張梵 皮秀權(quán) 王曉娥 楊朝東 周存宇
摘 要:菰(Zizania latifolia)是一種多年生挺水植物,為了探討該植物根、莖和葉的解剖結(jié)構(gòu)、組織化學及其質(zhì)外體屏障的通透性生理。該文利用光學顯微鏡和熒光顯微鏡,對菰的根、莖、葉進行了解剖學和組織化學研究。結(jié)果表明:(1)菰不定根解剖結(jié)構(gòu)由外而內(nèi)分別為表皮、外皮層、單層細胞的厚壁機械組織層、皮層、內(nèi)皮層和維管柱;莖結(jié)構(gòu)由外而內(nèi)分別為角質(zhì)層、表皮、周緣厚壁機械組織層、皮層、具維管束的厚壁組織層和髓腔。葉鞘具有表皮和具維管束皮層,葉片具有表皮,葉肉和維管束。(2)不定根具有位于內(nèi)側(cè)的內(nèi)皮層及其鄰近栓質(zhì)化細胞和外側(cè)的外皮層組成的屏障結(jié)構(gòu);莖具內(nèi)側(cè)厚壁機械組織層,外側(cè)的角質(zhì)層和周緣厚壁機械組織層組成的屏障結(jié)構(gòu),屏障結(jié)構(gòu)的細胞壁具凱氏帶、木栓質(zhì)和木質(zhì)素沉積的組織化學特點,葉表面具有角質(zhì)層。(3)菰通氣組織包括根中通氣組織,莖、葉皮層的通氣組織和髓腔。(4)菰的屏障結(jié)構(gòu)和解剖結(jié)構(gòu)是其適應(yīng)濕地環(huán)境的重要特征,但其莖周緣厚壁層和厚壁組織層較薄。由此推測,菰適應(yīng)濕地環(huán)境,但在旱生環(huán)境中分布有一定的局限性。
關(guān)鍵詞: 菰, 解剖結(jié)構(gòu), 質(zhì)外體屏障結(jié)構(gòu), 組織化學, 通透性
中圖分類號:Q944
文獻標識碼:A
文章編號:1000-3142(2019)05-0615-09
Anatomy and apoplastic barrier histochemistry characteristicsof Zizania latifoliaadapted to wetland environment
ZHANG Fan1,3, PI Xiuquan2, WANG Xiao’e1,3, YANG Chaodong1,3, ZHOU Cunyu1,3*
( 1. Engineering Research Center of Wetland Agriculture in Central Yangtze, Ministry of Education, Yangtze University, Jingzhou 434025,Hubei, China; 2. Lichuan Municipal Bureau of Agriculture,Lichuan 445400, Hubei, China; 3. Institute of Plant Ecology andEnvironmental Restoration, Yangtze University,Jingzhou 434025, Hubei, China )
Abstract:Wild rice (Zizania latifolia) is a famous, perennial, emergent vegetable in China.The current work explores the anatomy and histochemistry of roots, stems and leaves and the permeability of apoplastic barriers of wild rice. The anatomy and histochemistry of Z. latifoliawere studied by optical microscope and fluorescence microscope. Sections were stained with Sudan red 7B for suberin lamellae, berberine hemisulfate-aniline blue for Casparian bands and lignified walls, and phloroglucinol-HCl (Pg) for lignin. The results were as follows: (1) The adventitious roots in wild rice suberized and lignified endodermis and adjacent, thick-walled cortical layers and suberized and lignified hypodermis, composed of a uniseriate sclerenchyma layer underlying uniseriate exodermis; The stems of wild plants included stolons, rhizomes, and culm. Rhizomes, stolons, and culms had two rings of thickened, lignified cells, the peripheral mechanical ring and the sclerenchyma ring; The latter delimits the cortex from the CC (central cylinder) and was usually associated with vascular bundles; Stems had thick epidermal cuticle, a narrow peripheral mechanical ring, cortex, sclerenchyma ring with vascular bundles and pith cavity from the outside and inside. Leaf sheaths had epidermis and cortex with vascular bundles, and leaf blades had epidermis, mesophyll and vascular bundles. (2) Apoplastic barriers were found in roots and stems. The apoplastic barriers consist of that adventitious roots had endodermis, adjacent suberized cells and exodermis; Stems have cuticle, suberized and lignified peripheral mechanical ring and sclerenchyma ring, and the cell wall of apoplastic barriers had Casparian band, lignin and suberin. Leaves had cuticles at surface. (3) The air space consist of aerenchyma in roots, and pith cavities and aerenchyma in stems and leaves. (4) The peripheral mechanical ring and sclerenchyma ring were thinner in wild rice stems that adapt to wetland environment, but limited distribution to drought environment.
