. Crop Protection, 2015, 76: 108113.
[32]DIAZHERNANDEZ S, GALLOLLOBET L, DOMINGUEZCORREA P, et al. Effect of repeated cycles of soil solarization and biosolarization on corky root, weeds and fruit yield in screenhouse tomatoes under subtropical climate conditions in the Canary Islands [J]. Crop Protection, 2017, 94: 2027.
[33]MEENA R D, LAL G, MEHTA P, et al. Efficacy of soil solarization on growth and yield of cumin (Cuminum cyminum L.)under arid conditions[J]. International Journal of Seed Spices, 2018, 8(1): 7479.
[34]KANAAN H, MEDINA S, RAVIV M. The Effects of soil solarization and compost on soil suppressiveness against Fusarium oxysporum f. sp. melonis [J]. Compost Science & Utilization, 2017, 25(3): 206210.
[35]ABADA K A, ABDELLATIF F M, ELDAKAR H A M. Effect of combination among bioagents, compost and soil solarization on management of strawberry Fusarium wilt [J].American Journal of Life Sciences, 2014, 2(6/2): 3946.
[36]GILARDI G, DEMARCHI S, GULLINO M L, et al. Effect of simulated soil solarization and organic amendments on Fusarium wilt of rocket and basil under controlled conditions [J]. Journal of Phytopathology, 2014, 162(9): 557566.
[37]PARKE J L, FUNAHASHI F, WEIDMAN C, et al. Relative heat sensitivities of certain Phytophthora spp. and the potential for soil solarization to disinfest nursery beds in west coast states [C]∥Proceedings of the Sudden Oak Death Sixth Science Symposium, 2016, 6: 4950.
[38]NEOGI M G, SALAH UDDIN A K M, UDDIN M T, et al. Effect of seedbed solarization on plant growth and yield of two rice varietiesBR11 and BRRI Dhan33 [J]. Journal of the Bangladesh Agricultural University, 2017, 15(1): 5559.
[39]SIMMONS C W, CLAYPOOL J T, MARSHALL M N, et al. Characterization of bacterial communities in solarized soil amended with lignocellulosic organic matter [J]. Applied Soil Ecology, 2014, 73: 97104.
[40]YAO Yanlai, XUE Zhiyong, HONG Chunlai, et al. Efficiency of different solarizationbased ecological soil treatments on the control of Fusarium wilt and their impacts on the soil microbial community [J]. Applied Soil Ecology, 2016, 108: 341351.
[41]GUPTA S, SINGH R P, RAUTELA P. Effect of soil solarisation on survival of sclerotia and viability of antagonists under protected and natural cultivation [J]. Journal of Pharmacognosy and Phytochemistry, 2017, 6(5): 387390.
[42]TJAMOS E C, PAPLOMATAS E J. Longterm effect of soil solarization in controlling verticillium wilt of globe artichokes in Greece [J]. Plant Pathology, 2010, 37(4): 507515.
[43]ZHAO Y, ZHENG H, MA X, et al. Regenerative solar soil sterilizing system with the Fresnel lens concentrator [J]. Applied Thermal Engineering, 2018, 142: 674682.
[44]SHI Caihua, HU Jingrong, WEI Qiwen, et al. Control of Bradysia odoriphaga (Diptera: Sciaridae) by soil solarization[J]. Crop Protection, 2018, 114: 7682.
[45]SEID A, FININSA C, MEKETE T, et al. Tomato (Solanum lycopersicum) and rootknot nematodes (Meloidogyne spp.): a centuryold battle [J]. Nematology, 2015, 17(9): 9951009.
[46]NCHORE S B, WACEKE J W, BUTTNER C, et al. Efficacy of soil solarization and selected organic amendments for the control of rootknot nematodes in African nightshades [J]. RUFORUM Working Document Series,2016,14(1):771777.
[47]MCSORLEY R, GILL H K. Effects of solarization against weeds and rookknot nematodes limited by weather [J].Proceeding of Florida State Horticultural Society,2010,123:298301.
[48]HAJJIHEDFI L, REBAI E, LARAYEDH A, et al. Biological control of Meloidogyne javanica on tomato with Dazitol and soil solarization [J]. Environmental Science and Pollution Research, 2018, 25: 1727817282.
[49]GILL H K. Soil solarization: a natural pest management strategy [J]. Popular Kheti, 2014, 2: 153157.
