王 琪 李繼唐
(1.東北林業(yè)大學交通學院,黑龍江 哈爾濱 150040; 2.東北林業(yè)大學林學院,黑龍江 哈爾濱 150040)
伴隨著我國社會主義市場經(jīng)濟的快速發(fā)展,作為生產(chǎn)和消費中間環(huán)節(jié)的交通運輸業(yè)在發(fā)展中的重要作用日益突出。為保證市場的長久向上向好發(fā)展,加強交通運輸業(yè)的管理運行水平勢在必行。民用航空運輸作為現(xiàn)代化快速運輸方式,是其重要組成部分。隨著消費水平、生活水平的提高,民航貨運需求大幅度上升。中國的航空運輸系統(tǒng)在改革開放后得到了快速發(fā)展,但總體上仍處于規(guī)模小、發(fā)展不平衡的成長期。通過合理的預測民航貨物周轉(zhuǎn)量,將有利于制定合理的基礎(chǔ)設(shè)施建設(shè)規(guī)劃,完善其管理運行方法,使其良好適應(yīng)增長的航空貨運需求,有效促進民航貨運的快速發(fā)展。同時,這將促進交通運輸業(yè)的多元化系統(tǒng)建設(shè),滿足未來貨運發(fā)展需要[1-3]。
為了保證預測的準確性,選擇合適的模型尤為重要。曾廣東等人在GM(1,1)對數(shù)據(jù)進行預測的基礎(chǔ)上,采用一種信度馬爾科夫鏈對結(jié)果進行修正,新方法引入了Dempster-Shafer(DS)證據(jù)理論來描述相對誤差所處狀態(tài)分類的不確定性,建立基本概率指派函數(shù),然后對灰色馬氏鏈的轉(zhuǎn)移概率矩陣進行重新構(gòu)造,最后根據(jù)近期相對誤差所處的狀態(tài)得到將來的狀態(tài),進而修正預測結(jié)果提高了對貨物周轉(zhuǎn)量預測的精確度[4]。李之紅等人采用數(shù)理統(tǒng)計的方法,得出了三大產(chǎn)業(yè)生產(chǎn)總值和5種運輸方式所承擔貨物周轉(zhuǎn)量的相關(guān)關(guān)系函數(shù),并以此確定了綜合貨運網(wǎng)絡(luò)各種運輸方式的里程規(guī)模。結(jié)合當前常規(guī)數(shù)據(jù)結(jié)構(gòu),建立不同運輸方式所承擔貨物周轉(zhuǎn)量合理比例的多目標貨物周轉(zhuǎn)量比例計算模型(CCTV Model),并基于運輸效率、運輸效益、對經(jīng)濟增長的貢獻分別確定了合理貨物周轉(zhuǎn)量構(gòu)成比例[5]。
但是,線性回歸模型在某些情況下預測的準確率難以保證。李祚泳等人針對高維、非線性環(huán)境系統(tǒng)的傳統(tǒng)預測模型存在結(jié)構(gòu)復雜、收斂速度慢、求解精度低的局限,提出對環(huán)境系統(tǒng)預測量及其影響因子進行冪函數(shù)與對數(shù)函數(shù)相結(jié)合的規(guī)范變換,規(guī)范變換與誤差修正的一元線性回歸預測模型簡單、預測精度高、穩(wěn)定性好,不存在“維數(shù)災難”,因而可廣泛用于任意系統(tǒng)的預測建模[6]。本文將采用遺傳算法對線性回歸模型進行優(yōu)化,以提高線性規(guī)劃模型在鐵路客運量預測中的準確率。
本文研究數(shù)據(jù)為1990年—2017年全國民航貨物周轉(zhuǎn)量(數(shù)據(jù)源于《中國統(tǒng)計年鑒2018》),數(shù)據(jù)集如表1所示(貨物周轉(zhuǎn)量單位:億噸公里)。
表1 1990年—2017年民航貨物周轉(zhuǎn)量