Key words: Zizania latifolia, anatomical structure, apoplastic barriers, histochemistry, permeability
菰(Zizania latifolia)是禾本科稻亞科稻族植物之一,與水稻(Oryza sativa)同族(Judziewicz & Clark, 2007),是一種重要的水生植物,其籽粒與北美菰(Zizania aquatica)一樣可作為谷物食用(Sculthorpe, 1967)。菰具多年生根狀莖、匍匐莖和地上莖,地上莖具寬大葉片。菰沉水部分適應(yīng)濕地環(huán)境的研究相對缺乏。早期曾對北美菰的根有一些研究(Stover, 1928),其后又有少量的關(guān)于該屬植物(包括菰和北美菰)根和莖的解剖結(jié)構(gòu)研究(Stover, 1951; Metcalfe, 1960; Jorgenson et al., 2013; Tateoka, 1969),而對其葉解剖的研究則較為深入(Metcalfe, 1960)。然而,相比其他重要草本具鱗葉的根狀莖和匍匐莖植物,稻亞科中的水稻不定根研究最多(Tateoka, 1969; Colmer, 2003; Kawai et al., 1998; Kotula et al., 2009),水稻莖有栓質(zhì)化的內(nèi)皮層(Metcalfe, 1960)。
濕地草本植物的重要特征是具有質(zhì)外體屏障,包括根的內(nèi)皮層,外皮層和表皮(Armstrong et al., 2006; Seago et al., 1999; Soukup et al., 2007; Armstrong et al., 2000),以及莖葉中的厚壁機械組織層(SCR)和周緣厚壁機械組織層(PMR),如狗牙根(Cynodon dactylon)、雙穗雀稗(Paspalum distichum) 等植物的莖具木質(zhì)化和栓質(zhì)化的厚壁機械組織層和周緣厚壁機械組織層及角質(zhì)層,屏障結(jié)構(gòu)是植物控制植物內(nèi)部以及與環(huán)境的水、離子和氧氣擴散和交換的保護組織(楊朝東等, 2013; Enstone et al., 2002)。例如,水稻在靜止溶液培養(yǎng)條件下,促進了根內(nèi)、外皮層細胞壁栓質(zhì)和木質(zhì)素沉積的提早和增加,更有效地阻礙離子透過(Ranathunge et al., 2011)。 這類濕地植物體內(nèi)都具有發(fā)達的通氣組織,為水淹脅迫下的植物提供氧氣,包括根部通氣組織(Seago et al., 2005; Jung et al., 2008)、莖的髓腔和皮層通氣組織(Armstrong et al., 2006)。
除稻屬(Oryza)外,前人對其他稻亞科植物適應(yīng)濕地環(huán)境的結(jié)構(gòu)特征的研究非常有限,菰適應(yīng)而且廣泛分布于濕地環(huán)境,而不像狗牙根、雙穗雀稗等也能忍耐旱生環(huán)境(Yanget al., 2011),菰對江漢平原農(nóng)業(yè)污染環(huán)境的修復,和對三峽庫區(qū)退化濕地的恢復具有重要價值。因此,我們對菰的根、莖和葉的解剖學和組織化學特征以及質(zhì)外體屏障的通透性開展了研究,將明確菰適應(yīng)濕地環(huán)境和分布局限性的結(jié)構(gòu)特征。
1 材料與方法
于2017年夏季,自湖北省江漢平原濕地采集菰的野生植株,用自來水洗干凈,剪取不定根,并采用FAA固定(Jensen, 1962)。用新鮮的根和根狀莖進行質(zhì)外體滲透試驗。用雙面刀片在距不定根根尖5、10、30、50、70、90 mm,匍匐莖、根狀莖和葉的幼嫩與成熟部位處分別切片。菰幼莖取自剛剛開始伸長的節(jié)間,老莖取自于剝?nèi)ト~鞘或葉片的具有髓腔的節(jié)間部位。
