劉俊孝,王慶杰,李洪文,何 進(jìn),盧彩云
?
針孔管式小麥精準(zhǔn)點(diǎn)播裝置設(shè)計(jì)與吸種性能研究
劉俊孝,王慶杰※,李洪文,何 進(jìn),盧彩云
(1. 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083; 2. 農(nóng)業(yè)農(nóng)村部河北北部耕地保育科學(xué)觀測(cè)實(shí)驗(yàn)站,北京 100083)
精準(zhǔn)點(diǎn)播可保證播種作業(yè)的播量、播深及株距的均勻度,增強(qiáng)個(gè)體發(fā)育,但因小麥種子具有籽粒小、種植密度大等特點(diǎn),目前尚缺少小麥精準(zhǔn)點(diǎn)播裝備。針對(duì)這一問(wèn)題,該文設(shè)計(jì)了一種基于氣力吸附、定點(diǎn)打穴、精準(zhǔn)投種的針孔管式小麥精準(zhǔn)點(diǎn)播裝置,并對(duì)其吸種性能進(jìn)行研究。確定了該播種機(jī)構(gòu)的工作原理及主要結(jié)構(gòu),通過(guò)理論計(jì)算,確定適宜株距為2.73 cm,針孔吸種管擾動(dòng)距離為7.86 cm,應(yīng)分3行排布。以吸種孔位置、吸種孔直徑和吸種面形狀為因素,以漏種指數(shù)、重種指數(shù)和單粒指數(shù)為指標(biāo)進(jìn)行正交試驗(yàn),得出最優(yōu)參數(shù)組合為:吸種孔位置為頂面,吸種孔直徑為2 mm,吸種面形狀為凸面;在此條件下,試驗(yàn)結(jié)果為漏種指數(shù)為4.1%,重種指數(shù)為7.3%,單粒指數(shù)為88.6%,滿足設(shè)計(jì)要求。
機(jī)械化;設(shè)計(jì);農(nóng)作物;小麥;針孔管式;吸附取種;定點(diǎn)打穴;精準(zhǔn)點(diǎn)播
中國(guó)的小麥種植遍及全國(guó),其主要種植方式以撒播或條播為主,該種植方式存在用種量大、個(gè)體發(fā)育差等問(wèn)題[1]。隨著現(xiàn)代農(nóng)業(yè)的快速發(fā)展,對(duì)小麥的播種質(zhì)量要求也日益提高,小麥精量播種可保證田間播種量的一致性和穩(wěn)定性,降低用種量,減少作物間對(duì)光照、水分和養(yǎng)料的競(jìng)爭(zhēng),增強(qiáng)個(gè)體發(fā)育[2],具有節(jié)種、節(jié)水、節(jié)肥等優(yōu)勢(shì)[3-4],且研究表明[5-6],保證播深及株距的均勻度對(duì)出苗時(shí)間、分蘗及產(chǎn)量具有顯著有益影響。但小麥的播種密度遠(yuǎn)遠(yuǎn)高于玉米、大豆等作物,排種器排出的種粒間距小,即使能夠排出均勻種子流,也極易被排出后發(fā)生的碰撞、滾動(dòng)、彈跳等現(xiàn)象破壞[7-8],無(wú)法實(shí)現(xiàn)精量、等粒距的高質(zhì)量播種,因此,需要同步解決小麥精準(zhǔn)投種的問(wèn)題??刂品N子在土壤中的空間分布,實(shí)現(xiàn)等播量、等粒距、等播深播種,提升小麥的播種質(zhì)量。
近些年,國(guó)內(nèi)外對(duì)于單粒點(diǎn)播技術(shù)與裝備的研究大多圍繞玉米、大豆等播種密度較小的作物[9],而針對(duì)小麥等密植類作物的研究極少,僅有少數(shù)的精量排種及投種方面的研究。Yasir等[10]對(duì)氣力式小麥精密排種器進(jìn)行改進(jìn),并采用ANSYS-CFX耦合方法對(duì)不同參數(shù)下的氣力分布進(jìn)行了模擬。Lei等[11-12]采用DEM-CFD耦合方法,對(duì)氣力集排式播種機(jī)從氣場(chǎng)和種子運(yùn)動(dòng)兩方面研究和分析了喉部面積、喉部長(zhǎng)度、氣流入口速度和進(jìn)種率對(duì)作業(yè)效率的影響。趙曉順等[13-14]設(shè)計(jì)了一種小麥槽縫氣吸式排種器,對(duì)比分析了不同形式的槽縫結(jié)構(gòu)對(duì)排種器吸種均勻性的影響,并進(jìn)行了試驗(yàn)優(yōu)化。上述研究為小麥精量排種的實(shí)現(xiàn)打下堅(jiān)實(shí)基礎(chǔ),但并未涉及小麥的投種方面研究。定點(diǎn)投種方面的研究大多針對(duì)玉米等作物展開,John Deere 公司[15]研發(fā)了毛刷帶式輸種裝置用于將種子運(yùn)送到種溝,通過(guò)實(shí)時(shí)調(diào)整毛刷帶轉(zhuǎn)速,可使種子落入種床的水平分速度與播種機(jī)前進(jìn)速度抵消,達(dá)到零速投種。陳學(xué)庚等[16]設(shè)計(jì)了一種傳動(dòng)與投種機(jī)構(gòu)一體的帶式導(dǎo)種裝置,并確定了其主要結(jié)構(gòu)參數(shù)。劉宏新等[17]研究了一種滾筒穴式免耕播種成穴機(jī)構(gòu),可實(shí)現(xiàn)在不對(duì)地表覆蓋物進(jìn)行處理的情況下穿透成穴。
上述研究在定點(diǎn)投種方面進(jìn)行了探索,為后續(xù)小麥精準(zhǔn)播種技術(shù)的發(fā)展奠定了基礎(chǔ),但由于播種密度的限制,很難應(yīng)用于小麥精準(zhǔn)點(diǎn)播。小麥投種的研究主要圍繞一溝多行及苗帶撒播等形式展開。劉彩玲等[18]在小麥精密排種器下接多行輸種槽,使各行種子獨(dú)立投送而互不干擾,提高行間種子分布均勻性。祝清震等[19]研究了苗帶撒播器的彈籽板球面半徑、安裝傾角和跨度等因素對(duì)小麥寬幅投種質(zhì)量的影響,得出彈籽板具有較好的橫向勻種效果。牛琪等[20]設(shè)計(jì)了一種斜置三角式分種裝置將從輸種管落下的種子流經(jīng)分種板橫向勻流投種,可提高投種均勻性。這些研究在一定程度上提高了種子行間(橫向)的均勻性,但種子均為自流下落,輸送過(guò)程種子仍處于不可控狀態(tài),導(dǎo)致精量排種器排出的均勻種子流受到破壞,不能實(shí)現(xiàn)精準(zhǔn)有序著床。目前,仍缺少配套的機(jī)械化小麥精準(zhǔn)點(diǎn)播技術(shù)與裝備。
針對(duì)這一問(wèn)題,本文研究了針孔管對(duì)小麥種子的吸附特性,設(shè)計(jì)了一種針孔管式小麥精準(zhǔn)點(diǎn)播裝置,以期實(shí)現(xiàn)小麥種子定量分離,同時(shí)保持原有的均勻性投放在土壤中,做到小麥精準(zhǔn)點(diǎn)播。
