畢崇亮,劉俊俊,王亨,3,王娟,韓照清,關(guān)立增
硒對(duì)誘導(dǎo)的奶牛乳腺上皮細(xì)胞Nod2/MAPK/mTORs信號(hào)通路關(guān)鍵蛋白表達(dá)的影響
畢崇亮1,劉俊俊2,王亨2,3,王娟1,韓照清1,關(guān)立增1
(1臨沂大學(xué)農(nóng)林科學(xué)學(xué)院,山東臨沂 276005;2揚(yáng)州大學(xué)獸醫(yī)學(xué)院,江蘇揚(yáng)州 225009;3江蘇省動(dòng)物重要疫病與人獸共患病防控協(xié)調(diào)創(chuàng)新中心,江蘇揚(yáng)州 225009)
【】硒(Se)能否通過(guò)Nod2/MAPK/mTOR途徑調(diào)控金黃色葡萄球菌誘導(dǎo)的奶牛乳腺上皮細(xì)胞炎性損傷,有待于進(jìn)一步研究。因此本研究將探究硒對(duì)金黃色葡萄球菌()感染的奶牛乳腺上皮細(xì)胞(bMECs)Nod2/MAPK/mTORs信號(hào)通路中關(guān)鍵蛋白表達(dá)的影響,從而為闡明硒的免疫調(diào)控機(jī)制提供理論依據(jù)?!尽渴紫葘MECs以106細(xì)胞/孔接種于6孔板中,當(dāng)細(xì)胞超過(guò)80%的匯合度時(shí),用含2、4和8 μmol·L-1濃度硒的培養(yǎng)基替換原來(lái)的培養(yǎng)基,繼續(xù)孵育12 h,然后用PBS洗滌每孔3次,將按MOI=1:1的比例加入6孔板中,繼續(xù)培養(yǎng)0.5 h,然后收集bMECs細(xì)胞進(jìn)行相關(guān)蛋白的檢測(cè)。本試驗(yàn)共分3大組,即對(duì)照(Con)組(bMECs)、模型(Mod)組(bMECs+)和試驗(yàn)組。其中試驗(yàn)組又分3個(gè)亞劑量組,即Low組(bMECs+2 μmol·L-1Se+)、Mid組(bMECs+4 μmol·L-1Se+)和Hig組(bMECs+8 μmol·L-1Se+),每組設(shè)3個(gè)重復(fù)。利用BCA蛋白測(cè)定試劑盒對(duì)收集的bMECs細(xì)胞進(jìn)行總蛋白提取。應(yīng)用Western blotting技術(shù)檢測(cè)bMECs中Nod2和RIP2蛋白表達(dá)水平及JNK,AKT和mTOR蛋白磷酸化水平。將蛋白樣品加到10%的SDS聚丙烯酰胺凝膠電泳中,上樣量為20 μg/孔,之后將蛋白轉(zhuǎn)移到聚偏氟乙烯(PVDF)膜上。將PVDF膜用5 mL 5%脫脂乳阻斷2 h,脫脂乳脫脂后用TBST清洗后,分別用5 mL的 Nod2、RIP2、JNK、AKT、mTOR和β-actin的一抗孵育過(guò)夜,回收一抗。之后在PVDF膜中分別加入5 mL上述蛋白的二抗,室溫孵育2 h,回收二抗。PVDF用TBST洗滌5次,最后在暗室條件下進(jìn)行化學(xué)顯影。【】能顯著提高bMECs中Nod2和RIP2蛋白表達(dá)水平及JNK,AKT和mTOR蛋白磷酸化水平(<0.01)。感染0.5 h后,Nod2蛋白水平顯著升高(<0.01)。在培養(yǎng)基里添加2 μmol·L-1的硒可極顯著抑制Nod2蛋白的表達(dá)(<0.01),在培養(yǎng)基里添加8 μmol·L-1的硒可顯著抑制Nod2的表達(dá)(<0.05);感染0.5 h后,RIP2蛋白水平顯著升高(<0.05),而在培養(yǎng)基里添加8 μmol·L-1硒可顯著抑制RIP2蛋白的表達(dá)(<0.05);感染0.5 h后,與對(duì)照組相比,模型組JNK蛋白磷酸化水平顯著升高(<0.01)。在培養(yǎng)基里添加4 μmol·L-1的硒能顯著抑制JNK蛋白的磷酸化水平(<0.05),在培養(yǎng)基里添加8 μmol·L-1的硒能顯著抑制JNK蛋白的磷酸化水平(<0.01);感染0.5 h后,與對(duì)照組相比,模型組AKT蛋白磷酸化水平顯著升高(<0.01)。