在解剖鏡下用雙面刀片對菰的根、莖、葉等樣品進行徒手切片。切片染色首先用蘇丹7B(SR7B)檢驗栓質(zhì)化(Brundrett et al., 1991);然后用硫氰酸黃連素-苯胺藍(BAB)檢驗凱氏帶和木質(zhì)化的細胞壁(Seago et al., 1999; Brundrett et al., 1988),鹽酸-間苯三酚(PG)檢驗?zāi)举|(zhì)化(Jensen, 1962);最后用甲苯胺藍(TBO)染色,觀察細胞結(jié)構(gòu)特點。在復式光學顯微鏡和熒光顯微鏡下進行顯微拍照。
不定根和根狀莖的質(zhì)外體通透性試驗按以下步驟進行。切取30~40 mm長的根段,用紙巾擦干,用正在冷卻的熔融石蠟密封其兩端。根莖樣品切取兩端有節(jié)的節(jié)間,兩端不密封。分別取上述不定根和根狀莖的切段各5個,用黃連素示蹤法進行質(zhì)外體通透性測試。將上述切斷先用0.05%黃連素硫酸鹽滴染1 h后,再用4.85×103 μg·mL-1硫氰酸鉀溶液染色1 h。對以上處理后的樣品進行徒手切片,置于熒光顯微鏡下觀察(Seago et al., 1999; Meyer et al., 2009; Meyer & Peterson, 2011)。
2 結(jié)果與分析
2.1 不定根結(jié)構(gòu)和組織化學
距菰不定根根尖5 mm處,其解剖結(jié)構(gòu)由外而內(nèi)依次為表皮、由雙層細胞構(gòu)成的皮下層、外層細胞環(huán)、正在發(fā)育的裂溶生性通氣組織、皮層、內(nèi)皮層、維管柱(其中原生木質(zhì)部和后生木質(zhì)部正在分化)(圖 1:A);距根尖10 mm處,在單層細胞構(gòu)成的外皮層的徑向壁上出現(xiàn)微弱的凱氏帶,由小的木質(zhì)化細胞構(gòu)成的皮下厚壁細胞層(SC)和原生木質(zhì)部出現(xiàn)(圖1:B);距根尖30 mm處,外皮層細胞較大且形成木栓層,內(nèi)皮層凱氏帶出現(xiàn),鄰近內(nèi)皮層的皮層細胞和皮下厚壁細胞層開始木質(zhì)化和栓質(zhì)化(圖1:C,D);距根尖50 mm處,內(nèi)皮層的凱氏帶仍然微弱(圖1:E),皮下厚壁組織層和外皮層的細胞壁均木質(zhì)化、栓質(zhì)化加厚;距根尖70 mm處,內(nèi)皮層的凱氏帶發(fā)育完全且形成栓質(zhì)層(圖1:D,F(xiàn),H),隨后產(chǎn)生木質(zhì)化的次生壁(圖1:H)。
距根尖5 mm,菰不定根的皮層具裂溶生性通氣組織(圖1:A),距根尖50 mm,則形成了細胞以放射狀為特點的溶生性通氣組織(圖1:F,G)。在中柱鞘內(nèi)分別具有8~12個原生木質(zhì)部導管(圖1:F,G),2~3個后生木質(zhì)部導管(圖1:A,D,F(xiàn),G,H)。在老根中,幾乎所有維管柱內(nèi)細胞都已經(jīng)木質(zhì)化為厚壁組織(圖1:G)。
2.2 地上莖、匍匐莖和根狀莖的結(jié)構(gòu)和組織化學
