余學(xué)義 王昭舜 楊云
摘 要:為研究在大采深綜放工作面開采條件下地表移動變形規(guī)律,以陳家溝煤礦八采區(qū)8512,8513綜放工作面地表移動觀測數(shù)據(jù)為基礎(chǔ),分析在大采深綜放工作面條件下開采一個工作面與開采兩個工作面后的地表移動變形規(guī)律。另外,運(yùn)用概率積分法建立模型,根據(jù)觀測數(shù)據(jù)進(jìn)行反演模擬修正預(yù)計(jì)參數(shù),得出在該條件下的概率積分預(yù)計(jì)參數(shù),并總結(jié)充分采動條件下地表移動變形規(guī)律。結(jié)果表明:在大采深綜放開采條件下,開采一個工作面時,地表屬于極不充分采動,大采深極不充分采動地表移動變形一般較小,地表損害一般在Ⅰ級以內(nèi),開采后地表建筑物能夠安全使用;開采兩個工作面后,地表屬非充分采動,地表水平移動范圍較常規(guī)開采條件下范圍要大,且水平移動范圍一般比下沉范圍大;預(yù)計(jì)在第四個工作面開采后地表達(dá)到充分采動。非充分采動條件下,下沉盆地呈非對稱分布,最大下沉點(diǎn)不在采空區(qū)中心上方;在達(dá)到充分采動條件時,最大下沉值處于采空區(qū)中心上方,從盆地中心至邊緣下沉值逐漸減小趨于0;拐點(diǎn)處的水平變形值與曲率值均為0.反演得出大采深綜放工作面地表移動預(yù)計(jì)參數(shù)及地表移動角量參數(shù),預(yù)計(jì)地表達(dá)到穩(wěn)態(tài)時,地表最大下沉量為5 003 mm.此成果能夠?yàn)樵摰V“三下開采”評價提供理論依據(jù)。
關(guān)鍵詞:礦業(yè)工程;開采沉陷;非充分采動;概率積分法;地表移動變形;反演模擬
中圖分類號:TD 325 ? 文獻(xiàn)標(biāo)志碼:A
DOI:10.13800/j.cnki.xakjdxxb.2019.0401 ? 文章編號:1672-9315(2019)04-0555-09
Abstract:In order to study the law of surface movement and deformation under the condition of fullymechanized topcoal caving face with large mining depth,this paper analyzed the surface movment and deformation with one working face and two working faces mined under the condition of fullymechanized topcoal caving face with large mining depth based on the observation data of surface movement of 8512 and 8513 fullymechanized caving face in No.8 mining area of Chenjiagou coal mine.The probabilistic integral method was used to establish the model,predicted parameters were modified by inversion simulation based on the observed data,the predicted parameters of probability integral under this condition were obtained,and the law of surface movement and deformation under full mining condition was summarized.The results show that under the conditions of large mining depth and fully mechanized caving mining,the surface is extremely inadequately mined when mining a working face.Ground surface movement and deformation are generally small due to inadequate mining depth,and surface damage is generally less than grade I.After mining,surface buildings can be used safely.After mining two working faces,the surface is inadequately mined.The range of horizontal movement of surface water is larger than that under conventional mining conditions,and the range of horizontal movement is generally larger than that of subsidence.It is expected that the surface will be fully mined after mining the fourth working face.Under the condition of insufficient mining,the subsidence basin is asymmetrically distributed,the maximum subsidence point is not above the center of the goaf.When the full mining condition is reached,the maximum subsidence value is above the center of the goaf,and the subsidence value from the center of the basin to the edge gradually decreases to zero.The values of horizontal deformation and curvature are both 0 at the inflection point.Inversion results show that the ground surface movement prediction parameters and surface movement angular parameters of the large mining depth fully mechanized caving face are expected to be 5 003 mm when the surface is expected to reach to the steady state.This achievement can provide a theoretical basis for the evaluation of “threeunder” mining techniques.
