国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

脂肪來(lái)源干細(xì)胞骨修復(fù)研究進(jìn)展

2019-10-09 12:11:12趙道印寧旭汪健

趙道印 寧旭 汪健

[摘要] 骨組織工程包括三個(gè)主要的因素,即用于成骨的干細(xì)胞、用于骨誘導(dǎo)的生長(zhǎng)因子和用于骨傳導(dǎo)的可降解生物支架。間充質(zhì)干細(xì)胞在修復(fù)骨缺損方面已經(jīng)取得了顯著的成功,并且他們的安全性在一些臨床前實(shí)驗(yàn)中也得到證實(shí)。脂肪來(lái)源間充質(zhì)干細(xì)胞(ADSCs)可分化為成骨細(xì)胞、軟骨細(xì)胞和脂肪細(xì)胞,且與骨髓間充質(zhì)干細(xì)胞(BMSCs)具有相似的分化潛能,且獲取方式微創(chuàng),同時(shí)產(chǎn)量也比BMSCs多,具有廣泛的臨床應(yīng)用前景。

[關(guān)鍵詞] 骨組織工程;脂肪來(lái)源干細(xì)胞;骨修復(fù)

[中圖分類號(hào)] R329.2? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-7210(2019)07(b)-0049-04

Research advances of adipose-derived stem cells on bone repair

ZHAO Daoyin1? ?NING Xu2? ?WANG Jian2

1.Guizhou Medical University, Guizhou Province, Guiyang? ?550004, China; 2.Department of Orthopedics, the Affiliated Hospital of Guizhou Medical University, Guizhou Province, Guiyang? ?550004, China

[Abstract] Bone tissue engineering consists of three main factors: stem cells for osteogenesis, growth factors for bone induction and biodegradable scaffolds for bone conduction. Mesenchymal stem cells have achieved significant success in repairing bone defects, and their safety has been demonstrated in a number of preclinical trials. Adipose-derived stem cell (ADSCs) can also differentiate into osteoblasts, chondrocytes, myocytes and adipocytes, and they have similar differentiation potential to BMSCs with a minimally invasive approach. Meanwhile, their yield is also higher than BMSCs, which has a broad clinical application prospect.

[Key words] Bone tissue engineering; Adipose-derived stem cells; Bone repair

骨組織工程包括干細(xì)胞、生長(zhǎng)因子和生物支架。間充質(zhì)干細(xì)胞(MSCs)首先從骨髓中分離出來(lái),能夠向成骨、軟骨和脂肪分化,脂肪組織、結(jié)締組織、滑液、臍帶、羊水和胎盤等組織中也可分離出MSCs,并證實(shí)有多向分化潛能[1-2]。MSCs可分為骨髓MSCs(BMSCs)、脂肪來(lái)源MSCs(ADSCs)、血管周圍干細(xì)胞(PSCs)、誘導(dǎo)多能干細(xì)胞(iPSCs)。其中BMSCs為骨組織工程中最常用的種子細(xì)胞,但存在獲取有創(chuàng)、產(chǎn)量低、供區(qū)感染等不足,限制了其臨床應(yīng)用[3]。ADSCs與BMSCs具有相似的多向分化潛能,其獲取微創(chuàng),同時(shí)產(chǎn)量也較BMSCs多[4],具有更為廣泛的臨床應(yīng)用前景。

1 ADSCs的成骨分化潛能

骨再生方案的細(xì)胞療法中,ADSCs是最有前景的干細(xì)胞之一,體內(nèi)外實(shí)驗(yàn)均證實(shí)了ADSCs能夠分化為成熟的成骨細(xì)胞,且可通過(guò)旁分泌效應(yīng)來(lái)促進(jìn)自體前體細(xì)胞的遷移和分化來(lái)促進(jìn)新生骨形成。常用的體外成骨誘導(dǎo)劑有地塞米松、抗壞血酸、β-甘油磷酸鈉,其中抗壞血酸和地塞米松的濃度可以影響ADSCs成骨效果[5-6]。