根狀莖、匍匐莖和地上莖均有由木質(zhì)化厚壁細胞組成的周緣厚壁機械組織層(PMR)和位于內(nèi)側(cè)的厚壁組織層(SCR),后者常有維管束包埋其中,并將皮層和維管柱兩部分隔開(圖2:A-H)。周緣厚壁機械組織層(PMR)外側(cè)一層細胞有木栓質(zhì)(圖2:B,C,E,G)而無凱氏帶(圖2:A,B)。地上莖、匍匐莖與不定根的解剖結(jié)構(gòu)和通氣組織結(jié)構(gòu)都是相似的。幼莖的表皮角質(zhì)層較厚(圖2:A);皮層、中柱、維管束、厚壁組織層和周緣厚壁機械組織層中的許多細胞都呈現(xiàn)栓質(zhì)化(Schreiber & Franke, 2011)(圖2:C)。老的地上莖(圖2:C)與匍匐莖(圖2:E)中的厚壁組織層、維管束、周緣厚壁機械組織層 (圖2:D,F(xiàn))以及增厚的角質(zhì)層(圖2:B,C)都含有木栓質(zhì)。老根狀莖的維管束和周緣機械組織層細胞栓質(zhì)化(圖2:G),且木質(zhì)化(圖2:H)。
地上莖(圖2:B,C)和匍匐莖的氣腔(圖2:E,F(xiàn))包括髓腔、皮層和厚壁組織層以內(nèi)的裂溶生性通氣組織。根狀莖的氣腔包括髓腔和皮層中的裂溶生性通氣組織(圖2:G,H)。
葉鞘和葉片近軸面和遠軸面有增厚的角質(zhì)層(圖2:I,J),葉鞘和葉片均有維管束,由厚壁組織構(gòu)成的維管束鞘和裂溶生性通氣組織(圖2:I,J)。但葉中的厚壁組織層細胞沒有栓質(zhì)化。
2.3 不定根及根狀莖的質(zhì)外體屏障的通透性檢測
通過黃連素示蹤法檢測不定根和根莖質(zhì)外體屏障的通透性。在紫外光下,由外而內(nèi),不定根的表皮、皮下層、內(nèi)皮層及與之相鄰皮層、中柱、根狀莖的周緣厚壁機械組織層有較弱自發(fā)棕色熒光(圖3:A,B)。僅黃連素處理切段,不定根的內(nèi)皮層細胞壁和皮下層、莖的表皮和周緣厚壁機械組織層有較弱自發(fā)棕色熒光,硫氰酸黃連素晶體附著在不定根外皮層細胞壁上,不定根的皮下厚壁組織層自發(fā)強烈黃色熒光(圖3:C,D)。
黃連素和硫氰酸鉀處理切段,不定根的內(nèi)皮層和厚壁組織層的細胞壁、根狀莖的表皮強烈吸收黃連素而具強烈橙色熒光(圖3:E,F(xiàn));觀察沒有用硫氰酸黃連素晶體染色的通氣組織,發(fā)現(xiàn)不定根破裂的外皮層內(nèi)部存在一些晶體(圖3:E);黃連素和硫氰酸鉀處理后,不定根和根狀莖節(jié)間外皮層破裂,內(nèi)部具硫氰酸黃連素晶體而自發(fā)強烈黃色熒光(圖3:G,H),不定根中央厚壁組織自發(fā)強烈黃色熒光(圖3:E,G)。該研究表明不定根外皮層及厚壁組織層能吸收阻擋離子進入皮層及內(nèi)部,根狀莖表皮及外皮層吸收阻擋離子進入。
3 討論
近年來,我們主要研究了江漢平原既能耐水濕又能旱生的植物的解剖結(jié)構(gòu)和組織化學特征,如狗牙根(Cynodon dactylon)、雙穗雀稗(Paspa-lum paspaloides)、假儉草(Eremochloa ophiuroides)、牛鞭草(Hemarthria altissima)、白茅(Imperata cylin-drica)(楊朝東等,2015;楊朝東和張霞,2013;張霞等,2013)。國外主要報道了水稻(Oryza sativa)、水甜茅(Glyceria maxima)、梭魚草(Pontederia cordata)、蘆葦(Phragmites australis)、荻(Triarrhena sacchariflora)和香蒲(Typha orientalis)的不定根和根莖的解剖結(jié)構(gòu)和組織化學 (Soukup et al., 2007; Seago et al., 1999; Mcmanus et al., 2002; Watanabe et al., 2006)。