在培養(yǎng)基里添加4 μmol·L-1硒可極顯著抑制JNK蛋白的磷酸化水平(<0.01),在培養(yǎng)基里添加8 μmol·L-1硒可顯著抑制AKT蛋白的磷酸化水平(<0.05);感染0.5 h后,模型組mTOR蛋白磷酸化水平顯著升高(<0.01)。在培養(yǎng)基里分別添加4 μmol·L-1和8 μmol·L-1硒均能顯著抑制mTOR蛋白磷酸化水平(<0.05)?!尽课赏ㄟ^(guò)抑制bMECs Nod2/MAPK/mTORs信號(hào)通路中關(guān)鍵因子蛋白的表達(dá)而減輕誘導(dǎo)的bMECs炎癥反應(yīng)。
硒;金黃色葡萄球菌;Nod2/MAPK/mTORs;奶牛乳腺上皮細(xì)胞
【研究意義】奶牛金黃色葡萄球菌()性乳房炎是奶牛養(yǎng)殖業(yè)中常見(jiàn)疾病之一[1-2]。該病不僅造成奶產(chǎn)量和奶品質(zhì)顯著下降,給奶牛養(yǎng)殖業(yè)帶來(lái)嚴(yán)重的經(jīng)濟(jì)損失,同時(shí)也嚴(yán)重威脅著人類的食品安全健康[3]。研究表明,金黃色葡萄球菌()具備侵入到宿主細(xì)胞內(nèi)部從而逃避宿主的胞外免疫攻擊的能力,這為該病的治療帶來(lái)了巨大的困難[2]。奶牛乳腺上皮細(xì)胞(bMECs)是乳腺組織抵御病原感染的第一道防線[4-5]。當(dāng)感染發(fā)生時(shí),bMECs可通過(guò)胞外模式識(shí)別受體快速識(shí)別胞外病原,進(jìn)而免疫應(yīng)答反應(yīng),而對(duì)于進(jìn)入到胞內(nèi)的病原則主要依賴于胞內(nèi)模式識(shí)別受體[6]。Nod2近些年來(lái)新發(fā)現(xiàn)的一種胞內(nèi)模式識(shí)別受體,研究Nod2受體及其介導(dǎo)的信號(hào)通路對(duì)于更好的理解胞內(nèi)免疫反應(yīng)具有重要的意義。本課題組前期研究發(fā)現(xiàn)Nod2可誘導(dǎo)多條信號(hào)通路的表達(dá)其中包括經(jīng)典的炎癥信號(hào)通路MAPK[7]。而MAPK信號(hào)通路中的核心蛋白JNK又是連接多條信號(hào)通路的樞紐,比如mTOR信號(hào)通路[8]。mTOR信號(hào)通路作為細(xì)胞內(nèi)的一條重要的轉(zhuǎn)導(dǎo)途徑,在細(xì)胞的生長(zhǎng)、存活、增殖、凋亡等過(guò)程中發(fā)揮著重要的生物學(xué)作用。硒是動(dòng)物體必需的微量元素,在動(dòng)物體的免疫防御過(guò)程中也發(fā)揮著重要的調(diào)控作用[9-10]。臨床研究表明,飼料中添加適量的硒,能顯著降低奶牛乳腺炎的發(fā)病率或減輕乳腺的病變程度。那么硒能否通過(guò)Nod2/MAPK/mTOR途徑調(diào)控金黃色葡萄球菌誘導(dǎo)的奶牛乳腺上皮細(xì)胞炎性損傷,有待于進(jìn)一步研究。【前人研究進(jìn)展】一些研究者研究表明,在飼料中補(bǔ)充適量的硒后,不僅動(dòng)物硒的營(yíng)養(yǎng)狀況得到改善,而且各種類型的乳腺炎發(fā)病率也明顯降低[11-13]。如Aribi等研究發(fā)現(xiàn),在飼料中添加硒后,患乳腺炎奶牛的體內(nèi)嗜中性粒細(xì)胞的遷移速率顯著增高,被感染乳區(qū)內(nèi)巨噬細(xì)胞的數(shù)量也明顯增加[14]。Hemingway 等研究發(fā)現(xiàn),在日糧中添加硒后,奶牛乳汁內(nèi)的體細(xì)胞數(shù)顯著減少[15]。上述研究結(jié)果表明:奶牛日糧中硒的缺乏將增加乳腺被微生物感染的幾率。而在飼料中添加硒可增強(qiáng)乳腺組織內(nèi)免疫細(xì)胞的活性和數(shù)量,從而對(duì)病原微生物起到抑制作用。