結(jié)合打穴播種機(jī)、導(dǎo)種機(jī)構(gòu)及排種器[21-22]的原理,創(chuàng)新提出了一種基于氣力吸附取種、定點(diǎn)打穴、精準(zhǔn)投種的精準(zhǔn)點(diǎn)播方法,并將取種部件、運(yùn)輸導(dǎo)種部件與投種部件相融合,使得針孔吸種管同時(shí)具有排種器、導(dǎo)種裝置與打穴裝置的功能,使小麥在土壤中仍能夠保持原有的均勻性。根據(jù)該方法設(shè)計(jì)的針孔管式小麥精準(zhǔn)點(diǎn)播裝置,其結(jié)構(gòu)如圖1所示。
1.種箱 2.針孔吸種管 3.播種輪 4.氣力分配機(jī)構(gòu)
1.Seed box 2. Pinhole seed suction tube 3.Seeding wheel 4.Pneumatic distribution mechanism
圖1 針孔管式小麥精準(zhǔn)點(diǎn)播裝置
Fig.1 Pinhole-tube wheat precision seeding device
針孔管式小麥精準(zhǔn)點(diǎn)播裝置主要由針孔吸種管、氣力分配機(jī)構(gòu)、播種輪、種箱等四部分組成。針孔吸種管均勻安裝在播種輪的外側(cè)壁上,為可更換部件,可根據(jù)所需播種量改變針孔吸種管的排布,未安裝針孔吸種管的孔洞用橡膠塞封閉防止進(jìn)土、漏氣,針孔吸種管通過(guò)狹長(zhǎng)氣道管連接播種輪中心的氣力分配機(jī)構(gòu)以獲取真空度,針孔吸種管為吸種、運(yùn)種及投種的核心部件。氣力分配機(jī)構(gòu)主要由與播種輪固聯(lián)在一起的氣力分配中心和氣力分配蓋兩部分組成,兩者可相對(duì)旋轉(zhuǎn),播種輪通過(guò)與土壤的摩擦獲取旋轉(zhuǎn)動(dòng)力,正壓與負(fù)壓也是利用旋轉(zhuǎn)進(jìn)行切換。種箱安裝于播種輪側(cè)上方,種箱下部裝有柔性的單向通過(guò)裝置,針孔吸種管可低阻力通過(guò)而種子不會(huì)泄漏。
針孔管式小麥精準(zhǔn)點(diǎn)播裝置基本結(jié)構(gòu)尺寸:播種輪直徑為600 mm,裝置橫向最大寬度為170 mm,播種行距為200 mm,種箱容積10 L,播種帶寬度為80 mm。
針孔管式小麥精準(zhǔn)點(diǎn)播裝置的主要工作原理為:播種輪的外壁壓在土壤之上,將針孔吸種管插入土壤之中,當(dāng)播種輪在地表滾動(dòng)時(shí),帶動(dòng)針孔吸種管旋轉(zhuǎn)。氣力分配機(jī)構(gòu)與風(fēng)機(jī)連接,并分為負(fù)壓區(qū)與正壓區(qū)2個(gè)部分,分別為處于吸種位置和排種位置的針孔吸種管提供氣力,整個(gè)工作區(qū)域分為吸種、清種、運(yùn)種、投種4個(gè)區(qū)域,其中吸種、清種、運(yùn)種區(qū)域?yàn)樨?fù)壓區(qū),投種區(qū)域?yàn)樨?fù)壓區(qū),如圖2所示。帶有負(fù)壓的針孔吸種管通過(guò)種箱,拾取種子,并隨播種輪轉(zhuǎn)動(dòng)將種子運(yùn)輸?shù)酵寥乐?,?dāng)針孔吸種管到達(dá)指定投種點(diǎn)時(shí),正對(duì)應(yīng)氣力分配機(jī)構(gòu)的正壓區(qū)域,吸種孔由負(fù)壓改變?yōu)檎龎?,將種子吹入土壤,完成播種,同時(shí)正向氣流也可起到防止土壤進(jìn)入并清潔氣道的作用,依次循環(huán)。
Ⅰ.吸種區(qū)域 Ⅱ.清種區(qū)域 Ⅲ.運(yùn)種區(qū)域 Ⅳ.投種區(qū)域
Ⅰ.Sucking zone Ⅱ.Clearing zone Ⅲ.Carrying zone Ⅳ.Throwing zone
圖2 氣壓分配示意圖
Fig.2 Diagram of air pressure distribution
1.3.1 精準(zhǔn)點(diǎn)播株距計(jì)算
相較于玉米、大豆等作物,小麥的播種密度大,取種單元在播種輪上的分布相對(duì)密集,應(yīng)根據(jù)株距來(lái)設(shè)計(jì)取種單元的間隔距離。但常規(guī)衡量小麥播種密度的指標(biāo)不是株距而是單位面積播種質(zhì)量,而小麥各個(gè)品種的千粒重差異較大,以單位面積播種質(zhì)量來(lái)計(jì)算株距會(huì)有誤差,因此以單位面積小麥基本苗數(shù)來(lái)計(jì)算更加準(zhǔn)確。根據(jù)文獻(xiàn)可知,采取精量播種方法所需苗數(shù)相對(duì)較少,為90~150萬(wàn)/hm2[23-24]。則可得
式中為縱向株距,cm;F為小麥種子發(fā)芽率,%;F為小麥田間出苗率,%;為行距,m;為公頃基本苗數(shù)。
根據(jù)文獻(xiàn)可知[25-26],小麥種子發(fā)芽率F取90%,小麥田間出苗率取95%,行距取常用值0.2m,公頃基本苗數(shù)取150萬(wàn)/hm2。解得植株的縱向株距(即在行進(jìn)方向上株距)為2.84 cm。
解出的所需株距遠(yuǎn)小于常規(guī)穴播機(jī)構(gòu),而針孔吸種管會(huì)在土壤中移動(dòng),若株距過(guò)小,則兩相鄰針孔吸種管會(huì)相互影響,甚至出現(xiàn)后一針孔吸種管會(huì)使前一種子移位的現(xiàn)象,影響播種質(zhì)量。因此需要對(duì)針孔吸種管在土壤中的擾動(dòng)距離進(jìn)行研究。
1.3.2 土壤擾動(dòng)距離研究
針孔吸種管在土壤中所擾動(dòng)距離不僅僅是其直徑范圍,還應(yīng)考慮其觸地后會(huì)因播種輪轉(zhuǎn)動(dòng)及打滑等原因在土壤中產(chǎn)生的位移。當(dāng)某一針孔吸種管接觸土壤瞬間,其位置關(guān)系如圖3所示。
注:l為針孔吸種管接觸地面瞬間其頂端與播種輪觸地點(diǎn)的距離,cm;為觸地的針孔吸種管與垂直方向夾角,(°);l為角所對(duì)應(yīng)的弧長(zhǎng),cm;為播種輪半徑,cm;l為針孔吸種管長(zhǎng)度,cm。
Note:lis the distance between the top of the pinhole seed suction tube and the contact place of the seeding wheel when it touches the ground,cm;is the angle with the vertical direction and pinhole seed suction pipe when touchdown,(°);lis the arc length corresponding to,cm;is the radius of seeding wheel,cm;lis the length of pinhole seed suction tube,cm.