本研究中,菰不定根解剖結(jié)構(gòu)由外而內(nèi)依次為表皮、外皮層、厚壁機械組織層、皮層、內(nèi)皮層和維管柱。其屏障結(jié)構(gòu)由位于內(nèi)側(cè)的內(nèi)皮層及其鄰近栓質(zhì)化細胞和外側(cè)的外皮層組成。這與已報道濕地植物狗牙根、雙穗雀稗、白茅、水稻、蘆葦?shù)鹊难芯拷Y(jié)果相同(Yang et al., 2011; 張霞等,2013;Watanabe et al., 2006; Simone et al., 2003)。關(guān)于植物質(zhì)外體屏障結(jié)構(gòu),菰的內(nèi)皮層在草本植物根中最具典型特征(Yang et al., 2011)。其根的外皮層與水甜茅類似(Soukup et al., 2007),但水甜茅的外皮層有增厚的次生細胞壁,而沒有厚壁機械組織層。菰根的通氣組織大多為放射狀溶原性,許多其他濕地物種也有此典型特征(Seago et al., 2005; Jung et al., 2008; Sangster, 1985)。這說明菰和其他適應(yīng)濕地和干旱層境的植物具相似屏障結(jié)構(gòu)。
菰莖(包括匍匐莖、根狀莖和地上莖)的解剖結(jié)構(gòu)由外向內(nèi)依次為角質(zhì)層、表皮、周緣厚壁機械組織層、皮層、厚壁組織層和髓腔。通氣組織包括皮層通氣組織和髓腔。莖具內(nèi)側(cè)厚壁機械組織層,外側(cè)的角質(zhì)層和周緣厚壁機械組織層組成的屏障結(jié)構(gòu),屏障結(jié)構(gòu)的細胞壁具凱氏帶、木栓質(zhì)和木質(zhì)素沉積的組織化學特點。菰莖與狗牙根、雙穗雀稗、牛鞭草、假儉草的莖有些不同:一方面,菰莖有木質(zhì)化和栓質(zhì)化的周緣厚壁機械組織層。草本植物的莖和葉多有木栓質(zhì)晶體的存在(Fahn, 1990; Evert et al., 1996)。菰莖的維管束細胞木質(zhì)化且栓質(zhì)化,而在狗牙根、假儉草、雙穗雀稗和牛鞭草中其維管束細胞則僅木質(zhì)化,但菰莖木質(zhì)化的周緣厚壁機械組織層和厚壁組織層比狗牙根和雙穗雀稗等的細胞層數(shù)少,說明菰屬于濕生,可以短暫缺水,但不能旱生。原因在于厚壁組織層較薄,失水過多和時間長,細胞缺水而易死亡。另一方面,菰地上莖(稈)和匍匐莖有木質(zhì)化和明顯栓質(zhì)化的厚壁組織層,而狗牙根、假儉草、雙穗雀稗和牛鞭草的厚壁組織層僅木質(zhì)化(Yang et al., 2011)。與其他禾本科植物(如水甜茅等)不同(Metcalfe, 1960),菰莖中具連接維管束內(nèi)層的厚壁細胞層;香蒲沒有具有凱氏帶的外皮層和內(nèi)皮層(Yang et al., 2011);菰匍匐莖的表皮細胞與香蒲、狗牙根等具匍匐莖的禾草相似(Yang et al., 2011;Mcmanus et al., 2002),有增厚的角質(zhì)層,不同點在于,其表皮細胞很少栓質(zhì)化( Schreiber & Franke, 2011)。
菰的通氣組織包括根中通氣組織,莖皮層通氣組織和髓腔,與狗牙根、假儉草、牛鞭草、荻類似(Seago et al., 2005; Jung et al., 2008; Yang et al., 2011; Sangster, 1985)。菰莖和葉皮層中的裂溶生通氣組織的溶解是很正常的現(xiàn)象,顯然,這些不斷形成的氣腔(Kawai et al., 1998),有助于植物在缺氧環(huán)境中把氧氣儲存和運輸?shù)狡渌鞴伲ˋrmstrong et al., 2006; Vartapetian & Jackson, 1997),是其有效地適應(yīng)濕地環(huán)境的特征。