Key words:mining engineering;mining subsidence;inadequate mining;probabilistic integration method;surface movement and deformation;inversion simulation
0 引 言
隨著我國對煤炭資源的大規(guī)模開發(fā)和利用,煤炭這種不可再生能源在逐步減少,開發(fā)深部煤炭資源就應(yīng)運(yùn)而生。近年來,隨著煤礦機(jī)械化程度的不斷完善,大多數(shù)煤礦已采用大采深綜放開采的生產(chǎn)方式。大采深條件下綜放工作面開采地表移動變形規(guī)律的研究就顯得尤為重要。
國內(nèi)外大量學(xué)者從事地表沉陷以及地表移動變形規(guī)律的研究,成果豐富。19世紀(jì)初相關(guān)學(xué)者通過對列日城開采沉陷的調(diào)查提出早期的“垂線理論”假設(shè)[1-3]。波蘭學(xué)者Litwiniszyn在砂箱模型試驗(yàn)研究的基礎(chǔ)上,提出了五大公理,并推證下沉服從查普曼-柯爾莫哥羅夫方程[4-5]。郭增長等提出極不充分采動條件下的概率密度函數(shù)法[6]。余學(xué)義等利用計(jì)算機(jī)快速計(jì)算,將開采損害預(yù)計(jì)模型引入計(jì)算機(jī),建立了YLH-8計(jì)算程序[7-10]。韓亞鵬等通過建立的坐標(biāo)-時間預(yù)計(jì)函數(shù)準(zhǔn)確地描述開采過程中任意時間點(diǎn)的地表整體移動變形[11]。李春意等研究得出下沉速度的反彈可以作為沖擊地壓危險的預(yù)報(bào)信息,巨厚礫巖層的運(yùn)動是發(fā)生礦震的主要力源之一[12]。郝延錦等應(yīng)用彈性板理論,建立了開采沉陷中全斷面大采深地表預(yù)測基本模型[13]。湯鑄等發(fā)現(xiàn)厚松散層下綜放開采時,地表將較長時間處于移動劇烈期且地表穩(wěn)定期較長[14]。袁越等表示地表最大變形隨著采深的增加線性減少,而隨著采高的增大線性增加;地表下沉系數(shù)與采深呈線性遞減的關(guān)系,而與采高呈非線性衰減的關(guān)系[15]。田華等得到在大采深條件下隨著工作面的開采沉降速度增大,開采寬度超過巖層極限跨距,造成關(guān)鍵層斷裂,對上層覆巖減沉效果減弱[16]。楊俊鵬研究得出在特厚松散層大采深綜放條件下地表移動規(guī)律的主要特征為:地表移動盆地范圍大,比薄松散層開采條件下主要影響正切角小;但地表起動距偏小,移動周期短,活躍期短[17]。孫傳平等研究得出大采深、厚沖積層的開采條件下,地表移動變形較小,地表下沉盆地平緩,不易達(dá)到充分采動[18]。來興平等在研究由淺轉(zhuǎn)深綜放開采中提出,地表變形特征主要表現(xiàn)為地面塌陷坑形成、地面大尺度裂隙擴(kuò)展及塌陷坑坡面滑移坍塌[19]。劉義新等研究得出厚松散層大采深下開采,單工作面采煤地表采動程度較一般開采條件下高,更易接近或達(dá)到充分采動[20]。伍永平等研究在深部高應(yīng)力松軟巖層穩(wěn)定性中提出在大采深條件下,改善圍巖應(yīng)力環(huán)境,控制巖層可提高深部開采的安全性、高效性[21]。