圖3 針孔吸種管觸地位置關(guān)系示意圖
Fig.3 Schematic diagram of contact position relationship between pinhole seed suction tube and ground
根據(jù)圖3,可得
式中l為針孔吸種管擾動(dòng)距離,cm;d為針孔吸種管直徑,cm;為播種輪滑移率,%。
針孔吸種管直徑應(yīng)稍大于小麥種子,小麥種子長(zhǎng)度一般不超過(guò)0.8 cm,綜合考慮取1 cm,播種輪為金屬制品,相較于橡膠制品滑移率較高,一般在14%~20%之間[27],應(yīng)取最大值以保證相鄰的針孔吸種管不會(huì)相互干擾,因此播種輪滑移率取20%,播種輪半徑取30 cm,針孔吸種管長(zhǎng)度為小麥播深,取3 cm,因此可解得針孔吸種管擾動(dòng)距離l為7.86 cm。
1.3.3 針孔吸種管分布設(shè)計(jì)
所得擾動(dòng)距離l遠(yuǎn)大于所需理論種植株距,考慮到寬幅播種有利于作物增產(chǎn)[28],可分為多行種植以增大垂直株距(分排后,同一排兩相鄰針孔吸種管間的距離)。若按照垂直株距必須大于擾動(dòng)距離來(lái)計(jì)算,最少需要將針孔吸種管分為3排。分排后兩植株的絕對(duì)株距為
式中為植株的絕對(duì)株距,cm;l為苗帶寬度,cm;N為針孔吸種管排數(shù)。
由式(6)可知,植株的絕對(duì)株距與針孔吸種管排數(shù)N呈負(fù)相關(guān)關(guān)系。而兩植株距離越遠(yuǎn)越有利于植株個(gè)體發(fā)育[29-30],因此針孔吸種管排數(shù)取最小值,為3排。當(dāng)針孔吸種管分3排均布于播種輪圓周上時(shí),針孔吸種管每排個(gè)數(shù)為
解得每排個(gè)數(shù)為22.12個(gè),為避免播種量不足,向上取整得23,因此播種輪圓周上每排有23個(gè)針孔吸種管,每個(gè)吸種管角間距約為15.65°。對(duì)之前計(jì)算的株距進(jìn)行修正則可得實(shí)際株距為2.73 cm。
針孔吸種管吸引種子的形式是利用負(fù)壓使氣流產(chǎn)生運(yùn)動(dòng),從而牽引種子吸附到吸種管之上,種子在被吸附過(guò)程中所受到的力無(wú)法利用簡(jiǎn)單的壓強(qiáng)公式來(lái)計(jì)算,更多的是在吸種孔所營(yíng)造的氣場(chǎng)中對(duì)種子的吸引力。而吸種孔中的氣流速度為[31]
式中為絕熱指數(shù);R為氣體常數(shù),J/(kg·K);T為空氣絕熱溫度,K;P為排種器的氣體壓力,Pa;P為大氣壓力,Pa。
由式(8)可知,吸種孔中的氣流速度主要由吸種孔內(nèi)外的壓差決定,但該速度并不能直接作用與種子,需要形成一定范圍的氣場(chǎng),氣流流量與速度的轉(zhuǎn)換關(guān)系為
式中為通過(guò)吸種孔的流量,m3/s;為吸種孔直經(jīng),m。
吸種孔外部氣場(chǎng)的流動(dòng)區(qū)域近似于半球形[32]。以平面頂吸式針孔吸種管為例,如圖4所示。
注:R為到吸種孔的距離,m;為吸種邊界與垂直的夾角,(°)。
Note:Ris the distance to the seed hole, m;is the angle between the seed absorption boundary and the vertical, (°).
圖4 針孔吸種管外部氣場(chǎng)截面示意圖
Fig.4 Schematic diagram of outside gas field of pinhole seed suction tube
假設(shè)氣體為等熵、無(wú)旋流動(dòng),通過(guò)截面的氣體體積流量與通過(guò)吸種孔的氣體體積流量相等,截面上的各點(diǎn)速度近似相等。則吸種孔氣流場(chǎng)中任意一點(diǎn)的氣體流速V為
式中V為氣流場(chǎng)中任意一點(diǎn)的氣體流速,m/s。
將式(8)、(9)帶入式(10)中,可得
由式(11)可知,氣場(chǎng)中的氣流速度與吸種孔的直徑成正比,而與種子與吸種孔的距離成反比,吸種孔直徑是影響吸種效果的關(guān)鍵參數(shù)之一。而吸種孔的直徑主要是由種子尺寸決定,對(duì)小麥種子進(jìn)行測(cè)量,其種子長(zhǎng)度范圍為4.46~7.93 mm,種子寬度范圍為2.0~4.26 mm,種子厚度范圍為1.81~3.98 mm。為防止小麥種子被吸入氣道內(nèi)部損壞風(fēng)機(jī),其最大直徑只能取2mm??紤]到小吸種孔直徑易使吸附力不足造成漏種,而大孔徑易造成重種,因此選擇1,1.5,2 mm 3種孔徑進(jìn)行試驗(yàn),以確定最佳吸種孔直經(jīng)。
吸種孔在針孔吸種管上的位置對(duì)吸種效果也有顯著影響,理論上針孔吸種管的5個(gè)面均可布置吸種孔,分別為觸土面,觸土背面,左右兩側(cè)面及頂面。但若將吸種孔布置在左右側(cè)面,則針孔吸種管入土?xí)r種子處于無(wú)支撐的剪切力作用下,種子極易掉落在土壤表面,無(wú)法進(jìn)入土壤之中,且其吸種時(shí)的力學(xué)模型與頂面基本相似,因此僅對(duì)吸種孔開在觸土面,觸土背面及頂面時(shí)種子的受力進(jìn)行分析[33]。
針孔吸種管應(yīng)為圓柱形結(jié)構(gòu),但為了使針孔吸種管更容易通過(guò)種箱下部的單向通過(guò)裝置,防止產(chǎn)生脈沖震動(dòng),對(duì)針孔吸種管進(jìn)行優(yōu)化,使其截面變?yōu)樗笮?,更有利于降低運(yùn)行阻力,但布置吸種孔的面仍保持圓柱型結(jié)構(gòu),吸種孔開在觸土面,觸土背面的結(jié)構(gòu)一致,僅安裝角度不同。針孔吸種管吸種孔位置示意圖如圖5所示。
圖5 針孔吸種管吸種孔位置示意圖
2.2.1 觸土背面吸種分析
首先對(duì)吸種孔布置于觸土背面的針孔吸種管進(jìn)行吸種受力分析(以吸種面為平面為例),如圖6所示。
處于被吸附平衡狀態(tài)時(shí)的種子受到重力、離心慣性力、支持力、摩擦力F和吸附力F的作用達(dá)到受力平衡。即有
在方向
在方向
2.2.2 頂面吸種分析
對(duì)吸種孔布置于頂面的針孔吸種管進(jìn)行吸種受力分析(以吸種面為平面為例),如圖7所示。
注:為小麥種子重力,N;F1為觸土背面吸種時(shí)針孔吸種管對(duì)種子的靜摩擦力,N;1為觸土背面吸種時(shí)小麥種子所受的離心慣性力,N;F1為觸土背面吸種時(shí)吸種孔對(duì)種子的吸附力,N;1為觸土背面吸種時(shí)針孔吸種管對(duì)種子的支持力,N;為播種輪角速度,rad·s-1;為針孔吸種管與水平面的夾角,(°)。
Note:is the gravity of wheat seeds, N;F1is the static friction force of pinhole seed suction tube for seeds when absorbing on reverse side of contact soil surface, N;1is the centrifugal inertia force on wheat seeds when absorbing on reverse side of contact soil surface, N;F1is the suction force for seeds when absorbing on reverse side of contact soil surface, N;1is the supporting force of pinhole seed suction tube for seeds when absorbing on reverse side of contact soil surface, N;is the angular velocity for sowing wheel, rad·s-1;isthe angle for pinhole seed suction tube and horizontal plane, (°).