菰莖的質(zhì)外體屏障主要存在于根外皮層和內(nèi)皮層,以及莖的周緣厚壁機械組織層。這些屏障使菰與狗牙根、假儉草、牛鞭草、蘆葦、雙穗雀稗和香蒲這些典型的濕地植物具有很多相似之處,但是莖周緣厚壁機械組織層與狗牙根等植物相比層數(shù)少,內(nèi)部厚壁機械組織層也沒有狗牙根等發(fā)達,推測菰在旱生環(huán)境條件下,周緣厚壁機械組織層和厚壁機械組織層保護組織對植物體的保護很有限,容易失水,不能保持植物體固有姿態(tài)(Meye et al., 2009; Mcmanus et al., 2002; 譚淑端等,2009;Yang et al., 2011;王海鋒等,2008)。在濕地環(huán)境下,菰這些屏障保護結(jié)構(gòu)可以有效阻礙植物體與環(huán)境之間的氧和離子的自由擴散(Meye et al., 2011; Krishnamurthy et al., 2011)。
總之,通過對菰的解剖結(jié)構(gòu)和組織化學特征的研究,比較其他濕地植物和兩棲植物適應(yīng)水生和旱生生境的解剖結(jié)構(gòu)特征,菰莖的周緣厚壁機械組織層和厚壁組織層較薄,在旱生環(huán)境下易失水,不能保持內(nèi)部細胞固有姿態(tài)而不能抵御干旱環(huán)境,明確其在濕地環(huán)境中分布有一定的局限性。通過對菰營養(yǎng)體解剖結(jié)構(gòu)的研究,對有效利用這些濕地植物資源,恢復三峽庫區(qū)消落帶、江漢平原退化濕地植被具有重要參考價值。
參考文獻:
ARMSTRONG W, COUSINS D, ARMSTRONG J, et al., 2000. Oxygen distribution in wetland plant roots and permeability barriers togas-exchange with the rhizosphere: A microelectrode and modelling study with Phragmites australis [J]. Ann Bot, 86(3): 687-703.
ARMSTRONG J, JONES RE, ARMSTRONG W, 2006. Rhizome phyllosphere oxygenation in Phragmitesand other species in relation to redox potential, convective gas flow, submergence and aeration pathways[J]. New Phytol, 172(4): 719-731.
BRUNDRETT MC, ENSTONE DE, PETERSON CA, 1988. A berberine-aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue[J]. Protoplasma, 146(2-3): 133-142.
BRUNDRETT MC, KENDRICK B, PETERSON CA, 1991. Efficient lipid staining in plant material with Sudan Red 7B or fluoral yellow 088 in polyethylene glycol-glycerol[J]. Biotechnol Histochem, 66(3): 111-116.
COLMER TD, 2003. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativaL.)[J]. Ann Bot, 91(2): 301-309.
ENSTONE DE, PETERSON CA, MA F, 2002. Root endodermis and exodermis structure, function, and responses to the environment[J]. J Plant Growth Regul, 21(4): 335-351.