ADSCs可以分泌一些生物活性分子,通過(guò)旁分泌功能,為組織修復(fù)建立良好的微環(huán)境,從而促進(jìn)新生血管形成和傷口愈合,同時(shí)可以減少組織的炎性反應(yīng)[7];ADSCs也可分泌促進(jìn)血管生成和抗凋亡潛能的生長(zhǎng)因子,如轉(zhuǎn)化生長(zhǎng)因子(TGF)、胰島素樣生長(zhǎng)因子(IGF)、血管內(nèi)皮生長(zhǎng)因子(VEGF)和肝細(xì)胞生長(zhǎng)因子(HGF)[8]。骨形態(tài)發(fā)生蛋白(BMP)是TGF-β超家族的一員,為一種有效的骨誘導(dǎo)分子,其中BMP-2、BMP-4、BMP-6、BMP-7、BMP-9已被證實(shí)擁有成骨能力[9],聯(lián)合應(yīng)用ADSCs和BMP-2,可明顯誘導(dǎo)新骨形成[6]。VEGF被認(rèn)為是血管生成的主要調(diào)節(jié)劑,可以通過(guò)募集干細(xì)胞、增強(qiáng)內(nèi)皮細(xì)胞的存活和分化,誘導(dǎo)新的毛細(xì)血管網(wǎng)絡(luò)的形成,從而促進(jìn)組織再生[9],它們的聯(lián)合可進(jìn)一步增強(qiáng)脂肪干細(xì)胞的遷移、黏附和增殖能力[10]。

2 與富含血小板血漿(PRP)聯(lián)合應(yīng)用

PRP是各種生長(zhǎng)因子和細(xì)胞因子的天然組合,由自體血分離而來(lái),制備簡(jiǎn)單,而且避免了傳染性疾病和免疫相關(guān)疾病的風(fēng)險(xiǎn),包含PDGF、TGF、IGF、VEGF和HGF,可促進(jìn)內(nèi)皮細(xì)胞增殖和遷移、促進(jìn)血管生成和骨再生[11]。他們可通過(guò)與MSCs、成纖維細(xì)胞、成骨細(xì)胞和內(nèi)皮細(xì)胞上的受體結(jié)合,從而對(duì)組織修復(fù)發(fā)揮作用[12]。PRP預(yù)處理的ADSCs具有內(nèi)皮細(xì)胞特性,可顯著促進(jìn)新生血管形成[13],與脂肪干細(xì)胞聯(lián)合可有效的促進(jìn)脂肪干細(xì)胞的增殖和成骨分化[14],促進(jìn)骨組織再生[15],PRP的制備方法會(huì)影響ADSCs的增殖、分化等生物學(xué)效果[16]。

3 細(xì)胞共培養(yǎng)

誘導(dǎo)后的脂肪干細(xì)胞與其他間充質(zhì)干細(xì)胞共培養(yǎng)時(shí)可以提高其成骨能力,且不同的間充質(zhì)干細(xì)胞對(duì)其成骨能力影響的效果也不同[17]。BMSC與ADSC共培養(yǎng)時(shí)較單一培養(yǎng)成骨能力強(qiáng)[18],能促進(jìn)骨再生和血管形成[19]。ADSCs與內(nèi)皮細(xì)胞共培養(yǎng)同樣可以增加成骨能力[20]。ADSCs的共培養(yǎng)為骨組織工程提供了有效的方法。

4 ADSCs與支架復(fù)合體內(nèi)移植

支架為骨組織形成提供骨傳導(dǎo)空間,接種種子細(xì)胞,人工合成的支架應(yīng)該模擬正常骨組織的形態(tài)和結(jié)構(gòu),優(yōu)化與周圍組織整合率,并為干細(xì)胞的黏附和增值提供良好的微環(huán)境。

4.1 羥基磷灰石(HA)

HA與天然骨中無(wú)機(jī)鹽成分很接近,具有良好的生物活性、骨傳導(dǎo)性,能為新生骨組織提供基礎(chǔ)離子,但脆性較大、骨誘導(dǎo)活性較低且降解時(shí)間長(zhǎng)等,因此HA常與其他材料聯(lián)合使用來(lái)提高復(fù)合材料的機(jī)械性,骨傳導(dǎo)性,生物降解性及生物活性等綜合性能[21-22]。HA支架與ADSCs的聯(lián)合可以增加HA的吸收,且新生骨更加成熟更加類似于天然骨[23]。

4.2 Beta-磷酸三鈣(β-TCP)

β-TCP的成分與骨基質(zhì)的無(wú)機(jī)成分相似,降解釋放的鈣和磷有助于新骨形成。ADSCs聯(lián)合β-TCP可以促進(jìn)骨形成,增加骨修復(fù)的效果,且沒(méi)有明顯并發(fā)癥[24]。雙相磷酸鈣(BCP)是HA和β-TCP的混合物,兩者的聯(lián)合優(yōu)化材料的性能,還可以通過(guò)調(diào)整兩者的比例來(lái)控制材料的成骨、降解等性能,從而達(dá)到更好地修復(fù)骨缺損的目的,如BCP20/80的成骨及血管分化潛能較BCP60/40有所提高[25]。王騰飛等[26]制備的HA/β-TCA復(fù)合物支架,具有較好的生物相容性、降解性、骨傳導(dǎo)性和良好的孔隙率,利于ADSCs與材料復(fù)合,能明顯促進(jìn)骨缺損的修復(fù),甚至,ADSCs聯(lián)合HA/β-TCP修復(fù)骨缺損能力要優(yōu)于ADSCs/同種異體骨[27]。