然而最近研究表明,硒也可抑制炎癥相關(guān)信號(hào)通路的激活而抑制炎性介質(zhì)的釋放而起到抗炎的效果[16]。硒對(duì)信號(hào)通路的調(diào)控為乳腺炎的預(yù)防和治療提供了新的方向。NF-κB和MAPK作為兩條經(jīng)典的炎癥信號(hào)通路,在TLR2和Nod2等上游通路的介導(dǎo)下可誘發(fā)機(jī)體的炎癥反應(yīng),并產(chǎn)生相應(yīng)的免疫效應(yīng),如炎癥細(xì)胞因子的釋放和免疫細(xì)胞的分化。補(bǔ)硒能極顯著地抑制巨噬細(xì)胞NF-κB和MAPK信號(hào)通路的激活,降低炎癥細(xì)胞因子的表達(dá)[17-18]。如Zhang等研究發(fā)現(xiàn),TNF-α的表達(dá)可反饋性的誘導(dǎo)NF-κB的活化,同時(shí)負(fù)反饋抑制硒蛋白的表達(dá)[19]。硒也可通過(guò)對(duì)NF-κB信號(hào)通路的調(diào)控抑制炎癥細(xì)胞因子的基因表達(dá),加速細(xì)胞的氧化還原反應(yīng),進(jìn)而表現(xiàn)出抗炎作用[20]。硒也可通過(guò)對(duì)MAPK信號(hào)通路的調(diào)控抑制炎癥細(xì)胞因子的基因表達(dá),加速細(xì)胞的氧化還原反應(yīng),進(jìn)而表現(xiàn)出抗炎作用[21]?!颈狙芯壳腥朦c(diǎn)】硒雖然可以通過(guò)調(diào)節(jié)TLR2信號(hào)通路而減輕bMECs炎癥反應(yīng)[11],但硒是否可通過(guò)調(diào)控Nod2/MAPK/mTORs信號(hào)通路而抑制誘導(dǎo)的bMECs炎癥反應(yīng),有必要進(jìn)行深入的研究?!緮M解決的關(guān)鍵問(wèn)題】本研究利用感染預(yù)孵育硒的bMECs后,檢測(cè)bMECs Nod2/MAPK/ mTORs信號(hào)通路中相關(guān)基因表達(dá)水平變化情況,從而為闡明硒的免疫調(diào)控機(jī)制提供理論依據(jù)。
試驗(yàn)于2016年9月至2018 年8月在臨沂大學(xué)農(nóng)林科學(xué)學(xué)院進(jìn)行。
(ATCC29213),揚(yáng)州大學(xué)獸醫(yī)學(xué)院外科教研室惠贈(zèng);BCA蛋白測(cè)定試劑盒,購(gòu)自美國(guó)BioChain公司;聚偏氟乙烯(PVDF)膜,購(gòu)自德國(guó)MiLople公司;Nod2、RIP2、JNK、p-JNK、Akt、p-Akt、mTOR、p-mTOR、β-actin一抗購(gòu)自美國(guó)Cell Signaling Technology公司(使用濃度1﹕2 000);HRP標(biāo)記羊抗兔IgG 購(gòu)自美國(guó)Cell Signaling Technology公司。
根據(jù)本課題組已經(jīng)建立的原代奶牛乳腺上皮細(xì)胞培養(yǎng)方法[19],采用機(jī)械剪碎配合 II 型膠原酶消化法培養(yǎng)原代奶牛乳腺上皮細(xì)胞。本試驗(yàn)共分3大組,即對(duì)照(Con)組(bMECs)、模型(Mod)組(bMECs+)和試驗(yàn)組。其中試驗(yàn)組又分3個(gè)亞劑量組,即Low組(bMECs+2 μmol·L-1Se+)、Mid組(bMECs+4 μmol·L-1Se+)和Hig組(bMECs+8 μmol·L-1Se+),每組設(shè)3個(gè)重復(fù)。
將bMECs以106細(xì)胞/孔接種于6孔板中,當(dāng)細(xì)胞超過(guò)80%的匯合度時(shí),用不同濃度硒(2,4和8 μmol·L-1)的培養(yǎng)基替換原來(lái)的培養(yǎng)基,繼續(xù)培養(yǎng)12 h。然后用PBS洗滌每孔3次,將按MOI=1:1的比例加入6孔板中,繼續(xù)培養(yǎng)0.5 h,然后收集bMECs細(xì)胞。