一般情況下,地表移動變形經(jīng)歷極不充分采動到非充分采動再到充分采動3個階段,會逐步引起采空區(qū)上覆巖層產(chǎn)生移動、變形、離層、斷裂等特征,造成地表下沉,導(dǎo)致不同程度的地表沉陷損害[22]。陳家溝煤礦不僅具有采高大,埋深厚等特點(diǎn),而且在工作面開采范圍內(nèi)有村莊群落。文中針對該礦開采現(xiàn)狀,通過對已開采8512與8513綜放工作面地表觀測數(shù)據(jù)的分析,進(jìn)行反演模擬修正預(yù)計(jì)參數(shù),得出在該地質(zhì)條件下大采深綜放開采的概率積分預(yù)計(jì)參數(shù),研究充分采動條件下地表移動變形規(guī)律。形成預(yù)計(jì)評價體系如圖1所示,為該礦后續(xù)安全開采提供科學(xué)依據(jù),為類似采礦地質(zhì)條件下的地表建筑物保護(hù)提供參考。
1 地表移動變形觀測
1.1 開采區(qū)概況
1.2 地表移動變形觀測站概況
8512工作面與8513工作面均采用剖面線狀分段觀測站,分別布置2條觀測線,主要位于停采線一側(cè)的川地區(qū)域,如圖2所示。觀測線Z和zx是沿工作面走向的主觀測線,避開山區(qū)復(fù)雜地貌,只覆蓋了川地區(qū)域;觀測線Q和qx是沿傾向方向。
觀測工作分為首次觀測、開采過程中全面觀測、巡視觀測和末次觀測。全面觀測是觀測工作的核心,是充分了解各觀測點(diǎn)移動變形情況的依據(jù),也是獲取地表移動變形規(guī)律的重要數(shù)據(jù)來源,除首次觀測與末次觀測外,在采動過程中進(jìn)行了全面觀測,每個月觀測3次,移動活躍期內(nèi)每月進(jìn)行一次水準(zhǔn)測量,本站的全面觀測采用全站儀和水準(zhǔn)儀結(jié)合進(jìn)行。
8512工作面走向觀測線共計(jì)53個工作測點(diǎn),點(diǎn)號分別為Z1~Z53,傾向觀測線共計(jì)35個工作測點(diǎn),點(diǎn)號分別是Q1~Q35;8513工作面走向觀測線共計(jì)118個工作測點(diǎn),點(diǎn)號分別為zx1~zx118,傾向觀測線共計(jì)40個工作測點(diǎn),點(diǎn)號分別是qx1~qx40.
1.3 地表移動觀測成果分析
8512工作面走向開采長度2 235 m,在走向?qū)儆诔浞植蓜?,觀測站自2013年11月至2015年11月觀測結(jié)束共計(jì)觀測15次。8513工作面走向累計(jì)推進(jìn)1 710 m,也屬超充分采動,從2016年5月16日開始,截止到2018年2月13日,累計(jì)觀測23次?,F(xiàn)對2個工作面的觀測數(shù)據(jù)進(jìn)行分析,如圖3,圖4所示。
8512工作面傾向開采寬度120 m,開采寬深比小于1/4,屬于極不充分采動,根據(jù)多次觀測數(shù)據(jù),繪制傾向觀測點(diǎn)下沉曲線如圖3(a)所示,未出現(xiàn)下沉盆地,測點(diǎn)Q19對應(yīng)最大下沉點(diǎn)。
根據(jù)觀測數(shù)據(jù),繪制8512工作面走向觀測點(diǎn)下沉曲線圖如圖3(b)所示,基本符合充分采動規(guī)律。Z1~Z13位于村莊正下方,工作面采取限高開采方式,效果明顯,大部分區(qū)域最終穩(wěn)定下沉值未超過0.6 m.自工作面離開村莊進(jìn)入正常開采,隨著采厚增加,走向出現(xiàn)下沉盆地,下沉盆地穩(wěn)定在1 m左右,隨著工作面推進(jìn),下沉盆地也隨之?dāng)U大。走向Z16號為最大下沉點(diǎn),累計(jì)下沉值為1.168 m,此后地面出現(xiàn)明顯下沉,與此同時工作面已推過傾向觀測線,在其后3個月下沉最為明顯,每月下沉量均超過0.15 m,如圖3(c)所示,正處于下沉活躍期。