民航貨物周轉(zhuǎn)量數(shù)據(jù)是隨年份變化的時間序列,因此年份序列為輸入量x,周轉(zhuǎn)量為輸出量y。為了使數(shù)據(jù)分析簡單化,需要對輸入量進行標準化[8],標準化過程如下:
(1)
預處理后的數(shù)據(jù)呈比較明顯線性遞增趨勢,因此本文采用一元線性回歸模型對民航貨物周轉(zhuǎn)量數(shù)據(jù)進行預測。取1990年—2014年的數(shù)據(jù)為訓練集,2015年—2017年的數(shù)據(jù)為測試集。
一元線性回歸模型根據(jù)輸入量和輸出量的定量關(guān)系得出近似直線的函數(shù),民航貨物周轉(zhuǎn)量數(shù)據(jù)在散點圖上表現(xiàn)為曲線式增長,因此本文采用多項式擬合來構(gòu)建預測模型。建模過程如下:
f=p0xn+p1xn-1+…+pn-1x+pn
(2)
(3)
其中,f為預測模型;pn為多項式f的各項系數(shù);n為多項式的次數(shù);L為向量的二范數(shù),即該模型的損失函數(shù)[9]。為了確定多項式的次數(shù),本文在python3.6環(huán)境下編程(下同),訓練后輸出函數(shù)圖像如圖2所示(為了使函數(shù)更加直觀,輸出函數(shù)的多項式次數(shù)取1,3,5)。
輸出各預測模型多項式系數(shù)pn和損失值如表2所示。
表2 輸出值
所得函數(shù)損失值隨次數(shù)增加而減少,損失值越小說明擬合效果越好,但根據(jù)輸出函數(shù)圖像,在多項式次數(shù)大于5以后呈現(xiàn)出明顯的過擬合現(xiàn)象[10],因此本文不考慮多項式次數(shù)大于5的情況。
為了選出最佳預測模型,本文應(yīng)用所得5個預測模型對民航貨物周轉(zhuǎn)量數(shù)據(jù)進行預測,所得結(jié)果如表3,圖3所示。
表3 預測結(jié)果
經(jīng)過對比發(fā)現(xiàn),當多項式次數(shù)為2時,預測準確率為0.83,平均誤差為37.81,預測效果最好,因此選取最佳預測模型為:
f=16.09x2+56.92x+60.08
(4)
本文采用遺傳算法優(yōu)化選取模型的多項式系數(shù)求解過程,整體優(yōu)化過程如圖4所示。
遺傳算法執(zhí)行時,應(yīng)用程序隨機生成50個個體,為使運算提高效率和精確度,種群范圍設(shè)置為:
(5)
向量的二范數(shù)越小則適應(yīng)度越高。因此,式(3)為適應(yīng)度的目標函數(shù)。整體進行交叉操作的概率pm=0.85,每個位進行交換的概率pe=0.5,即個位交叉隨機。變異概率pm=0.1,最大迭代次數(shù)為100,步長設(shè)置為0.6。運行后得到優(yōu)化模型為:
f=19.97x2+67.84x+60.08
(6)
將其應(yīng)用到民航貨物周轉(zhuǎn)量預測,得到的結(jié)果如表4所示。
表4 優(yōu)化模型預測結(jié)果
年份201520162017預測值197.15212.89229.25準確率0.94平均誤差11.58
本文采用線性回歸模型對民航貨物周轉(zhuǎn)量進行預測,然后利用遺傳算法優(yōu)化該模型參數(shù)計算過程,并將優(yōu)化后的模型應(yīng)用進行測試,得到結(jié)論如下:利用遺傳算法改進線性回歸模型可以提高民航貨物周轉(zhuǎn)量的精度。優(yōu)化后的模型,準確率相對提高了0.11,平均誤差減少了26.23,預測結(jié)果較為準確。