根據(jù)試劑盒說(shuō)明書的步驟,利用BCA蛋白測(cè)定試劑盒從上述被感染的bMECs中提取總蛋白。然后將蛋白樣品加到10%的SDS聚丙烯酰胺凝膠電泳中,上樣量為20 μg/孔,之后將蛋白轉(zhuǎn)移到聚偏氟乙烯(PVDF)膜上;將PVDF膜用5 mL 5%脫脂乳阻斷2 h,脫脂乳脫脂后用TBST清洗后,分別用5 mL的 Nod2、RIP2、JNK、AKT、mTOR和β-actin的一抗孵育過(guò)夜,回收一抗;之后在PVDF膜中分別加入5 mL上述蛋白的二抗,室溫孵育2 h,回收二抗;PVDF用TBST洗滌5次,最后在暗室條件下進(jìn)行化學(xué)顯影。
用SPSS13.0軟件進(jìn)行數(shù)據(jù)分析,結(jié)果以Mean±SEM的形式表示。取<0.05為顯著性差異,<0.01為極顯著性差異。采用Graph pad prism 6.0軟件繪圖。
用2、4和8 μmol·L-1濃度的硒對(duì)bMECs進(jìn)行預(yù)孵育,然后再進(jìn)行感染處理,在感染后0.5 h,bMECs被收集并提取總蛋白。利用Western blotting法檢測(cè)了Nod2和RIP2蛋白表達(dá)水平。結(jié)果顯示,感染0.5 h后,Nod2蛋白水平顯著升高(<0.01)。在培養(yǎng)基里添加2 μmol·L-1的硒可極顯著抑制Nod2蛋白的表達(dá)(<0.01),在培養(yǎng)基里添加8 μmol·L-1的硒可顯著抑制Nod2的表達(dá)(<0.05, 圖1-A)。
結(jié)果顯示,感染0.5 h后,RIP2蛋白水平顯著升高(<0.05),而在培養(yǎng)基里添加8 μmol·L-1硒可顯著抑制RIP2蛋白的表達(dá)(<0.05, 圖1-B)。
上述結(jié)果表明:硒能調(diào)控Nod2和RIP2 蛋白表達(dá)而抑制誘導(dǎo)的bMECs炎癥反應(yīng)。
用2、4和8 μmol·L-1濃度的硒對(duì)bMECs進(jìn)行預(yù)孵育,然后再進(jìn)行感染處理,在感染后0.5 h,bMECs細(xì)胞被收集并提取總蛋白。利用Western blotting法檢測(cè)了JNK 蛋白的磷酸化水平。結(jié)果顯示,與對(duì)照組相比,感染0.5 h后,模型組JNK蛋白磷酸化水平顯著升高(<0.01)。在培養(yǎng)基里添加4 μmol·L-1的硒能顯著抑制JNK蛋白的磷酸化水平(<0.05),在培養(yǎng)基里添加8 μmol·L-1的硒能顯著抑制JNK蛋白的磷酸化水平(<0.01)(圖2)。結(jié)果表明:硒能調(diào)控JNK 蛋白表達(dá)而抑制誘導(dǎo)的bMECs炎癥反應(yīng)。
用2、4和8 μmol·L-1濃度的硒對(duì)bMECs進(jìn)行預(yù)孵育,然后再進(jìn)行感染處理,在感染后0.5 h,bMECs細(xì)胞被收集并提取總蛋白。利用Western blotting法檢測(cè)了AKT和mTOR 蛋白磷酸化水平。如圖3-A所示,與對(duì)照組相比,感染0.5 h后,模型組AKT蛋白磷酸化水平顯著升高(<0.01)。在培養(yǎng)基里添加4 μmol·L-1硒可極顯著抑制>JNK蛋白的磷酸化水平(<0.01),在培養(yǎng)基里添加8 μmol·L-1硒可顯著抑制AKT蛋白的磷酸化水平(<0.05)(圖3-A)。
圖2 硒對(duì)S. aureus誘導(dǎo)的bMECs中MAPK信號(hào)通路JNK 磷酸化水平的影響
A:AKT蛋白磷酸化水平;B:mTOR蛋白磷酸化水平
結(jié)果顯示,感染0.5 h后,模型組mTOR蛋白磷酸化水平顯著升高(<0.01)。在培養(yǎng)基里分別添加4和8 μmol·L-1的硒均能顯著抑制mTOR蛋白磷酸化水平(<0.05,圖3-B)。