圖6 觸土背面吸種時(shí)種子受力示意圖
Fig.6 Seed force diagram of absorbing seeds on reverse side of contact soil surface
注:F2為頂面吸種時(shí)針孔吸種管對(duì)種子的靜摩擦力,N;2為頂面吸種時(shí)小麥種子所受的離心慣性力,N;F2為頂面吸種時(shí)吸種孔對(duì)種子的吸附力,N;2為頂面吸種時(shí)針孔吸種管對(duì)種子的支持力,N。
Note:F2is the static friction force of pinhole seed suction tube for seeds when absorbing on top surface, N;2is the centrifugal inertia force on wheat seeds when absorbing on top surface, N;2is the suction force for seeds when absorbing on top surface, N;2is the supporting force of pinhole seed suction tube for seeds when absorbing on top surface, N.
圖7 頂面吸種時(shí)種子受力示意圖
Fig.7 Seed force diagram of absorbing seeds on top surface
即有
在方向
在方向
2.2.3 觸土面吸種分析
對(duì)吸種孔布置于觸土面的針孔吸種管進(jìn)行吸種受力分析(以吸種面為平面為例),如圖8所示。
即有
在方向
在方向
2.2.4 各吸種孔位置所需吸力對(duì)比研究
對(duì)觸土面,觸土背面及頂面吸種的受力分析進(jìn)行整理,并有摩擦力與支持力的關(guān)系為
注:F3為觸土面吸種時(shí)針孔吸種管對(duì)種子的靜摩擦力,N;3為觸土面吸種時(shí)小麥種子所受的離心慣性力,N; F3為觸土面吸種時(shí)吸種孔對(duì)種子的吸附力,N;3為觸土面吸種時(shí)針孔吸種管對(duì)種子的支持力,N。
Note:F3is the static friction force of pinhole seed suction tube for seeds when absorbing on contact soil surface, N;3is the centrifugal inertia force on wheat seeds when absorbing on contact soil surface , N;3is the suction force for seeds when absorbing on contact soil surface, N;3is the supporting force of pinhole seed suction tube for seeds when absorbing on contact soil surface, N.
圖8 觸土面吸種時(shí)種子受力示意圖
Fig.8 Seed force diagram of absorbing seeds on contact soil surface
F=sin(18)
式中為小麥種子的內(nèi)摩擦角,(°)。
可得
對(duì)式(19)、(20)、(21)進(jìn)行計(jì)算,小麥的內(nèi)摩擦角取20°,針孔吸種管與水平面的夾角可以為針孔吸種管位于種箱內(nèi)的任意位置,取種箱吸種的中心區(qū)域20°,種子的離心慣性力為
=(+l)2(22)
式中為小麥種子質(zhì)量,kg。
小麥千粒質(zhì)量取46.5 g,小麥精準(zhǔn)點(diǎn)播相較于條播結(jié)構(gòu)復(fù)雜,其工作速度相較于條播機(jī)構(gòu)較低,文中計(jì)算及試驗(yàn)選用的前進(jìn)速度為6 km/h,對(duì)應(yīng)播種輪角速度為5.56 rad/s??傻?/p>
F3<F2<F1(23)
即同樣吸附一粒種子,觸土背面吸種所需的吸附力最大,觸土面吸種所需的吸附力最小,頂面吸種所需的吸附力介于兩者之間,理論上觸土面吸種的吸種指數(shù)應(yīng)該最佳,但吸附力過(guò)大有可能會(huì)造成重種現(xiàn)象,吸附力不足又會(huì)導(dǎo)致吸種指數(shù)下滑,因此仍需通過(guò)試驗(yàn)來(lái)確定最優(yōu)的吸種孔位置。
吸種面形狀影響能夠?yàn)樾←湻N子提供支持力的面積,當(dāng)該面積越大時(shí),理論上種子越容易獲取支持力以維持種子平衡,并減少了所需的吸力,也就越容易被吸取,但過(guò)大的支持面積會(huì)導(dǎo)致重種現(xiàn)象增加。將針孔吸種管的吸種面形狀分為凹面,平面與凸面3種形式[34-35](以頂面吸種為例進(jìn)行分析),如圖9所示。
3種形式中凸面的支持面積最小,僅局限在吸種孔處,吸種面不會(huì)給予其他種子支撐,其重種現(xiàn)象應(yīng)有所減少,但其吸種性能會(huì)有所降低。而吸種面形狀為凹面時(shí)其凹槽中可以容納多粒種子,支持面積最大,最易吸取種子,但由于有足夠的空間對(duì)小麥種子予以支撐,可能重種現(xiàn)象會(huì)較多,平面則介于兩者之間。具體何種形狀作業(yè)效果更好,仍需通過(guò)試驗(yàn)予以證明。
圖9 三種形式吸種面剖面圖
為研究針孔管式小麥精準(zhǔn)點(diǎn)播裝置的吸種性能,加工了吸種試驗(yàn)裝置,在搭建的播種裝置試驗(yàn)臺(tái)上進(jìn)行試驗(yàn)。試驗(yàn)所用小麥種子為煙農(nóng)19,千粒質(zhì)量46.5 g。由于裝置模型比較復(fù)雜,利用機(jī)加工制作成本較高,因此選擇3D打印技術(shù)進(jìn)行加工,使用材料為未來(lái)8 000低粘度光敏樹脂,硬度79,斷裂延展率6%~9%,抗拉強(qiáng)度35 MPa。為方便觀察吸種過(guò)程及規(guī)律,種箱使用材料為透明光敏樹脂,硬度87,斷裂延展率10%,抗拉強(qiáng)度50 MPa。在試驗(yàn)臺(tái)上播種輪為旋轉(zhuǎn)件無(wú)法被固定,整機(jī)質(zhì)量完全由支撐架與氣力分配蓋的螺栓承受,氣力分配蓋為薄壁結(jié)構(gòu),載荷有限,考慮到本試驗(yàn)僅進(jìn)行吸種試驗(yàn),因此對(duì)模型進(jìn)行簡(jiǎn)化,將播種輪直徑減半,并將3排針孔吸種管簡(jiǎn)化為1排,簡(jiǎn)化后的試驗(yàn)臺(tái)裝置如圖10a所示。
1.支撐架 2.種箱 3.氣力分配機(jī)構(gòu) 4.針孔吸種管 5.播種輪 6.試驗(yàn)臺(tái)梁架 7.高壓風(fēng)機(jī) 8.播種裝置 9.直流電機(jī) 10.變頻器