[50]GAMLIEL A. Application of soil solarization in the open field[M]∥GAMLIEL B, KATAN J. Soil Solarization: Theory and Practice, 2012: 175180.
[51]BAHADUR S, VERMA S K, PRASAD S K, et al. Ecofriendly weed management for sustainable crop productionA review [J]. Journal Crop and Weed, 2015, 11(1): 181189.
[52]GILL H K, MCSORLEY R, TREADWELL D D. Comparative performance of different plastic films for soil solarization and weed suppression [J]. HortTechnology 2009, 19(4): 769774.
[53]YILDIZ A, BENLIOGLU S, BOZ O, et al. Use of different plastics for soil solarization in strawberry growth and timetemperature relationships for the control of Macrophomina phaseolina and weeds [J].Phytoparasitica,2010,38(5):463473.
[54]SETYOWATI N, NURJANAH U, MUKTAMAR Z, et al. Weed seed inhibition under solarization treatment with different mulch color in tropical highland organic farming system[J]. International Journal on Advanced Science Engineering Information Technology, 2017, 7(5): 18941899.
[55]SAMTANI J B, DERR J, CONWAY M A, et al. Evaluating soil solarization for weed control and strawberry (Fragaria xananassa) yield in annual plasticulture production [J]. Weed Technology, 2017, 31(3): 455463.
[56]MORRA L, CARRIERI R, FORNASIER F, et al. Solarization working like a “solar hot panel” after compost addition sanitizes soil in thirty days and preserves soil fertility [J]. Applied Soil Ecology, 2018, 126: 6574.
[57]GELSOMINO A, BADALUCCO L, LANDI L, et al. Soil carbon, nitrogen and phosphorus dynamics as affected by solarization alone or combined with organic amendment [J]. Plant and Soil, 2006, 279(1/2): 307325.
[58]IHARA H, KATO N, TAKAHASHI S, et al. Effect of soil solarization on subsequent nitrification activity at elevated temperatures [J]. Soil Science and Plant Nutrition, 2014, 60(6): 824831.
[59]CIMEN I, BASARAN M. Effect of solarization with fresh chicken manure on verticillium wilt (Verticillium dahliae Klebb) and yield in eggplant [J]. African Journal of Biotechnology, 2016, 15(52): 28042813.
[60]KANAAN H, FRENK S, RAVIV M, et al. Long and short term effects of solarization on soil microbiome and agricultural production [J]. Applied Soil Ecology, 2018, 124: 5461.
[61]YILMAZ S, CELIK I, ZENGIN S. Combining effects of soil solarization and grafting on plant yield and soilborne pathogens in cucumber[J]. International Journal of Plant Production, 2011, 5(1): 95104.
[62]CARRIERI R, RAIMO F, PENTANGELO A, et al. Fusarium proliferatum and Fusarium tricinctum as causal agents of pink rot of onion bulbs and the effect of soil solarization combined with compost amendment in controlling their infections in field [J]. Crop Protection, 2013, 43: 3137.
[63]DOMINGUEZ P, MIRANDA L, SORIA C, et al. Soil biosolarization for sustainable strawberry production [J]. Agronomy for Sustainable Development, 2014, 34(4): 821829.
[64]ZAYED M S, HASSANEIN M K K, ESA N H, et al. Productivity of pepper crop (Capsicum annuum L.) as affected by organic fertilizer, soil solarization, and endomycorrhizae [J]. Annals of Agricultural Sciences, 2013, 58(2): 131137.
[65]LI Hui, YE Dandan, WANG Xugao, et al. Soil bacterial communities of different natural forest types in northeast China[J]. Plant and Soil, 2014, 383(1/2): 203216.
[66]AMIN M, AMARE A, SELVARAJ T. Evaluation of various fungicides and soil solarization practices for the management of common bean anthracnose (Colletotrichum lindemuthianum)and seed yield and loss in Hararghe Highlands of Ethiopia [J]. Journal of Plant Breeding and Crop Science, 2014, 6(1): 110.
[67]CASTRONUOVO D, CANDIDO V, MARGIOTTA S, et al. Potential of a corn starchbased biodegradable plastic film for soil solarization [J]. Acta Horticulturae, 2005, 698: 201.