上述結(jié)果表明:硒能調(diào)控AKT和mTOR 蛋白表達(dá)而抑制誘導(dǎo)的bMECs炎癥反應(yīng)。
可侵入到宿主細(xì)胞內(nèi)部從而逃避胞外模式識(shí)別受體的攻擊,而在這個(gè)過(guò)程中Nod2信號(hào)通路發(fā)揮了重要的作用[22-23]。目前,Nod2信號(hào)通路與炎癥的關(guān)系也有了一定的研究進(jìn)展,其中活化的Nod2蛋白主要通過(guò)CARD-CARD結(jié)構(gòu)域之間的相互作用與RIP2分子結(jié)合,并以RIP2作為銜接蛋白進(jìn)一步誘導(dǎo)后續(xù)炎癥反應(yīng)[24]。適當(dāng)?shù)难装Y對(duì)機(jī)體是有益的,但是過(guò)度的炎癥則會(huì)對(duì)組織器官造成傷害[25]。在本研究中發(fā)現(xiàn)在感染0.5 h后,Nod2和RIP2蛋白表達(dá)增加,此結(jié)果說(shuō)明Nod2信號(hào)通路在早期感染中起重要作用。Western blotting結(jié)果證實(shí),2 μmol·L-1和8 μmol·L-1的硒對(duì)Nod2蛋白的表達(dá)有一定的抑制作用,而8 μmol·L-1的硒對(duì)RIP2蛋白的表達(dá)有一定的抑制作用。上述結(jié)果說(shuō)明硒能通過(guò)抑制Nod2信號(hào)通路的激活。
Nod2信號(hào)通路可進(jìn)一步激活MAPK和mTORs等通路進(jìn)一步誘導(dǎo)后續(xù)的炎癥進(jìn)程[26]。MAPK可分為ERK、P38和JNK 3個(gè)亞群[27]。在之前的研究中,我們發(fā)現(xiàn)硒對(duì)p38和ERK的磷酸化具有一定的調(diào)控作用[21]。而硒對(duì)JNK磷酸化的調(diào)控作用我們尚未涉及。因此,本研究利用Western blotting技術(shù)進(jìn)一步探究了硒對(duì)JNK磷酸化水平的影響。結(jié)果表明,可顯著提高 JNK蛋白磷酸化水平,4 μmol·L-1和8 μmol·L-1硒能降低誘導(dǎo)的JNK磷酸化表達(dá)。該結(jié)果也進(jìn)一步說(shuō)明硒可有效調(diào)控MAPK信號(hào)通路。
AKT是MAPK和mTORs信號(hào)通路之間的主要銜接蛋白[28-29]。伴隨著MAPK信號(hào)通路的激活A(yù)KT也將隨之活化將炎癥信號(hào)向下游繼續(xù)傳導(dǎo)。本研究采用Western blotting技術(shù)檢測(cè)了感染bMECs過(guò)程中AKT磷酸化水平的變化。結(jié)果表明,感染0.5 h后,AKT蛋白磷酸化水平顯著增加,4和 8 μmol·L-1可有效降低AKT蛋白磷酸化表達(dá)水平。mTOR是AKT的重要底物。AKT可直接磷酸化mTOR的SER位點(diǎn),激活mTORs信號(hào)通路[30]。本研究發(fā)現(xiàn)感染bMECs 0.5 h后,mTOR蛋白磷酸化水平增加,而硒同樣可抑制mTOR蛋白的磷酸化表達(dá)。上述結(jié)果說(shuō)明,硒對(duì)Nod2/RIP2/JNK/mTOR這條通路具有有效的調(diào)控作用。
在奶牛乳腺炎過(guò)程中,可激活bMECs Nod2/MAPK/mTOR信號(hào)通路,而硒可通過(guò)調(diào)控Nod2、RIP2、JNK和mTOR等蛋白的表達(dá)而調(diào)控Nod2/ MAPK/mTOR信號(hào)通路。
[1] 李廣棟, 呂東穎, 田秀芝, 姬鵬云, 郭江鵬, 路永強(qiáng), 劉國(guó)世. 組學(xué)技術(shù)在奶牛乳房炎上應(yīng)用的相關(guān)研究進(jìn)展. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(2): 350-358.