1.Support frame 2.Seed box 3.Pneumatic distribution mechanism 4.Pinhole seed suction tube 5.Seeding wheel 6.Girder frame 7.High pressure air blower 8.Seeding apparatus 9.Direct current motor 10.Frequency converter
圖10 試驗(yàn)樣機(jī)及試驗(yàn)臺(tái)
Fig.10 Test prototype and test bench
試驗(yàn)配套風(fēng)機(jī)為德國(guó)好凱德2HB320H36高壓離心風(fēng)機(jī)。吸氣管連接負(fù)壓接口,吹氣管連接正壓接口,為播種裝置提供氣源。變頻器為Rexroth VFC3610,動(dòng)力為12V直流電機(jī),播種裝置試驗(yàn)臺(tái)如圖10b所示。
通過(guò)前期理論分析,得出對(duì)播種裝置性能有顯著影響的因素有吸種孔位置、吸種孔直徑和吸種面形狀。為研究上述3個(gè)因素對(duì)排種性能的影響,以煙農(nóng)19為試驗(yàn)對(duì)象,選取三因素三水平正交表安排試驗(yàn)。試驗(yàn)因素和水平如表1所示。
表1 試驗(yàn)因素和水平
為方便因素變換,將針孔吸種管設(shè)計(jì)為可拆卸式,使用螺紋連接,樹脂材料攻絲偏差相對(duì)較大,連接較為松動(dòng),在試驗(yàn)前使用熱熔膠將螺紋縫隙填充,亦可保證針孔吸種管氣密性。試驗(yàn)所需針孔吸種管如圖11所示。
圖11 針孔吸種管實(shí)物圖
本文研究目標(biāo)為吸種性能研究,不涉及投種方面,但需確定當(dāng)下端吸種管觸碰土壤時(shí),是否會(huì)對(duì)正處于吸種位置的針孔吸種管的吸種性能帶來(lái)顯著影響,因此將點(diǎn)播裝置安裝于傳送帶試驗(yàn)臺(tái),使其下端與土壤(已整備過(guò)的細(xì)碎土壤)緊密接觸,試驗(yàn)土壤對(duì)吸種性能的影響,如圖12所示。試驗(yàn)表明,土壤接觸對(duì)吸種性能方面影響不顯著,因此為更利于開展試驗(yàn)研究,進(jìn)行正交試驗(yàn)時(shí)未添加土壤。
圖12 土壤對(duì)吸種影響試驗(yàn)
在播種輪角速度為5.56 rad/s,真空度為6 kPa的條件下進(jìn)行試驗(yàn),記錄試驗(yàn)結(jié)果,試驗(yàn)重復(fù)3次,選用漏種指數(shù)、重種指數(shù)和單粒指數(shù)為評(píng)價(jià)指標(biāo)[36]。并對(duì)正交試驗(yàn)結(jié)果進(jìn)行極差分析,最佳參數(shù)組合的選擇依據(jù)為:漏種指數(shù)與重種指數(shù)越小,則作業(yè)效果越好,單粒指數(shù)越大,則作業(yè)效果越好。所測(cè)各指標(biāo)平均值及基差分析結(jié)果如表2所示。
極差分析表明:吸種孔位置、吸種孔直徑和吸種面形狀3因素均對(duì)試驗(yàn)結(jié)果有影響,對(duì)漏種指數(shù)的影響由大到小排列為吸種孔位置、吸種孔直徑、吸種面形狀,且吸種孔位置對(duì)漏種指數(shù)的影響極為顯著,遠(yuǎn)超其他兩因素,最佳參數(shù)組合為232。對(duì)重種指數(shù)的影響由大到小排列為吸種孔位置、吸種面形狀、吸種孔直徑,最佳參數(shù)組合為323。對(duì)單粒指數(shù)的影響由大到小排列為吸種孔位置、吸種面形狀、吸種孔直徑,最佳參數(shù)組合為123。對(duì)3組最佳參數(shù)組合進(jìn)行分析,可以看出各因素在3個(gè)指數(shù)上取得的最佳項(xiàng)存在差異,因此需對(duì)各項(xiàng)指標(biāo)賦予權(quán)重,通過(guò)無(wú)量綱計(jì)算選取各項(xiàng)最優(yōu)指標(biāo)。
表2 試驗(yàn)結(jié)果及分析
在小麥播種作業(yè)中首要原則為減少漏播情況的發(fā)生,允許發(fā)生少量的重播現(xiàn)象,因此漏種指數(shù)的權(quán)重應(yīng)大于重種指數(shù)與單粒指數(shù),而重種指數(shù)與單粒指數(shù)的權(quán)重應(yīng)相同。因此憑借經(jīng)驗(yàn)為漏種指數(shù),重種指數(shù)和單粒指數(shù)賦予的權(quán)重系數(shù)比例為5:1:1。權(quán)重影響指數(shù)計(jì)算公式為
式中可取,,;可取1,2,3;W為權(quán)重影響指數(shù);1,2和3分別表示漏種指數(shù),重種指數(shù)和單粒指數(shù);1,2,3分別為漏種指數(shù),重種指數(shù)和單粒指數(shù)所占的權(quán)重系數(shù);為表2中所對(duì)應(yīng)的分析項(xiàng)。計(jì)算結(jié)果如表3所示。
表3 權(quán)重影響指數(shù)計(jì)算結(jié)果
權(quán)重影響指數(shù)越小則作業(yè)效果越好,最終確定的最佳參數(shù)組合為133,即吸種孔位置為頂面,吸種孔直徑為2 mm,吸種面形狀為凸面。在其條件下,試驗(yàn)結(jié)果為漏種指數(shù)為4.1%,重種指數(shù)為7.3%,單粒指數(shù)為88.6%,滿足設(shè)計(jì)要求。
將試驗(yàn)結(jié)果與理論分析結(jié)果進(jìn)行對(duì)比可以發(fā)現(xiàn),重種指數(shù)和吸種孔直徑成正相關(guān)關(guān)系,漏種指數(shù)與單粒指數(shù)和吸種孔直徑成負(fù)相關(guān)關(guān)系,與理論分析結(jié)果一致。吸種孔位置對(duì)試驗(yàn)的3項(xiàng)指標(biāo)影響最顯著(<0.01),尤其是當(dāng)吸種孔開在觸土背面時(shí),漏種指數(shù)急劇上升,分析其主要原因是其運(yùn)動(dòng)為遠(yuǎn)離種群方向,向上的運(yùn)動(dòng)會(huì)在吸種孔附近形成空腔,造成在合適的吸種范圍內(nèi)種子較少,而吸種力又與距離成反比,且所需吸種力在3種吸種面形狀中最大,造成吸種效果較差。而吸種孔位置位于頂面與觸土面時(shí),漏種指數(shù)相近且觸土面稍好,但重種指數(shù)與單粒指數(shù)頂面要遠(yuǎn)優(yōu)于觸土面,試驗(yàn)結(jié)果也與理論分析結(jié)果相符。吸種面形狀對(duì)漏種指數(shù)影響相對(duì)較小,但對(duì)重種指數(shù)與單粒指數(shù)有較大影響。理論分析結(jié)果得出吸種能力由大到小為凹面,平面和凸面,但試驗(yàn)結(jié)果表明,漏種指數(shù)凹面反而高于平面。對(duì)數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)當(dāng)觸土背面吸種時(shí),凹面吸種指數(shù)最低,影響了整體數(shù)據(jù),而在觸土面與頂面吸種時(shí)與理論分析結(jié)果一致。產(chǎn)生該現(xiàn)象的原因?yàn)榘夹筒贾迷谟|土面與頂面時(shí),其轉(zhuǎn)動(dòng)是貼合種群的過(guò)程,而布置在觸土背面時(shí),其轉(zhuǎn)動(dòng)是遠(yuǎn)離種群的過(guò)程,凹型的側(cè)壁反而阻止了種子的進(jìn)入,致使吸種能力下降。