根據(jù)8513工作面觀測數(shù)據(jù),繪制觀測點(diǎn)下沉曲線圖如圖4(a)、(b)所示。走向基本符合充分采動規(guī)律,而傾向累計(jì)工作面寬度為240 m,屬于非充分采動。根據(jù)觀測顯示,走向測點(diǎn)zx76處達(dá)到最大下沉2.126 m,且走向測點(diǎn)下沉速度如圖4(c)可知,最快下沉速度達(dá)到33 mm/d,也說明此時下沉地表正處于活躍期。
通過以上觀測數(shù)據(jù)分析,可以看出在8512首采工作面開采后,下沉變化過程呈規(guī)律性增大且下沉量均不大。根據(jù)8513工作面觀測結(jié)果發(fā)現(xiàn),在qx24點(diǎn)、qx27點(diǎn)處下沉發(fā)生突變,而這正處在8512的采空區(qū)上覆,說明8513開采對8512采空區(qū)產(chǎn)生擾動,導(dǎo)致8512上覆巖層發(fā)生活化,造成下沉量增加。在地表發(fā)育過程中由于采深較大,當(dāng)回采結(jié)束后,采空區(qū)內(nèi)圍巖應(yīng)力處于新的平衡,達(dá)到穩(wěn)定階段,當(dāng)再次開采擾動范圍內(nèi)的工作面時會打破這種應(yīng)力平衡,已達(dá)到平衡的采空區(qū)會被活化,從而導(dǎo)致二次沉降,這與觀測數(shù)據(jù)吻合,故而在大采深開采過程中,地表達(dá)到穩(wěn)態(tài)的周期會較長。
由此得出:8512開采后由于是單一工作面開采,此時地表處于極不充分采動,受覆巖關(guān)鍵層保護(hù),地表下沉量較小,下沉不明顯,沉降影響范圍也較小。在8513開采后,地表下沉逐漸增大,且部分區(qū)域產(chǎn)生擾動,此時地表處于非充分采動。故地表由極不充分采動向非充分采動發(fā)育時,下沉?xí)型蛔儯抑饾u增加。下沉盆地呈非對稱分布,最大下沉點(diǎn)不在采空區(qū)中心。隨著工作面推進(jìn),下沉盆地也隨之?dāng)U大。
8513工作面停采后,地表下沉速度相比以前有所減小,但是依舊在持續(xù)下沉,且該地表活躍期還未完全結(jié)束,故而得出全盆地地表移動變形規(guī)律與達(dá)到充分采動時該地表移動變形規(guī)律就顯得尤為重要。
2 地表移動變形參數(shù)分析
2.1 巖移參數(shù)
地表巖移參數(shù)是指地表受采動影響后,由地表移動盆地主斷面上求得的各種參數(shù)值,主要用地表移動變形參數(shù)及角量參數(shù)表示。其中邊界角反映了地表移動盆地的最大范圍,移動角反映了地表移動盆地內(nèi)對建筑物產(chǎn)生影響的最大范圍。因此巖移參數(shù)對礦山組織開采以及留設(shè)保安煤柱等,具有十分重要的意義。
根據(jù)2017年國家煤炭工業(yè)局頒發(fā)的“三下”采煤規(guī)范[23],在地表達(dá)到充分采動或接近充分采動條件下,利用地表移動盆地的主斷面上實(shí)測下沉曲線求得地表移動角量參數(shù)。
由于本采區(qū)松散層較薄,只有2.7 m,按巖層直接出露地表計(jì)算。根據(jù)下沉值ω0=10 mm,確定8512下沉盆地邊界點(diǎn)為Q3,Q33,Z46;8513工作面下沉盆地邊界點(diǎn)為zx7,zx100,根據(jù)移動角的判定,以地表建筑物產(chǎn)生Ⅰ級損害為界,即水平變形為2.0 mm/m,或傾斜為3.0 mm/m,或曲率為0.2×10-3 mm/m-2.確定8512移動盆地邊界點(diǎn)為Q5,Q29,Z43;確定8513移動盆地邊界點(diǎn)為zx9,zx93.詳見表1.