4.3 高分子材料

高分子材料具有良好的生物降解性、生物相容性、孔隙率及孔徑且無(wú)毒,能夠被塑造為三維支架,利于脂肪干細(xì)胞生長(zhǎng)增殖,促進(jìn)血管和骨組織的生成,加快骨愈合,唐星宇等[28]制備的ADSCs/聚乳酸共聚物,能增加骨密度,促進(jìn)新骨形成及骨愈合,效果要優(yōu)于ADSCs組。聚乳酸/聚羥基乙酸共聚物(PLGA)具有優(yōu)良的生物相容性及力學(xué)特性,且來(lái)源廣泛,獲取容易,無(wú)明顯毒性及免疫原性,使其成為理想的骨支架材料。

4.4 3D打印支架

3D打印技術(shù)在醫(yī)學(xué)領(lǐng)域得到廣泛應(yīng)用,3D打印支架可以促進(jìn)ADSCs的成骨分化[29],Lee等[30]通過(guò)3D打印技術(shù),制備了聚乳酸-羥基乙酸共聚物(PLGA)支架,然后將ADSCs接種于該支架上修復(fù)大鼠下頜骨缺損,12周后發(fā)現(xiàn)骨缺損處愈合。宋楊等[31]將ADSCs加入海藻酸鈉和明膠混合物中,利用3D生物打印技術(shù),構(gòu)建細(xì)胞-海藻酸鈉-明膠共混物打印體,經(jīng)檢測(cè)打印體中細(xì)胞存活率達(dá)到89%左右,且可體內(nèi)成骨;Kang等[32]將ADSCs與聚己內(nèi)酯/磷酸三鈣共打印用于骨缺損處,取得了良好的骨整合和修復(fù)。

5 ADSCs的臨床應(yīng)用:

ADSCs臨床應(yīng)用取得一定效果,Lendechel等[33]用自體ADSCs聯(lián)合髂骨及支架治療了一名創(chuàng)傷性顱骨缺損的7歲女孩,術(shù)后3個(gè)月顯示新骨形成和接近連續(xù)的骨再生。S?觃ndor等[34]用ADSCs對(duì)下頜骨缺損進(jìn)行了成功的重建。骨腫瘤患者切除術(shù)后導(dǎo)致的骨缺損或者骨不連[35],同樣可以使用ADSCs聯(lián)合支架進(jìn)行重建,Mesim?覿ki等[36]用自體ADSCs與重組人BMP-2和β-TCP顆粒組合治療成人患者良性腫瘤切除術(shù)引起的上頜骨缺損,在手術(shù)重建缺損4個(gè)月后,得到了成熟的血管化骨,具有良好的整合性和穩(wěn)定性。郭恩琪等[37]用ADSCs成功完成了9例創(chuàng)傷性骨皮膚復(fù)合組織缺損的骨修復(fù),包括顱骨、橈骨、肱骨及脛骨,分兩期修復(fù),9例骨缺損患者均取得了有效的骨再生,為復(fù)合組織損傷合并大塊骨缺損的患者提供了新的治療方法。

6 小結(jié)

骨組織工程中ADSCs是最有前景干細(xì)胞之一,基于ADSCs的骨再生有很多優(yōu)勢(shì),為了確保成功的臨床應(yīng)用,需要進(jìn)一步發(fā)展微創(chuàng)的分離方法和手術(shù)過(guò)程。細(xì)胞聯(lián)合支架可以更好地促進(jìn)血管和骨再生,為了取得更好的臨床效果,發(fā)展具有骨誘導(dǎo)及骨傳導(dǎo)特性的生物支架聯(lián)合干細(xì)胞及生物活性因子的復(fù)合體顯得尤為重要。ADSCs在臨床應(yīng)用上取得的成功為骨修復(fù)提供了一種有前景的治療方法,但仍需大量的臨床前期研究來(lái)進(jìn)一步證實(shí)其安全性和有效性。

[參考文獻(xiàn)]

[1]? Park JS,Suryaprakash S,Lao YH,et al. Engineering mesenchymal stem cells for regenerative medicine and drug delivery [J]. Methods,2015,84:3-16.