1)提出了一種基于氣力吸附取種、定點(diǎn)打穴、精準(zhǔn)投種的精準(zhǔn)點(diǎn)播方法,并設(shè)計(jì)了針孔管式小麥精準(zhǔn)點(diǎn)播裝置,確定了該播種機(jī)構(gòu)的工作原理及主要結(jié)構(gòu),通過(guò)理論計(jì)算,確定適宜株距為2.73 cm,針孔吸種管在土壤內(nèi)的擾動(dòng)距離為7.86 cm,分3行排布,間隔角度15.65°。
2)對(duì)影響針孔吸種管吸種性能的因素進(jìn)行理論分析,發(fā)現(xiàn)吸種孔位置、吸種孔直徑和吸種面形狀對(duì)吸種性能具有顯著影響(均有<0.05),并建立了不同吸種形式的力學(xué)模型。
3)通過(guò)正交試驗(yàn),確定了吸種孔位置、吸種孔直徑和吸種面形狀均對(duì)吸種效果有顯著影響。設(shè)定各評(píng)價(jià)指標(biāo)權(quán)重,得出最優(yōu)參數(shù)組合為吸種孔位置為頂面,吸種孔直徑為2 mm,吸種面形狀為凸面,該情況下漏種指數(shù)為4.1%,重種指數(shù)為7.3%,單粒指數(shù)為88.6%,滿足設(shè)計(jì)要求。試驗(yàn)結(jié)果基本與力學(xué)分析結(jié)果一致,驗(yàn)證了其準(zhǔn)確性。
文中試驗(yàn)條件相對(duì)于實(shí)際作業(yè)環(huán)境仍過(guò)于簡(jiǎn)單,無(wú)法充分驗(yàn)證該裝置在田間作業(yè)條件下的準(zhǔn)確性和可靠性,尤其是僅考慮了吸種管結(jié)構(gòu)對(duì)吸種性能的影響,未研究各結(jié)構(gòu)形式與土壤接觸時(shí)和種子的相互作用情況。當(dāng)針孔吸種管吸取的種子與土壤接觸,能否穩(wěn)定的攜帶種子至指定位置實(shí)現(xiàn)精準(zhǔn)點(diǎn)播,其攜種定點(diǎn)投放的能力可能與吸種管結(jié)構(gòu)、吸種管頂部曲率半徑、播種輪直徑、針孔吸種管長(zhǎng)度、機(jī)具前進(jìn)速度等多個(gè)因素有關(guān),仍有待進(jìn)一步研究。
[1] Narinder P, Gill M S. Study on comparison of precision seeding with traditional seeding in wheat[J]. Natural Resource Management: Ecological Perspectives, 2016(1/2): 695.
[2] 陳雨海,余松烈,于振文. 小麥邊行優(yōu)勢(shì)及其利用的研究[J]. 耕作與栽培,2002(6):3-4,8.
[3] 叢錦玲,余佳佳,曹秀英,等. 油菜小麥兼用型氣力式精量排種器[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(1):46-52.
Cong Jinling, Yu Jiajia, Cao Xiuying, et al. Design of dual-purpose pneumatic precision metering device for rape and wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1):46-52. (in Chinese with English abstract)
[4] Belenkov A I, Tyumakov A, Sabo U. Implementation of precision farming elements in the field experiment[J]. Zemledelie, 2015(3):37-39.
[5] Soza E L, Agnes D W, Agostinelli F. Variability of wheat seeds distribution by one seeder on three tillage systems, impact in the establish and growth crop[J]. Revista de la Facultad de Agronomia (Universidad de Buenos Aires), 2010, 30(3):123-132.
[6] Iacomi Cristian, Popescu Octavian. A new concept for seed precision planting[J]. Agriculture and Agricultural Science Procedia, 2015(6):38-43.
[7] Li Yang, Bingxin Yan, Tao Cui, et al. Global overview of research progress and development of precision maize planters[J]. Int J Agric & Biol Eng, 2016, 9(1):9.
[8] Arzu Yazgi, Degirmencioglu Adnan. Measurement of seed spacing uniformity performance of a precision metering unit as function of the number of holes on vacuum plate[J]. Measurement, 2014, 56:128-135.
[9] 王金武,唐漢,周文琪,等. 指夾式精量玉米排種器改進(jìn)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(9):68-76.
Wang Jinwu, Tang Han, Zhou Wenqi, et al. Improved design and experiment on pickup finger precision seed metering device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9):68-76.(in Chinese with English abstract)
[10] Yasir S H, Liao Qingxi. Simulation of negative pressure behavior using different shapes and positions of pressure inlet and seed hole diameters using ANSYS-CFX to optimize the structure of a pneumatic metering device designed for wheat.[J]. Agricultural Engineering International: CIGR Journal, 2014, 16(4):122-134.