3 地表移動變形預(yù)計(jì)參數(shù)修正
3.1 計(jì)算機(jī)反演模擬
由于觀測受到時間等因素的影響,且下沉隨時間變化逐漸穩(wěn)定,達(dá)到穩(wěn)態(tài)地表需5 a以上。陳家溝煤礦在8512工作面開采后地表呈現(xiàn)極不充分采動變形規(guī)律,在8513工作面開采后呈現(xiàn)非充分采動變形規(guī)律,為了得出在相似地質(zhì)條件下達(dá)到充分采動的地表移動變形規(guī)律,現(xiàn)根據(jù)實(shí)測數(shù)據(jù)結(jié)合概率積分理論與計(jì)算機(jī)反演模擬[25-28],分別得出極不充分采動概率積分預(yù)計(jì)參數(shù)和非充分采動或近充分采動概率積分預(yù)計(jì)參數(shù),計(jì)算機(jī)反演模擬得出的地表移動角量參數(shù)見表3,概率積分預(yù)計(jì)參數(shù)見表4.
根據(jù)式(1),當(dāng)y≥r,或y=l/2時地表下沉量最大,故而l≥2r.且tanβ=2.42,r=208.3,即l≥416.6 m時,達(dá)到充分采動。因此當(dāng)開采8511工作面時,屬非充分采動,且接近充分采動,直到4個工作面全部開采后才能完全達(dá)到充分采動。這里用下沉率來反映實(shí)時下沉狀態(tài),下沉率指開采過程中下沉值與開采厚度的比值。反演模擬得出:當(dāng)開采一個工作面時,下沉率為0.105,下沉系數(shù)為0.15;當(dāng)達(dá)到2個工作面時下沉率為0.214,下沉系數(shù)為0.375.地表處于極不充分采動時,下沉系數(shù)為充分采動的30%,非充分采動時,下沉系數(shù)為充分采動條件下的60%;在大采深綜放開采條件下,達(dá)到充分采動時的地表移動角量參數(shù)均小于地表移動實(shí)測角量參數(shù)。表明在達(dá)到充分采動時地表沉陷影響范圍增大,地表移動變形增大。
反演模擬與實(shí)測下沉擬合剖面圖如圖5所示,理論計(jì)算的下沉曲線與現(xiàn)場實(shí)測的下沉曲線基本吻合,使用方差分析法,得到最小方差,且下沉值接近地表最大下沉值。表明該預(yù)計(jì)方法可行,參數(shù)修正合理,計(jì)算結(jié)果可信。可以進(jìn)行全盆地開采預(yù)計(jì)。
3.2 模擬預(yù)計(jì)軟件動態(tài)預(yù)計(jì)
現(xiàn)已計(jì)算并得出動態(tài)預(yù)計(jì)參數(shù),將動態(tài)預(yù)計(jì)參數(shù)通過概率積分法代入計(jì)算并使用YLH-12模擬預(yù)計(jì)軟件進(jìn)行預(yù)計(jì)。該預(yù)計(jì)軟件自研發(fā)至今已在諸多工程項(xiàng)目中應(yīng)用成功,預(yù)計(jì)方法科學(xué),實(shí)踐成果豐富。
通過預(yù)計(jì)計(jì)算,在地表達(dá)到充分采動時,全盆地地表移動變形極值見表5,并使用科技繪圖軟件surfer與預(yù)計(jì)軟件對接繪制出全盆地地表移動變形等高線如圖6所示。預(yù)計(jì)達(dá)到充分采動時地表最大下沉值為5 003 mm,最大水平變形值為-158 mm/m,最大水平移動值為1 599 mm,傾斜變形極值為21.97 mm/m,曲率極值為-0.217 mm/m2,全盆地開采后,受到采動擾動,地表下沉值會略有增加。
由預(yù)計(jì)結(jié)果可知,隨著工作面推進(jìn),地表下沉逐漸達(dá)到穩(wěn)態(tài)時,最大下沉值處于采空區(qū)中央上方如圖6所示,從盆地中心至盆地邊緣下沉值逐漸減小趨于0;拐點(diǎn)位于采空區(qū)邊界一側(cè),拐點(diǎn)處的水平變形值與曲率值均為0;在拐點(diǎn)兩側(cè)的水平移動值對稱分布。地表由非充分采動向充分采動發(fā)育時,地表移動變形值均逐漸增大。地表移動變形將在Ⅳ級以上損害范圍。
4 結(jié) 論
1)結(jié)合計(jì)算機(jī)反演模擬,求出大采深綜放開采條件下在極不充分采動時下沉系數(shù)η=0.15;非充分采動時,下沉系數(shù)η=0.375,tanβ=2.42,b=0.3,與實(shí)測數(shù)據(jù)基本吻合;反演模擬充分采動時地表移動角量參數(shù)均小于實(shí)測角量參數(shù),地表沉陷影響范圍增大,地表移動變形增大。
2)由地表觀測得出:8512開采后地表處于極不充分采動,8513開采后地表處于非充分采動。地表由極不充分采動向非充分采動發(fā)育時,8512采空區(qū)活化,產(chǎn)生二次沉降,下沉?xí)型蛔?,且逐漸增加。非充分采動情況下,下沉盆地呈非對稱分布,最大下沉點(diǎn)不在采空區(qū)中心上方,且隨著工作面的推進(jìn),下沉盆地也隨著擴(kuò)大。