[2]? Bajek A,Olkowska J,Gurtowska N,et al. Human amniotic-fluid-derived stem cells: a unique source for regenerative medicine [J]. Expert Opin Biol Ther,2014,14(6):831-839.

[3]? Hernigou P,Trousselier M,Roubineau F,et al. Stem Cell Therapy for the Treatment of Hip Osteonecrosis: A 30-Year Review of Progress [J]. Clin Orthop Surg,2016,8(1):1-8.

[4]? Li Q,Wang T,Zhang GF,et al. A comparative evaluation of the mechanical properties of two calcium phosphate/collagen composite materials and their osteogenic effects on adipose-derived stem cells [J]. Stem Cells Int,2016, 2016:1-12.

[5]? de Girolamo L,Sartori MF,Albisetti W,et al. Osteogenic differentiation of human adipose-derived stem cells:comparison of two different inductive media [J]. J Tissue Eng Regen Med,2007,1(2):154-157.

[6]? Wang ZL,He RZ,Tu B,et al. Drilling combined with adipose-derived stem cells and bone morphogenetic protein-2 to treat femoral head epiphyseal Necrosis in Juvenile rabbits [J]. Curr Med Sci,2018,38(2):277-288.

[7]? Zhu Z,Yuan Z,Huang C,et al. Pre-culture of adipose-derived stem cells and heterologous acellular dermal matrix: paracrine functions promote post-implantation neovascularization and attenuate inflammatory response [J]. Biomed Mater,2019,14(3):035002.

[8]? Tajima S,Tobita M,Orbay H,et al. Direct and indirect effects of a combination of adipose-derived stem cells and platelet-rich plasma on bone regeneration [J]. Tissue Eng (Part A),2015,21(5/6):895-905.

[9]? Li B,Wang H,Qiu G,et al. Synergistic effects of vascular endothelial growth factor on bone morphogenetic proteins induced bone formation in vivo:influencing factors and future research directions [J]. Biomed Res Int,2016,2016:2869572.

[10]? 高潔,王明國(guó),楊帥,等.不同生長(zhǎng)因子對(duì)脂肪干細(xì)胞生物學(xué)行為的影響[J].中國(guó)組織工程研究,2015,19(19): 3010-3016.

[11]? Wen YH,Lin WY,Lin CJ,et al. Sustained or higher levels of growth factors in platelet-rich plasma during 7-day storage [J]. Clin Chim Acta,2018,483:89-93.

[12]? Dhurat R,Sukesh M. Principles and methods of preparation of platelet-rich plasma: a review and author′s perspective [J]. J Cutan Aesthet Surg,2014,7(4):189-197.

[13]? Chen CF,Liao HT. Platelet-rich plasma enhances adipose-derived stem cell-mediated angiogenesis in a mouse ischemic hindlimb model [J]. World J Stem Cells,2018,10(12):212-227.

[14]? Cvetkovi?VJ,Najdanovi?JG,Vukeli-Nikoli?M,et al. Osteogenic potential of in vitro osteo-induced adipose-derived mesenchymal stem cells combined with platelet-rich plasma in an ectopic model [J]. Int Orthop,2015,39(11):2173-2180.

[15]? Shafieian R,Matin MM,Rahpeyma A,et al. Effects of human adipose-derived stem cells and platelet-rich plasma on healing response of canine alveolar surgical bone defects [J]. Arch Bone Jt Surg,2017,5(6): 406-418.

[16]? 胡育瑄,何家才.不同方法制備富血小板血漿對(duì)兔脂肪干細(xì)胞增殖和成骨分化能力的影響[J].安徽醫(yī)科大學(xué)學(xué)報(bào),2018,53(8):1184-1190.

[17]? 孫仕晨,董騰哲,黃昕,等.Transwell共培養(yǎng)條件下誘導(dǎo)脂肪干細(xì)胞成骨能力的改變[J].中國(guó)組織工程研究,2016, 20(28):4155-4161.

[18]? 楊民,鄭偉偉,林程.骨髓間質(zhì)干細(xì)胞和脂肪間質(zhì)干細(xì)胞混合培養(yǎng)后的成骨能力[J].中華骨科雜志,2016,36(23):1524-1532.

[19]? Kang ML,Kim JE,Im GI. Vascular endothelial growth factor-transfected adipose-derived stromal cells enhance bone regeneration and neovascularization from bone marrow stromal cells [J]. J Tissue Eng Regen Med,2017,11(12):3337-3348.

[20]? Zhao X,Liu L,Wang FK,et al. Coculture of vascular endothelial cells and adipose-derived stem cells as a source for bone engineering [J]. Ann Plast Surg,2012,69(1):91-98.