[11] Lei Xiaolong, Liao Yitao, Liao Qingxi. Simulation of seed motion in seed feeding device with DEM-CFD coupling approach for rapeseed and wheat[J]. Computers and Electronics in Agriculture, 2016(131):29-39.
[12] Lei Xiaolong, Liao Yitao, Zhang Qingsong, et al. Numerical simulation of seed motion characteristics of distribution head for rapeseed and wheat[J]. Computers and Electronics in Agriculture, 2018(150):98-109.
[13] 趙曉順,于華麗,張晉國(guó),等. 槽縫氣吸式小麥精量排種器[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(2):48-51,74.
Zhao Xiaoshun, Yu Huali, Zhang Jinguo, et al. Slot-type pneumatic precise wheat seed-metering device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2):48-51, 74.(in Chinese with English abstract)
[14] 趙曉順,于華麗,馬躍進(jìn),等. 負(fù)壓式小麥精量排種器參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(11):11-18.
Zhao Xiaoshun, Yu Huali, Ma Yuejin, et al. Parameter optimization and experiment of negative pressure precision seed-metering device for wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11):11-18. (in Chinese with English abstract)
[15] 楊麗,顏丙新,張東興,等. 玉米精密播種技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(11):38-48.
Yang Li, Yan Bingxin, Zhang Dongxing, et al. Research progress on precision planting technology of maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11):38-48.(in Chinese with English abstract)
[16] 陳學(xué)庚,鐘陸明. 氣吸式排種器帶式導(dǎo)種裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(22):8-15.
Chen Xuegeng, Zhong Luming. Design and test on belt-type seed delivery of air-suction metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22):8-15. (in Chinese with English abstract)
[17] 劉宏新,聞浩楠,改廣偉,等. 被動(dòng)滾筒式免耕播種成穴機(jī)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):53-61.
Liu Hongxin, Wen Haonan, Gai Guangwei, et al. Design and experiment on passive drum-type no-till planter cavitation mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9):53-61.(in Chinese with English abstract)
[18] 劉彩玲,魏丹,都鑫,等. 寬苗帶勾型窩眼輪式小麥精量排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(1):75-84.
Liu Cailing, Wei Dan, Du Xin, et al. Design and test of the wide seedling strip wheat precision hook-hole type seed-metering device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1):75-84. (in Chinese with English abstract)
[19] 祝清震,武廣偉,陳立平,等. 小麥寬苗帶撒播器彈籽板結(jié)構(gòu)設(shè)計(jì)與優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):1-11.
Zhu Qingzhen, Wu Guangwei, Chen Liping, et al. Structural design and optimization of seed separated plate of wheat wide-boundary sowing device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1):1-11. (in Chinese with English abstract)
[20] 牛琪,王慶杰,陳黎卿,等. 秸稈后覆蓋小麥播種機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(11):52-59.
Niu Qi, Wang Qingjie, Chen Liqing, et al. Design and experiment on straw post-covering wheat planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11):52-59. (in Chinese with English abstract)
[21] 劉彩玲,宋建農(nóng),王清旭,等. 氣吸輥式水稻精量直播排種器的設(shè)計(jì)與試驗(yàn)研究[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,17(2):134-138.
Liu Cailing, Song Jiannong, Wang Qingxu, et al. Design and experimental research of air-suction roller rice precision ditect seed-metering device[J]. Journal of China Agricultural University, 2012, 17(2):134-138. (in Chinese with English abstract)
[22] 張順,夏俊芳,周勇,等. 氣力滾筒式水稻直播精量排種器排種性能分析與田間試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):14-23.
Zhang Shun, Xia Junfang, Zhou Yong, et al. Field experiment and seeding performance analysis of pneumatic cylinder-type precision direct seed-metering device for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3):14-23.(in Chinese with English abstract)
[23] 史曉芳,仇松英,史忠良,等. 播期和播量對(duì)冬小麥堯麥16群體性狀和產(chǎn)量的影響[J]. 麥類作物學(xué)報(bào),2017,37(3):357-365.
Shi Xiaofang, Qiu Songying, Shi Zhongliang, et al. Effect of sowing date and sowing amount on population traits and yield of winter wheat cultivar yaomai 16[J]. Journal of Triticeae Crops, 2017, 37(3):357-365.(in Chinese with English abstract)
[24] 王燕,祁虹,張謙,等. 糧棉輪作模式下播期播量對(duì)棉茬小麥生長(zhǎng)發(fā)育和產(chǎn)量的影響[J]. 麥類作物學(xué)報(bào),2018(12):1-8.
Wang Yan, Qi Hong, Zhang Qian, et al. Effect of sowing date and density on growth and yield of wheat of cotton-wheat-maize rotation system[J]. Journal of Triticeae Crops, 2018(12):1-8. (in Chinese with English abstract)
[25] 閆長(zhǎng)生,張海萍,海林,等. 中國(guó)小麥品種穗發(fā)芽抗性差異的研究[J]. 作物學(xué)報(bào),2006,32(4):580-587.
Yan Changsheng, Zhang Haiping, Hai Lin, et al. Differences of preharvest sprouting resistance among Chinese wheat cultivars[J]. ActaAgron Sin, 2006, 32(4):580-587. (in Chinese with English abstract)
[26] 朱銀,顏偉,楊欣,等. 基于近紅外光譜的小麥種子發(fā)芽率測(cè)試[J]. 江蘇農(nóng)業(yè)科學(xué),2015,43(12):111-113.
[27] 高玉璐. 免耕播種機(jī)地輪滑移現(xiàn)象的研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2002.
Gao Yulu. Study on Ground Wheel Slide of no Tillage Seeding-Machine[D]. Beijing: China Agricultural University, 2002. (in Chinese with English abstract)
[28] 石玉華,初金鵬,尹立俊,等. 寬幅播種提高不同播期小麥產(chǎn)量與氮素利用率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(17):127-133.
Shi Yuhua, Chu Jinpeng, Yin Lijun, et al. Wide-range sowing improving yield and nitrogen use efficiency of wheat sown at different dates[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17):127-133. (in Chinese with English abstract)
[29] 余松烈,楊文鈺,史春余,等. 激發(fā)作物植株活力、改變植株生理機(jī)制的栽培技術(shù)研究[J]. 山東農(nóng)業(yè)科學(xué),2009(3):1-7.
Yu Songlie, Yang Wenyu, Shi Chunyu, et al. Studies on cultivation technologies for energizing crop plant and altering physiological mechanism[J]. Shandong Agricultural Sciences, 2009(3):1-7. (in Chinese with English abstract)
[30] 陳雨海,余松烈,于振文. 小麥生長(zhǎng)后期群體光截獲量及其分布與產(chǎn)量的關(guān)系[J]. 作物學(xué)報(bào),2003,29(5):730-734.