3)以陳家溝煤礦開采為背景,大采深綜放開采地表移動變形規(guī)律如下:開采一個工作面時,地表處于極不充分采動,大采深極不充分采動地表移動變形一般較小,地表損害一般在Ⅰ級以內(nèi),開采后地表建筑物能夠安全使用;開采兩個工作面時,地表處于非充分采動,地表水平移動范圍較常規(guī)開采條件下范圍要大,且水平移動范圍一般比下沉范圍大;預(yù)計(jì)在第四個工作面開采后地表達(dá)到充分采動;地表處于極不充分采動時,下沉系數(shù)為充分采動的30%,非充分采動時,下沉系數(shù)為充分采動條件下的60%;地表達(dá)到充分采動時,最大下沉值處于采空區(qū)中央上方,從盆地中心至邊緣下沉值逐漸減小趨近于0;拐點(diǎn)處的水平變形值與曲率值均為0;預(yù)計(jì)地表達(dá)到穩(wěn)態(tài)時,最大下沉量為5 003 mm,地表移動變形也將達(dá)到Ⅳ損害以上。
參考文獻(xiàn)(References):
[1] Nikolaos Liosis,Prashanth Reddy Marpu,Kosmas Pavlopoulos,et al.Ground subsidence monitoring with SAR interferometry technique in the rural of Al Wagan UAE[J].Remote Sensing of Environment,2018,216(1):276-288.
[2]Jing Du,Jon E.Olson.A poroelastic reservoir model for predicting subsidence and mapping subsurface pressure fronts[J].Journal of Petroleum Science and Engineering,2001,30(3-4):181-197.
[3]張觀瑞.老采空區(qū)建筑地基穩(wěn)定性分析的數(shù)值模擬研究[D].太原:太原理工大學(xué),2005.
ZHANG Guan rui.The research on numerical simulation of the building foundation stability analysis with old coal[D].Taiyuan:Taiyuan University of Technology,2005.
[4]Litwiniszyn J.Statistical methods in the mechanics of granular bodies[J].Rheologica Acta,1958,1(2-3):146-150.
[5]Vasily E Tarasov.The fractional chapman kolmogorov equation[J].Modern Physics Letters B,2007,21(4):163-174.
[6]郭增長,謝和平,王金莊.極不充分開采地表移動和變形預(yù)計(jì)的概率密度函數(shù)法[J].煤炭學(xué)報(bào),2004,29(2):155-158.
GUO Zeng zhang,XIE He ping,WANG Jin zhuang.Applying probability distribution density function to predict the surface subsidence caused by subcritical extraction[J].Journal of China Coal Society,2004,29(2):155-158.
[7]余學(xué)義.采動地表沉陷破壞預(yù)計(jì)評價方法[J].煤礦設(shè)計(jì),1997(5):7-10.
YU Xue yi.Prediction and evaluation method of surface subsidence damage caused by mining[J].Design of Coal Mine,1997(5):7-10.
[8]余學(xué)義,伊士獻(xiàn),趙兵朝.采動損害計(jì)算機(jī)反演模擬評價方法[J].礦山壓力與頂板管理,2002,19(4):102-104,118.
YU Xue yi,YI Shi xian,ZHAO Bing chao.The method of inversion simulation to damage of surface caused by underground mining[J].Mine Pressure and Roof Management,2002,19(4):102-104,118.