[21]? Souza DC,Abreu HLV,Oliveira PV,et al. A fast degrading PLLA composite with a high content of functionalized octacalcium phosphate mineral phase induces stem cells differentiation [J]. J Mech Behav Biomed Mater,2019, 93:93-104.

[22]? Fang J,Li P,Lu X,et al. A strong,tough,and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration [J]. Acta Biomater,2019,88:503-513.

[23]? de Girolamo L,Arrigoni E,Stanco D,et al. Role of autologous rabbit adipose-derived stem cells in the early phases of the repairing process of critical bone defects [J]. J Orthop Res,2011,29(1):100-108.

[24]? Thesleff T,Lehtimki K,Niskakangas T,et al. Cranioplasty with adipose-derived stem cells and biomaterial: a novel method for cranial reconstruction [J]. Neurosurgery,2011, 68(6):1535-1540.

[25]? Van Esterik FA,Zandieh-Doulabi B,Kleverlaan CJ,et al. Enhanced osteogenic and vasculogenic differentiation potential of human adipose stem cells on biphasic calcium phosphate scaffolds in fibrin gels [J]. Stem Cells Int,2016,2016:1934270.

[26]? 王騰飛,宋興華,麥麥提艾力·阿不力克木,等.脂肪干細(xì)胞與羥基磷灰石/β-磷酸三鈣復(fù)合體修復(fù)兔椎體缺損[J].中國(guó)組織工程研究,2018,22(13):2081-2086.

[27]? 龍志成,宋興華,龍仕杰,等.脂肪干細(xì)胞復(fù)合HA/β-TCP與同種異體骨修復(fù)兔脊柱骨缺損的比較[J].中國(guó)矯形外科雜志,2018,26(2):164-169.

[28]? 唐宇星,趙慶,楊中萌,等.聚乳酸共聚物復(fù)合脂肪干細(xì)胞對(duì)骨質(zhì)疏松性骨折愈后生物力學(xué)的影響[J].中國(guó)組織工程研究,2017,21(10):1577-1582.

[29]? Park H,Kim JS,Oh EJ,et al. Effects of three-dimensionally printed polycaprolactone/β-tricalcium phosphate scaffold on osteogenic differentiation of adipose tissue- and bone marrow-derived stem cells[J].Arch Craniofac Surg,2018,19(3):181-189.

[30]? Lee MK,DeConde AS,Lee M,et al. Biomimetic scaffolds facilitate healing of critical-sized segmental mandibular defects [J]. Am J Otolaryngol,2015,36(1):1-6.

[31]? 宋楊,王曉飛,王宇光,等.人脂肪間充質(zhì)干細(xì)胞與生物材料共混物三維打印體的體內(nèi)成骨[J].北京大學(xué)學(xué)報(bào):醫(yī)學(xué)版,2016,48(1):45-50.

[32]? Kang HW,Lee SJ,Ko IK,et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity [J]. Nat Biotechnol,2016,34(3):312-319.

[33]? Lendeckel S,Jdicke A,Christophis P,et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report [J]. J Craniomaxillofac Surg,2004,32(6):370-373.

[34]? Sándor GK,Tuovinen VJ,Wolff J,et al. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration [J]. J Oral Maxillofac Surg,2013,71(5):938-950.

[35]? Dufrane D,Docquier PL,Delloye C,et al. Scaffold-free three-dimensional graft from autologous adipose-derived stem cells for large bone defect reconstruction: clinical proof of concept [J]. Medicine (Baltimore),2015,94(50):1-10.

[36]? Mesimki K,Lindroos B,Trnwall J,et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells [J]. Int J Oral Maxillofac Surg,2009, 38(3):201-209.

[37]? 郭恩琪,謝慶平,朱孜冠,等.嚴(yán)重復(fù)合組織缺損皮瓣修復(fù)術(shù)后應(yīng)用自體脂肪干細(xì)胞構(gòu)建組織工程骨重建骨支架[J].中華顯微外科雜志,2017,40(3):213-217.

白沙| 武宁县| 固安县| 女性| 贵定县| 兰考县| 巴里| 茌平县| 勃利县| 崇左市| 平遥县| 平乐县| 遵义市| 安康市| 西华县| 崇左市| 绥阳县| 陕西省| 鄂托克旗| 南安市| 水富县| 克拉玛依市| 景德镇市| 清水河县| 拜城县| 九龙坡区| 富阳市| 奈曼旗| 怀柔区| 咸丰县| 灯塔市| 峨眉山市| 上犹县| 策勒县| 怀宁县| 蕲春县| 淳化县| 大城县| 杨浦区| 当涂县| 杭州市|