EVERT RF, RUSSIN WA, BOSABALIDIS AM, 1996. Anato-mical and ultrastructural changes associated with sink-to-source transition in developing maize leaves[J]. Int J Plant Sci, 157(3): 247-261.
FAHN A, 1990. Plant Anatomy[M]. Oxford, UK: Pergamon Press: 1-544.
JENSEN WA, 1962. Botanical histochemistry-principles and practice[M]. W. H. Freeman, San Francisco, Calif, USA: 1-408.
JORGENSON KD, LEE PE, KANAVILLIL K, 2013. Ecological relationships of wild rice, Zizaniaspp. 11. Electron microscopy study of iron plaques on the roots of northern wild rice (Zizania palustris)[J]. Bot, 91(3): 189-201.
JUDZIEWICZ EJ, CLARK LG, 2007. Classification and biogeography of New World Grasses: Anomochlooideae, Pharoideae, Ehrhartoideae, and Bambusoideae[J] //COLUMBUS JT, FRIAR EA, PORTER JM, et al.Monocots: Comparative Bio-logy and Evolution Poales. Claremont CA. USA:Rancho Santa Ana Bot Gard, 23(1): 303-314.
JUNG J, LEE SC, CHO HK, 2008. Anatomical patterns of aerenchyma in aquatic and wetland plants[J]. J Plant Biol, 51(6): 428-439.
KAWAI M, SAMARAJEEWA PK, BARRERO RA, 1998. Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots[J]. Planta, 204(3): 277-287.
KOTULA L, RANTHUNGRE K, SCHREIBER L, et al., 2009. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativaL.) grown in aerated or deoxygenated solution[J]. J Exp Bot, 60(7): 2155-2167.
KRISHNAMURTHY P, RANATHUNGE K, NAYAK S, et al., 2011. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativaL.)[J]. J Exp Bot, 62(12): 4215-4228.
MCMANUS HA, SEAGO JR JL, MARSH LC, 2002. Epifluorescent and histochemical aspects of shoot anatomy of Typha latifoliaL.,Typha angustifoliaL. and Typha glaucaGodr. [J]. Ann Bot, 90(4): 489-493.
METCALFE CR, 1960. Anatomy of the Monocotyledons. I. Gramineae[M]. London, UK: Oxford University Press: 1-731.
MEYER CJ, PETERSON CA,2011. Casparian bands occur in the periderm of Pelargonium hortorumstem and root[J]. Ann Bot, 107(4): 591-598.
MEYER CJ, SEAGO JR JL, PETERSON CA, 2009. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanicaroots[J]. Ann Bot, 103(5): 687-702.
RANTHUNGRE K, LIN J, STEUDLE E, et al., 2011. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice(Oryza sativa L.)roots[J]. Plant Cell Environ, 34(8): 1223-1240.
SANGSTER AG, 1985. Silicon distribution and anatomy of the grass rhizome, with special reference to Miscanthus sacchariflorus(Maxim.) Hackel[J]. Ann Bot, 55(5): 621-634.
SCHREIBER L, FRANKE RB, 2011. Endodermis and exodermis in roots[J]. Chichester, UK: John Wiley & Sons, Ltd.http://www.els.net[doi: 10.1002/9780470015902.a0002086.pub2.]
SCULTHORPE CD, 1967. The biology of aquatic vascular plants[M]. London, UK: Edward Arnold Ltd:1-610.
SEAGO JR JL, MARSH LC, STEVENS KJ, et al., 2005. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma[J]. Ann Bot, 96(4): 565-579.
SEAGO JR JL, PETERSON CA, ENSTONE DE, et al., 1999. Development of the endodermis and hypodermis of Typha glauca Godr. and T. angustifoliaL. roots[J]. Can J Bot, 77(1): 122-134.
SEAGO JR JL, PETERSON CA, ENSTONE DE, 2000. Cortical development in roots of the aquatic plant Pontederia cordata(Pontederiaceae)[J]. Am J Bot, 87(8): 1116-1127.