LI G D,Lü D Y, TIAN X Z, JI P Y, GUO J P, LU Y Q, LIU G S. Research progress of omics technologies in cow mastitis., 2019, 52(2): 350-358.(in Chinese)
[2] 赫娜, 王長(zhǎng)法, 楊宏軍, 何洪彬, 楊少華, 王立群, 高運(yùn)東, 仲躋峰. 牛源金黃色葡萄球菌突變株的篩選、鑒定及其免疫原性的研究. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(10):2174-2181.
HE N, WANG C F, YANG H J, HE H B, YANG S H, WANG L Q, GAO Y D, ZHONG J F. Screening an attenuated strain and immunogenicity in mice of a bovine mastitis staphylococcus aureus mutant., 2010, 43(10):2174-2181. (in Chinese)
[3] 倪春霞, 蒲萬(wàn)霞, 胡永浩, 鄧海平. 奶牛乳房炎金黃色葡萄球菌凝固酶基因型研究. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(2):417-422.
NI C X, PU W X, HU Y H, DENG H P. Research on coagulase genotyping of staphylococcus aureus isolated from bovine mastitis., 2011, 44(2):417-422. (in Chinese)
[4] XIE X H, WANG L L, GONG F Y, XIA C, CHEN J, SONG Y, SHEN A X, SONG J X. Intracellular Staphylococcus aureus-induced NF-κB activation and proinflammatory responses of P815 cells are mediated by NOD2., 2012, 32(3): 317-323.
[5] FU Y H, ZHOU E S, LIU Z C, LI F Y, LIANG D J, LIU B. Staphylococcus aureus and Escherichia coli elicit different innate immune responses from bovine mammary epithelial cells., 2013, 155(4): 245-252.
[6] PRIE J C, BROMFIELD J J, SHELDON I M. Pathogen-associated molecular patterns initiate inflammation and perturb the endocrine function of bovine granulosa cells from ovarian dominant follicles via TLR2 and TLR4 pathways., 2013, 154(9): 3377-3386.
[7] HENG W, CHONGLIANG B, YINJIE W, JUN S, XIA M, JIANJI L. Selenium ameliorates Staphylococcus aureus-induced inflammation in bovine mammary epithelial cells by inhibiting activation of TLR2, NF-κB and MAPK signaling pathways., 2018, 14(1):197-205.
[8] ZHONG Y , NAITO Y , COPE L. Functional p38 MAPK identified by biomarker profiling of Pancreatic Cancer Restrains Growth through JNK Inhibition and Correlates with Improved survival., 2014, 20(23):6200-6211.
[9] 張振彪. 硒通過(guò)microRNA 155調(diào)控金黃色葡萄球菌性乳腺炎發(fā)生的作用機(jī)制研究[D]. 武漢:華中農(nóng)業(yè)大學(xué), 2017.
ZHANG Z B. The mechanism of selenium onmastitis via microrna-155 regulating[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese)
[10] KIELISZEK M, STANIS?AW B. Current knowledge on the importance of selenium in food for living organisms: A review., 2016, 21(5): 609.
[11] SALMAN S, KHOL-PARISINI A, SCHAFFT H, LAHRSSEN M, HULAN H W, DINSE D. The role of dietary selenium in bovine mammary gland health and immune function., 2009, 10(1): 21-34.
[12] SORDILIO L M. Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle., 2013, 10: 1155-1540.
[13] BOURNE N, WATHES D C, LAWRENCE K E, MCGOWAN M, LAVEN R A. The effect of parenteral supplementation of vitamin E with selenium on the health and productivity of dairy cattle in the UK., 2008, 177(3): 381-387.
[14] ARIBI M, MEZIANE W, HABI S, BOULATIKA Y, MARCHANDIN H, AYMERIC J L. Macrophage bactericidal activities against Staphylococcus aureus are enhancedby selenium supplementation in a dose-dependent manner., 2015, 10: e0135515.