[68]HAM J M, KLUITENBERG G J, LAMONT W J. Optical properties of plastic mulches affect the field temperature regime[J]. Journal of the American Society for Horticultural Science, 1993, 118(2): 188193.
[69]PINKERTON J N, IVORS K L, MILLER M L, et al. Effect of soil solarization and cover crops on populations of selected soilborne plant pathogens in western Oregon[J]. Plant Disease, 2000, 84(9): 952960.
[70]DEMILIO A. Predictive model of soil temperatures and moisture during solarization in closed greenhouse [J]. American Society of Agricultural and Biological Engineers, 2014, 57(6): 18171830.
[71]HASSANAIN N A, HASSANAIN M A, ABDELZAHER F H, et al. Decontamination of enteric pathogens in sewage irrigated soil by solarization and desiccation [J]. AmericanEurasian Journal of Agricultural & Environmental Sciences, 2014, 14: 894898.
[72]MORMILE P, RIPPA M, PETTI L, et al. Improvement of soil solarization through a hybrid system simulating a solar hot water panel[J]. Journal of Advanced Agricultural Technologies, 2016, 3(3): 226230.
[73]MAHRER Y, SHILO E. Physical principles of solar heating of soils [M]∥Soil Solarization: Theory and Practice, 2012: 147152.
[74]FUNAHASHI F, PARKE J L. Effects of soil solarization and Trichoderma asperellum on soilborne inoculum of Phytophthora ramorum and Phytophthora pini in container nurseries [J]. Plant Disease, 2016, 100(2): 438443.
[75]ALKARAGHOULI A, ALKAYSSI A W. Influence of soil moisture content on soil solarization efficiency [J]. Renewable Energy, 2001, 24(1): 131144.
[76]BOHRA M D, HARSH L N, LODHA S. Solar heating for controlling pathogens of jojoba(Simmondsia chinensis) in nursery soils [J]. Indian Journal of Agricultural Sciences, 1996, 66(11): 679683.
[77]DEVAY J E, KATAN J. Mechanisms of pathogen control in solarized soils [M]∥KATAN J, DEVAY J E.Soil solarization. London, UK: CRC Press, 1991:97101.
[78]GIUFFRIDA F, CONSOLI S. Reusing perlite substrates in soilless cultivation: analysis of particle size, hydraulicproperties, and solarization effects[J]. Journal of Irrigation and Drainage Engineering, 2016, 142(2): 04015047.
[79]STAPLETON J J, DEVAY J E. Soil solarization: a nonchemical approach for management of plant pathogens and pests [J]. Crop Protection, 1986, 5(3): 190198.
[80]SIMMONS C W, HIGGINS B, STALEY S, et al. The role of organic matter amendment level on soil heating, organic acid accumulation, and development of bacterial communities in solarized soil [J]. Applied Soil Ecology, 2016, 106: 3746.
[81]RUBIN B. Soil solarization as a tool for weed management [M]∥GAMLIEL A, KATAN J. Soil Solarization: Theory and Practice. American Phytopathological Society, 2012: 7176.
[82]VELA N, FENOLL J, NAVARRO G, et al. Trial of solar heating methods (solarization and biosolarization)to reduce persistence of neonicotinoid and diamide insecticides in a semiarid Mediterranean soil [J]. Science of the Total Environment, 2017, 590: 325332.
[83]CHELLEMI D O, OLSON S M, MITCHELL D J. Effects of soil solarization and fumigation on survival of soilborne pathogens of tomato in northern Florida[J]. Plant Disease, 1995, 78(12): 11671172.
[84]AREBI B H, AZZABI M Z, AHMED S A. Experimental and theoretical investigation of soil temperature profiles during solarization of mulched and bare soil [J]. Journal of Engineering Research, 2018, 25: 6984.
[85]DADDABBO T, MICCOLIS V, BASILE M, et al. Soil solarization and sustainable agriculture[M]∥LICHTFOUSE E. Sociology, organic farming, climate change and soil science. Springer, Dordrecht, 2010, 3: 217274.
[86]MARQUEZ J, WANG K H. Soil solarization as an organic preemergent weedmanagement tactic [R]. College of Tropical Agriculture and Human Resources, 2014, 14: 17.
[87]ALKARAGHOULI A, ALKAYSSI A W, HASSON A M. The photometric properties of different colored plastic mulches used for soil solarization[J]. Solar and Wind Technology, 1990, 7(2/3): 119123.