Chen Yuhai, Yu Songlie, Yu Zhenwen. Relationship between amount or distribution of PAR interception and grain output of wheat communities[J]. Acta Agronomica Sinca, 2003, 29(5):730-734. (in Chinese with English abstract)
[31] 張靜,李志偉,劉皞春,等. 氣力滾筒式排種器種子吸附邊界模型及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(23):12-20.
Zhang Jing, Li Zhiwei, Liu Haochun. Mathematical modeling and validation of seeder’s suction-boundary on pneumatic-roller type metering[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23):12-20. (in Chinese with English abstract)
[32] Guarella P, Pellerano A, Pascuzzi S. Experimental and theoretical performance of a vacuum seeder nozzle for vegetable seeds[J]. Journal of Agricultural Engineering Research, 1996, 64(1):29-36.
[33] 史嵩,張東興,楊麗,等. 氣壓組合孔式玉米精量排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(5):10-18.
Shi Song, Zhang Dongxing, Yang Li. Design and experiment of pneumatic maize precision seed-metering device with combined holes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5):10-18. (in Chinese with English abstract)
[34] 李耀明,趙湛,陳進(jìn),等. 氣吸振動(dòng)式排種器吸種性能數(shù)值模擬與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(10):95-99.
Li Yaoming, Zhao Zhan, Chen Jin, et al. Numerical simulation and experiment on the seeds pickup performance of precision air-suction seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10):95-99. (in Chinese with English abstract)
[35] 陳進(jìn),李耀明,王希強(qiáng),等. 氣吸式排種器吸孔氣流場(chǎng)的有限元分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(9):59-62.
Chen Jin, Li Yaoming, Wang Xiqiang, et al. Finite element analysis for the sucking nozzle air field of air-suction seeder[J]. Transactions of the Chinese Society of Agricultural Machinery, 2007, 38(9):59-62.(in Chinese with English abstract)
[36] 左彥軍,馬旭,玉大略,等. 水稻芽種窩眼窄縫式氣吸滾筒排種器流場(chǎng)模擬與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(2):58-62.
Zuo Yanjun, Ma Xu, Yu Dalue, et al. Flow field numberical simulation of suction cylinder-seed for rice bud seed with socket-slot[J]. Transactions of the Chinese society for Agricultural Machinery, 2011, 42(2):58-62.(in Chinese with English abstract)
Design and seed suction performance of pinhole-tube wheat precision seeding device
Liu Junxiao, Wang Qingjie※, Li Hongwen, He Jin, Lu Caiyun
(1.,,100083,; 2.100083,)
Precise seeding on point is a wheat seeding method which can control the spatial distribution of seeds in the soil effectively and strive to achieve equal seeding amount, grain spacing and seeding depth, so as to further improve the seeding quality of wheat. In order to achieve this goal, the organic combination of precision seeding and accurate seed casting was put forward. The functions of quantitative seed separation and stable seed transportation of seeder were integrated into the seed casting device to change the form of seed transportation, so as to realize the precision fixed seeding of single grain of wheat. This paper put forward a method based on seed adsorption, point perforation and precision seeding. According to this method, the pinhole-tube wheat precision seeding device was designed. The main working principle is as follows: The outer wall of the seeding wheel is pressed on the soil, and the pinhole seed suction tube is inserted into the soil. When the seeding wheel rolls, the pinhole seed suction tube is driven to rotate. The pneumatic distribution mechanism is connected with the fan that is divided into negative pressure area and positive pressure area to provide pressure for the pinhole seed suction tube in the position of seeding and throwing. The pinhole seed suction tube with negative pressure picks up the seeds in the seed box, and transports the seeds to the soil with the rotation of the seeding wheel. When the pinhole seed suction tube reaches the designated seed drop point, it is in the positive pressure area of the pneumatic distribution mechanism. The seed suction hole changes from negative pressure to positive pressure, and seeds are blown into the soil to complete the sowing. According to the number of basic seedlings required by precision seeding method, the planting frequency was calculated to determine the plant spacing. The appropriate directional planting distance was 2.73 cm and the spacing angle in seeding wheel of pinhole seed suction tube was 15.65°. When the pinhole seed suction tube was inserted into the soil, the rotation of seeding wheel and other factors would produce displacement in the soil. The stirring distance in the soil was 7.86 cm by calculating, which was greater than the plant spacing. 3 rows should be arranged because of the less the row number of pinhole seed suction tube, the greater the absolute distance between 2 plants. The seed suction hole diameter had a great influence on seed suction effect by studying the principle of pinhole seed suction tube to absorb seed. The mechanical model of seed suction was established when seed suction holes were arranged in different positions of pinhole seed suction tube. The factors arranged from largest to smallest by the seed suction force requirement was reverse side of contact soil surface, top surface and contact soil surface. It was concluded that it would have a great influence on seed suction by analyzing the seed suction surface shape of pinhole seed suction tube. Therefore, the above 3 factors were taken as influencing factors, and the orthogonal test was conducted with the parameters of leakage seed index, multiple seed index and single seed index. The optimum combination was obtained as follows: the seed suction hole position was in the top surface, the seed suction hole diameter was 2 mm, and the seed suction surface shape was convex. Under the condition of optimal parameter combination, the experimental results showed that the leakage seed index was 4.1%, the multiple seed index was 7.3%, and the single seed index was 88.6%, which met the design requirements. By analyzing the experimental data, it was concluded that the 3 factors had significant influence on the experimental results. The reliability of the theoretical analysis results was verified by comparing with the experimental results. The rationality analysis of the differences between the results and analysis is carried out to lay a foundation for further research. It provides a reference for the design and performance improvement of precision seeding machinery and promotes the development of precise seeding on point of wheat.
mechanization; design; crops; wheat; pinhole-tube type; seed adsorption; point drilling; accurate point seeding
2019-01-09
2019-05-30
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0200600)、國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)項(xiàng)目(CARS03)和教育部創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃項(xiàng)目(IRT13039)聯(lián)合資助
劉俊孝,博士生,主要從事精量播種技術(shù)與裝備研究。Email:B20173070539@cau.edu.cn
王慶杰,教授,博士,博士生導(dǎo)師,主要從事保護(hù)性耕作技術(shù)與裝備研究。Email:wangqingjie@cau.edu.cn
10.11975/j.issn.1002-6819.2019.11.002
S223.2+3
A
1002-6819(2019)-11-0010-09
劉俊孝,王慶杰,李洪文,何 進(jìn),盧彩云. 針孔管式小麥精準(zhǔn)點(diǎn)播裝置設(shè)計(jì)與吸種性能研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(11):10-18. doi:10.11975/j.issn.1002-6819.2019.11.002 http://www.tcsae.org
Liu Junxiao, Wang Qingjie, Li Hongwen, He Jin, Lu Caiyun. Design and seed suction performance of pinhole-tube wheat precision seeding device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 10-18. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.11.002 http://www.tcsae.org