SIMONE OD, HAASE K, MLLER E, et al., 2003. Apoplastic barriers and oxygen transport properties of hypodermal cell walls in roots from four Amazonian tree species[J]. Plant Physiol, 132(1): 206-217.
SOUKUP A, ARMSTRONG W, SCHREIBER L, et al., 2007. Apoplastic barriers to radial oxygen loss and solute penetration: A chemical and functional comparison of the exodermis of two wetland species, Phragmites australisand Glyceria maxima [J]. New Phytol, 173(2): 264-278.
STOVER EL, 1928. The roots of wild rice Zizania aquaticaL.[J]. Ohio J Sci, 28(1): 43-49.
STOVER EL, 1951. An introduction to the anatomy of seed plants[J]. Aibs Bull, 1 (2): 10.
TAN SD, ZHU MY, DANG HS, et al., 2009. Physiological responses of bermudagrass (Cynodon dactylonL. Pers. ) to deep submergence stress in the Three Gorges Reservoir Area[J]. Acta Ecol Sin, 29(7): 3685-3692. [譚淑端, 朱明勇, 黨海山, 等, 2009. 三峽庫區(qū)狗牙根對深淹脅迫的生理響應(yīng) [J]. 生態(tài)學報, 29(7): 3685-3692.]
TATEOKA T, 1969. Root anatomy in grass systematic[J]. Bull Nat Sci Museum , 12(3): 643-651.
VARTAPETIAN BB, JACKSON MB,1997. Plant adaptations to anaerobic stress[J]. Ann Bot, 79(Suppl. 1) : 3-20.
WANG HF, ZENG B, LI Y, et al., 2008. Effects of long-term submergence on survival and recovery growth of four riparian plant species in Three Gorges Reservoir region [J]. Chin J Plant Ecol, 32(5): 977-984. [王海鋒, 曾波, 李婭, 等, 2008. 長期完全水淹對4種三峽庫區(qū)岸生植物存活及恢復生長的影響 [J]. 植物生態(tài)學報, 32(5): 977-984.]
WATANABE H, SAIGUSA M, MORITA S, 2006. Identification of casparian bands in the mesocotyl and lower internodes of rice (Oryza sativaL.) seedlings using fluorescence microscopy[J]. Plant Prod Sci, 9(4): 390-394.
YANG CD, LI SF, DENG SM, et al., 2015. Study of the anatomy and apoplastic barrier characteristics of Imperata cylindrica [J]. Acta Pratac Sin, 24(3): 213-218. [楊朝東, 李守峰, 鄧仕明, 2015. 白茅解剖結(jié)構(gòu)和屏障結(jié)構(gòu)特征研究 [J]. 草業(yè)學報, 24(3): 213-218. ]
YANG CD,ZHANG X,2013.The permeability and supplement structures in stems forPaspalum distichum [J]. Bull Bot Res,33(5): 564-568. [楊朝東,張霞, 2013.雙穗雀稗(Paspalum distichum) 通透性生理和莖解剖結(jié)構(gòu)補充研究 [J]. 植物研究, 33(5): 564-568.]
YANG CD, ZHANG X, LIU GF, et al., 2013. Progress on the structure and phisiological function of apoplastic barriers in root[J]. Bull Bot Res, 33(1): 114-119. [楊朝東, 張霞, 劉國鋒, 等, 2013. 植物根中質(zhì)外體屏障結(jié)構(gòu)和生理功能研究進展 [J]. 植物研究, 33(1): 114-119.]
YANG CD, ZHANG X, ZHOU CY, 2011. Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River, China[J]. Flora, 206(7): 653-661.
ZHANG X,YANG CD,NING GG,2013. The comparison development of apoplastic barriers in Cynodon dactylonand Paspalum distichumroots[J]. Hubei Agric Sci,52(20): 4991-4994. [張霞, 楊朝東, 寧國貴, 2013. 狗牙根和雙穗雀稗根中質(zhì)外體屏障結(jié)構(gòu)發(fā)育過程的比較研究 [J]. 湖北農(nóng)業(yè)科學, 52(20): 4991-4994.]