[15] HEMINGWAY R G. The influences of dietary selenium and vitamin E intakes on milk somatic cell counts and mastitis in cows., 1999, 23(8): 481-499.
[16] DUNTAS L H. Selenium and inflammation: Underlying anti- inflammatory mechanisms., 2009, 41: 443-447.
[17] ZAMAMIRI-DAVIS F, LU Y, ThOMPSON J T. Nuclear factor-κB mediates over-expression of cyclooxygenase-2 during activation of RAW 264.7 macrophages in selenium deficiency., 2002, 32(9): 890-897.
[18] JóZSEF L, FILEP J G. Selenium-containing compounds attenuate peroxymitrite-mediated NF-κB and AP-1 activation and IL-8 gene and protein expression in human leukocytes., 2003, 35(9): 1018-1027.
[19] ZHANG F, YU W, HARGROVE J L, GREENSPAN P, DEAN R G, TAYLOR E W. Inhibition of TNF-α induced ICAM-1, VCAM-1 and E-selectin expression by selenium., 2002, 161(2): 381-386.
[20] WANG H, BI C L, WANG Y J, SUN J, MENG X, LI J J. Selenium ameliorates Staphylococcus aureus -induced inflammation in bovine mammary epithelial cells by inhibiting activation of TLR2, NF-κB and MAPK signaling pathways., 2018, 14(1): 197.
[21] BI C L, WANG H, WANG Y J, DONG J S, MENG X, LI J J. Selenium inhibits Staphylococcus aureus-induced inflammation by suppressing the activation of the NF-κB and MAPK signaling pathways in RAW264.7 macrophages., 2016(780): 159-165.
[22] 徐丹丹, 楊彬, 孫志鵬, 武瑞. NOD1/NOD2介導(dǎo)的信號(hào)通路在小鼠金黃色葡萄球菌性乳腺炎中的作用. 中國(guó)預(yù)防獸醫(yī)學(xué)報(bào), 2015, 37(7): 528-531.
XU D D, YANG B, SUN Z P, WU R. Effect of NOD1/ NOD2 mediated signal pathway ininduced mouse mastitis., 2015, 37(7): 528-531. (in Chinese)
[23] STROBER W, MURRAY P J, KITANI A, Watanabe T. Signalling pathways and molecular interactions of NOD1 and NOD2., 2006, 6(1): 9.
[24] FRIDH V, RITTINGER K. The Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2., 2012, 7(3): e34375.
[25] 李琳. NLRC5對(duì)巨噬細(xì)胞炎性因子分泌的負(fù)性調(diào)控作用及機(jī)制研究[D]. 合肥:安徽醫(yī)科大學(xué), 2014.
LI L. Regulatory role and mechanisms of NLRC5in the cytokine secretion of macrophages[D] Hefei: Anhui Medical University, 2014. (in Chinese)
[26] KAMINSKA B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits., 2005, 1754(1): 253-262.
[27] ZHENG H Y, SHEN F J, TONG Y Q, LI Y. PP2A inhibits cervical cancer cell migration by ephosphorylation of p-JNK, p-p38 and the p-ERK/MAPK signaling pathway., 2018, 38(1): 115-123.
[28] FELDMAN M E, SHOKAT K M. New Inhibitors of the PI3K-Akt- mTOR Pathway: Insights into mTOR Signaling from a New Generation of Tor Kinase Domain Inhibitors (TORKinibs)., 2010, 347(1): 241.
[29] HUANG J X, MANNING B. A complex interplay between Akt, TSC2 and the two mTOR complexes., 2009, 37(1): 217.
[30] WEICHHART T, COSTANTINO G, POGLITSCH M, ROSNER M, ZEYDA M, STUHLMEIER K M. The TSC-mTOR signaling pathway regulates the innate inflammatory response., 2008, 29(4): 577.