[9]余學(xué)義,施文剛.地表剩余沉陷的預(yù)計(jì)方法[J].西安礦業(yè)學(xué)院學(xué)報(bào),1996,16(1):1-4,27.
YU Xue yi,SHI Wen gang.Forecast method of surface remainder subsidence[J].Journal of Xi’an University of Mining and Technology,1996,16(1):1-4,27.
[10]范公勤,余學(xué)義.預(yù)計(jì)地表下沉和位移的軟件及其應(yīng)用[J].陜西煤炭技術(shù),1994(2):6-8.
FAN Gong qin,YU Xue yi.Software for predicting surface subsidence and displacement and its application[J].Shaanxi Coal Technology,1994(2):6-8.
[11]韓亞鵬,李德海,張彥賓,等.村莊下開采地表動態(tài)移動變形過程及其對建筑物的影響研究[J].煤礦安全,2018,49(4):208-211.
HAN Ya peng,LI De hai,ZHANG Yan bin,et al.Study on dynamic movement and deformation process of mining under villages and its impact on buildings[J].Safety in Coal Mines,2018,49(4):208-211.
[12]李春意,李彥輝,梁為民,等.大采深巨厚礫巖綜放開采地表沉陷規(guī)律[J].河南理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,32(6):703-708.
LI Chun yi,LI Yan hui,LIANG Wei min,et al.Research on surface subsidence law under condition of deep mining with thick over burden conglomerate based on field measurement datum[J].Journal of Henan University of Technology(Natural Science Edition),2013,32(6):703-708.
[13]郝延錦,戴華陽,周文國.大采深全斷面地表沉陷預(yù)測模型研究[J].采礦與安全工程學(xué)報(bào),2006,23(4):494-497,501.
HAO Yan jin,DAI Hua yang,ZHOU Wen guo.Study of ground subsidence prediction model for full section and deep mining[J].Journal of Mining & Safety Engineering,2006,23(4):494-497,501.
[14]湯 鑄,李樹清,黃壽卿,等.厚松散層礦區(qū)綜放開采地表移動變形規(guī)律[J].煤礦安全,2018,49(6):210-212,216.
TANG Zhu,LI Shu qing,HUANG Shou qing,et al.Research on surface movement law for fully mechanized top coal caving under thick unconsolidated layers[J].Safety in Coal Mines,2018,49(6):210-212,216.
[15]袁 越,李樹清,趙延林,等.深部大采寬開采條件下地表沉陷的數(shù)值計(jì)算分析[J].礦業(yè)工程研究,2017,32(3):1-6.
YUAN Yue,LI Shu qing,ZHAO Yan lin,et al.Analysis of numerical calculation on ground subsidence in deep mining with large mining width[J].Mining Engineering Research,2017,32(3):1-6.
[16]田 華,李淑梅,張利群.大采深硬巖層條件下地表移動變形規(guī)律研究[J].北京測繪,2016(3):11-14.
TIAN Hua,LI Shu mei,ZHANG Li qun.Study on the law of surface movement and deformation under the condition of large mining deep hard rock[J].Surveying and Mapping in Beijing,2016(3):11-14.
[17]楊俊鵬.特厚松散層大采深條件下地表移動規(guī)律實(shí)測研究[J].中國礦業(yè),2016,25(S2):263-266.
YANG Jun peng.Research on the law of surface movement and deformation under the condition of extra thick loose layer thick and great mining depth based measured data[J].China Mining Magazine,2016,25(S2):263-266.
[18]孫傳平,吳志杰.大采深厚基巖厚沖積層下地表移動規(guī)律研究[J].內(nèi)蒙古煤炭經(jīng)濟(jì),2017(13):144-145.
SUN Chuan ping,WU Zhi jie.Study on surface movement law under thick alluvial layer of large mining depth and thick bedrock[J].Inner Mongolia Coal Economy,2017(13):144-145.
[19]來興平,孫 歡,蔡明,等.急斜煤層淺轉(zhuǎn)深綜放開采煤巖動力災(zāi)害誘發(fā)機(jī)理[J].西安科技大學(xué)學(xué)報(bào),2017,37(3):305-311.