[88]MCGOVERN R J, MCSORLEY R. Physical methods of soil sterilization for disease management including soil solarization, environmentally safe approaches to crop disease control [M]∥RECHCIGL N A, RECHCIGL J E. Environmentally safe approaches to crop disease control. CRC Press, Boca Raton, FL, 1997: 283313.
[89]KOKALISBURELLE N, MCSORLEY R, WANG K H, et al. Rhizosphere microorganisms affected by soil solarization and cover cropping in Capsicum annuum and Phaseolus lunatus agroecosystems [J].Applied Soil Ecology,2017,119: 6471.
[90]MAHESWARI T U. Weed management in chilli nursery by soil solarizationA novel approach [J]. International Journal of Innovations in Agricultural Sciences, 2017, 1(1): 710.
[91]OZYILMAZ U, BENLIOGLU K, YILDIZ A, et al. Effects of soil amendments combined with solarization on the soil microbial community in strawberry cultivation using quantitative realtime PCR [J]. Phytoparasitica, 2016, 44(5): 661680.
[92]QUINTANILLATORNEL M A, WANG K H, TAVARES J, et al. Effects of mulching on above and below ground pests and beneficials in a green onion agroecosystem[J]. Agriculture, Ecosystems and Environment, 2016, 224: 7585.
[93]張廣榮,繆仲梅,薛莉,等.不同土壤添加劑及高溫悶棚對防治根結(jié)線蟲病的影響[J].植物保護,2016,42(1):249252.
[94]焦永剛,石琳琪,董靈迪,等.不同灌水量和填充物對高溫悶棚地溫及茄子產(chǎn)量的影響[J].河北農(nóng)業(yè)科學(xué),2009,13(9):3233.
[95]CHANDEL S. Organic amendment, biocontrol agents and soil solarization practice in management of Fusarium wilt of carnation caused by Fusarium oxysporum Schledit. f.sp. dianthi (Prill. and Del.)Snyd. and Hans [J]. International Journal of Plant Protection, 2015, 8(1): 130133.
[96]CHAMORRO M, MIRANDA L, DOMINGUEZ P, et al. Evaluation of biosolarization for the control of charcoal rot disease (Macrophomina phaseolina) in strawberry [J]. Crop Protection, 2015, 67: 279286.
[97]FENOLL J, GARRIDO I, VELA N, et al. Enhanced degradation of spiroinsecticides and their leacher enol derivatives in soil by solarization and biosolarization techniques [J].Environmental Science and Pollution Research,2017,24(10):92789285.
[98]劉敏艷,胡冠芳.高溫悶棚與多菌靈灌根防治土傳病害[J].中國蔬菜,2005(8):2021.
[99]董海龍,路平,張作剛,等.秸稈+石灰氮+X20菌肥+高溫悶棚處理對根結(jié)線蟲種群數(shù)量變化的影響[J].中國農(nóng)業(yè)大學(xué)學(xué)報,2016,21(4):5258.
[100]SOFI T A, TEWARI A K, RAZDAN V K, et al. Long term effect of soil solarization on soil properties and cauliflower vigor [J]. Phytoparasitica, 2014, 42(1): 111.
[101]ALSHAMMARY A A G, ALSADOON J N A, LAHMOD N R. Influence of the soil solarization management and fertilizer on soil temperature under different soil tillage systems[J]. Journal of Agricultural Science, 2016, 8(2): 98108.
[102]SHLEVIN E, GAMLIEL A, KATAN J, et al. Multistudy analysis of the added benefits of combining soil solarization with fumigants or nonchemical measures [J].Crop Protection, 2018, 111: 5865.
[103]OKON LEVY N, MELLER HAREL Y, HAILE Z M, et al. Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum [J]. Plant Pathology, 2015, 64(2): 365374.
[104]MEENA A K, THAKUR K D. Effect of soil solarization on chilli wilt caused by Fusarium oxysporum f.sp. capsici [J]. Advance Research Journal of Crop Improvement,2014,5(2): 9396.
[105]ROMBOLA A G, MARISI G, TORRI C, et al. Relationships between chemical characteristics and phytotoxicity of biochar from poultry litter pyrolysis [J]. Journal of Agricultural and Food Chemistry, 2015, 63(30): 66606667.
(責(zé)任編輯:田 喆)