Effects of Selenium on the Key Factors in Nod2/MAPK/mTORs Signaling Pathways in the bMECs Infected
BI ChongLiang1, LIU JunJun2, WANG Heng2,3, WANG Juan1, HAN ZhaoQing1, GUAN LiZeng1
(1College of Agriculture and Forestry Science, Linyi University, Linyi 276005, Shandong;2College of Medicine and Veterinary, Yangzhou University, Yangzhou 225009, Jiangsu;3Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009 Jiangsu)
【】Whether selenium (Se) could regulate the inflammatory damage of bovine mammary epithelial cells (bMECs) induced bythrough Nod2/MAPK/mTOR pathway remains to be further studied. So in the study, the effects of Se on the key proteins in the Nod2/MAPK/mTORs signaling pathway in the bovine mammary epithelial cells (bMECs) infected bywas studied in order to provide a theoretical basis for elucidating the immune regulation mechanism of Se.【】 Firstly, the bMECs were inoculated into the 6 well plates with 106cells/well. When more than 80% of the cells were confluent, the medium was replaced with the one containing different concentrations of Se (2, 4 and 8 μmol·L-1) and continued to culture for 12 h. Then after washing each well for 3 times with PBS,was added into 6-well plates at a ratio of MOI=1:1 and continued to culture for 0.5 h. The bMECs were collected for further detection of related proteins expression. The experiment was divided into three groups: control (Con) group (bMECs), model (Mod) group (bMECs+) and experimental group. The experimental group was divided into three sub-dose groups, namely Low group (bMECs+2 μmol·L-1Se+), Mid group (bMECs+4 μmol·L-1Se+) and Hig group (bMECs+8 μmol·L-1Se+), with three replicates each group. Total protein was extracted from the above bMECs using a bicinchoninic acid (BCA) protein assay kit. The expressions level of Nod2 and RIP2 and the phosphorylation level of JNK, AKT and mTOR proteins in bMECs were detected by Western blotting. The protein samples were loaded into 10% SDS polyacrylamide gel for electrophoresis, and the uniform volume of protein was 20 μg/hole. Then the protein was transferred to polyvinylidene fluoride (PVDF) membranes. The PVDF membranes were blocked with 5 mL 5% nonfat milk for 2 h, then skimmed the nonfat milk and washed the membranes with TBST, subsequently the membranes were incubated overnight with 5 mL primary antibodies including Nod2, RIP2, JNK, AKT, mTOR and β-actin. The primary antibodies were recovered, and 5 mL second antibodies were added to the membranes and incubated for 2 h at room temperature. Subsequently the second antibodies were recovered the membranes were washed with TBST for 5 times. Finally the membranes were developed with chemiluminescent substrate under darkroom conditions.【】could significantly increase the expression of Nod2 and RIP2 proteins and the phosphorylation of JNK, AKT and mTOR proteins in bMECs (<0.01). At 0.5 h afterinfection, the level of Nod2 protein increased significantly (<0.01). The expression of Nod2 protein was significantly inhibited by adding 2 μmol·L-1Se to the medium (<0.01), and the expression of Nod2 was significantly inhibited by adding 8 μmol·L-1Se to the medium (<0.05); at 0.5 h afterinfection, RIP2 protein level was significantly increased (<0.05), while the expression of RIP2 protein was significantly inhibited by adding 8 μmol·L-1Se to the medium (<0.05); at 0.5 h afterinfection, the phosphorylation level of JNK protein in model group was significantly higher than that in control group (<0.01). The phosphorylation of JNK protein was significantly inhibited by adding 4 μmol·L-1Se to the medium (<0.05), and the phosphorylation of JNK protein was significantly inhibited by adding 8 μmol·L-1Se to the medium (<0.01); at 0.5 h afterinfection, the phosphorylation level of AKT protein in the model group was significantly higher than that in the control group (<0.01). The phosphorylation level of JNK protein was significantly inhibited by adding 4 μmol·L-1Se to the medium (<0.01). The phosphorylation level of AKT protein was significantly inhibited by adding 8 μmol·L-1Se to the medium (<0.05). After 0.5 h ofinfection, the phosphorylation level of mTOR protein was significantly increased in the model group (<0.01). The phosphorylation of mTOR protein was significantly inhibited by adding 4 and 8 μmol·L-1Se to the medium (<0.05). 【】Se could alleviate the inflammatory response of bMECs induced byby inhibiting the protein expression of key factors in the bMECs Nod2/MAPK/mTORs signaling pathway.
selenium;; Nod2/MAPK/mTORs; bMECs
2018-12-06;
2019-03-26
國(guó)家自然科學(xué)基金青年基金(31802254)、山東省高等學(xué)校科技計(jì)劃項(xiàng)目(J18KB074)
畢崇亮,Tel:15589035156;E-mail:lydxbcl@163.com。
關(guān)立增,Tel:15216519159;E-mail:guanlizeng@163.com
(責(zé)任編輯 林鑒非)