LAI Xing ping, SUN Huan, CAI Ming, et al. Mechanism of dynamic hazards due to coal and rock mass instability in extremely steep coal seams with the deepening mining[J].Journal of Xi’an University of Science and Technology,2017,37(3):305-311.
[20]劉義新,戴華陽,姜耀東,等.厚松散層大采深下采煤地表移動規(guī)律研究[J].煤炭科學(xué)技術(shù),2013,41(5):117-120,124.
LIU Yi xin, DAI Hua yang, JIANG Yao dong, et al. Study on surface movement law above underground deep mining under thick unconsolidated overburden strata[J].Coal Science and Technology,2013,41(5):117-120,124.
[21]伍永平,來興平,南 葆,等.深部高應(yīng)力松軟巖層穩(wěn)定性監(jiān)測及實(shí)驗(yàn)研究[J].西安科技大學(xué)學(xué)報(bào),2005,25(4):407-410,424.
WU Yong ping,LAI Xing ping,NAN Bao,et al.Comprehensive experiment and stability monito ring for soft and complex strata of high stress roadway in deep mine project[J].Journal of Xi’an University of Science and Technology,2005,25(4):407-410,424.
[22]余學(xué)義,張恩強(qiáng).開采損害學(xué)[M].北京:煤炭工業(yè)出版社,2010.
YU Xue yi,ZHANG En qiang.Mining damage[M].Beijing:China Coal Industry Publishing House,2010.
[23]國家煤炭工業(yè)局.建筑物、水體、鐵路及主要井巷煤柱留設(shè)與壓煤開采規(guī)程[M].北京:煤炭工業(yè)出版社,2017.
State Coal Industry Bureau.Regulations for coal pillar setting and coal mining under pressure in buildings,water bodies,railways and main roadways[M].Beijing:China Coal Industry Publishing House,2017.
[24]高 超,徐乃忠,劉 貴.特厚煤層綜放開采地表沉陷預(yù)計(jì)模型算法改進(jìn)[J].煤炭學(xué)報(bào),2018,43(4):939-944.
GAO Chao,XU Nai zhong,LIU Gui.Improvement on prediction model algorithms for surface subsidence of extra thick seam using fully mechanized top coal caving method[J].Journal of China Coal Society,2018,43(4):939-944.
[25]趙兵朝,劉 陽,賀為中,等.郭家河煤礦綜放開采地表巖移參數(shù)分析[J].煤礦安全,2018,49(8):254-257.
ZHAO Bing chao,LIU Yang,HE Wei zhong,et al.Para meters analysis of surface rock movement in guojiahe mine fully mechanized caving mining[J].Safety in Coal Mines,2018,49(8):254-257.
[26]周 棒,康建榮,胡晉山,等.基于改進(jìn)果蠅算法的概率積分法預(yù)計(jì)參數(shù)反演[J].中國礦業(yè),2018,27(11):169-173,180.
ZHOU Bang,KANG Jian rong,HU Jin shan,et al.Prediction parameter inversion of probability integral method based on improved drosophila algorithm[J].China Mining Magazine,2018,27(11):169-173,180.
[27]陳 濤,郭廣禮,朱曉峻,等.利用果蠅算法反演概率積分法開采沉陷預(yù)計(jì)參數(shù)[J].金屬礦山,2016,45(6):185-188.
CHEN Tao,GUO Guang li,ZHU Xiao jun,et al.Mining subsidence prediction parameters inversion of the probability integral method based on fruit flies algorithm[J].Metal Mine,2016,45(6):185-188.
[28]王 磊,張鮮妮,池深深,等.融合InSAR和GA的開采沉陷預(yù)計(jì)參數(shù)反演模型研究[J].武漢大學(xué)學(xué)報(bào)(信息科學(xué)版),2018,43(11):1635-1641.
WANG Lei,ZHANG Xian ni,CHI Shen shen,et al.Parameter inversion model for mining subsidence based on InSAR and GA[J].Geomatics and Information Science Edition of Wuhan University,2018,43(11):1635-1641.