張新潔 陸天宇 孫海龍 趙宏波
摘 要:為了解水曲柳林分化學(xué)計(jì)量特征和養(yǎng)分再吸收率與N、P元素供應(yīng)的關(guān)系,以15年生水曲柳(Fraxinus mandshurica)人工林為研究對象,測定氮(N)、磷(P)添加后水曲柳林分土壤、成熟葉片和衰老葉片養(yǎng)分濃度的變化。結(jié)果表明:N、P添加后水曲柳成熟葉N、P濃度和土壤C、N濃度均逐漸增加,而衰老葉P濃度逐漸降低;水曲柳成熟葉C∶N、C∶P和土壤C∶P均隨N、P添加而降低,而成熟葉和土壤N∶P僅隨P添加而降低,但是衰老葉C∶P、N∶P均隨P添加量增加而顯著提高;N、P添加后水曲柳葉片N、P再吸收率均提高,其中P再吸收率變化最大,高氮和高磷處理下P再吸收率分別比CK提高2.3倍和2.7倍,且葉片P再吸收率與成熟葉C∶P呈顯著負(fù)相關(guān),但是與衰老葉C∶P、N∶P呈極顯著正相關(guān)。N、P添加后水曲柳成熟葉N∶P的變化和N、P再吸收率的提高表明:P是限制本研究中水曲柳林木生長的重要因素,N、P添加可以提高水曲柳N、P的利用效率,并改善水曲柳林分的養(yǎng)分狀況。
關(guān)鍵詞:水曲柳;氮磷添加;化學(xué)計(jì)量比;養(yǎng)分再吸收率
中圖分類號:S725.5 ? ?文獻(xiàn)標(biāo)識碼:A ? 文章編號:1006-8023(2019)05-0016-06
Abstract:In order to understand the relation between nutrient stoichiometric characteristics and resorption efficiency of Fraxinus mandshurica stand and the N and P supply, N and P concentrations of soils and leaves were determined in the 15-year-old Fraxinus mandshurica plantations after N and P addition. The results showed that: with the increasing of N and P supply, the N and P concentrations of mature leaves and the C and N concentrations of soil increased, while the P concentration of senescent leaves gradually decreased. The C∶N and C∶P ratios of mature leaves and C∶P ratio of soils decreased under N and P addition, and N∶P ratio of mature leaves and soils decreased under P addition, but C∶P and N∶P ratios of senescent leaves increased significantly with the increasing P supply. It showed high resorption efficiency of N and P in leaves under N and P addition, and among them P resorption efficiency were higher. The P resorption efficiency under high nitrogen and high phosphorus treatment increased by 2.3 times and 2.7 times of CK, respectively, and the leaf P resorption efficiency and mature leaf C∶P showed a significantly negative correlation, but it was significantly positively correlated with senescent leaves C∶P, N∶P. Our study indicates that N and P addition can adjust N∶P ratios of mature leaves and increase N and P resorption of Fraxinus mandshurica stand, which suggests that P is an important limiting element of Fraxinus mandshurica during growth, moreover, N and P addition can increase nutrient utilization efficiency and improve nutrient status in the plantation of Fraxinus mandshurica.
Keywords:Fraxinus mandshurica; nitrogen and phosphorus addition; nutrient stoichiometry; nutrient resorption efficiency
0 引言
氮(N)和磷(P)是樹木生長的必需元素,限制了世界上大部分森林的生產(chǎn)力[1]。通過N、P添加提高土壤的養(yǎng)分含量,改善樹木的養(yǎng)分供應(yīng)情況,已成為各國提高人工林生產(chǎn)力的重要手段[2]。N、P添加后土壤中養(yǎng)分含量的增加將改變樹木體內(nèi)N、P的濃度和計(jì)量比[3-4],生態(tài)化學(xué)計(jì)量學(xué)研究表明植物葉片N∶P在一定程度上可以指示植物體內(nèi)N和P的需求情況,以及生態(tài)系統(tǒng)的養(yǎng)分限制情況[5-8],而葉片C∶N和C∶P也可以反映植物生長速率對養(yǎng)分供應(yīng)的響應(yīng)[9-10],進(jìn)而為作物和樹木施肥提供依據(jù)[11-12]。衰老葉片的養(yǎng)分再吸收是植物提高N、P等養(yǎng)分利用效率的重要手段[13-14],N、P添加后樹木的養(yǎng)分再吸收率也將受到影響[15],研究發(fā)現(xiàn)施肥后興安落葉松(Larix gmelinii)葉片養(yǎng)分再吸收率降低[15],而日本落葉松(Larix kaempferi)葉片N素再吸收率提高[16],同時(shí),一些研究發(fā)現(xiàn)葉片養(yǎng)分再吸收率不受土壤養(yǎng)分有效性影響[17-18]。目前,關(guān)于N、P添加后植物養(yǎng)分化學(xué)計(jì)量比和養(yǎng)分再吸收率的研究多集中在作物和苗木上[19],但是,對N、P添加后林木響應(yīng)的研究仍然較少[20]。
2.3 氮磷添加對水曲柳葉片N、P養(yǎng)分再吸收效率的影響
氮添加提高了水曲柳葉片N再吸收率,N1和N2處理水曲柳葉片N再吸收率均顯著高于CK處理(P<0.05),但是N1處理葉片N再吸收率最高;隨氮添加量的增大,水曲柳葉片P再吸收率明顯提高,N2處理下葉片P吸收率比CK處理高2.3倍(P<0.01)(表3)。
與氮添加后水曲柳葉片N再吸收率變化相似,磷添加后葉片N再吸收率均明顯增加(P<0.05),且P1處理最高;而磷添加后葉片P再吸收率逐漸提高,且P1和P2處理均顯著高于CK(P<0.01),其中P2處理比CK高2.7倍(表3)。
2.4 水曲柳成熟葉和衰老葉C、N、P化學(xué)計(jì)量比與葉片再吸收率的相關(guān)性
相關(guān)分析表明水曲柳葉片N再吸收率與成熟葉、衰老葉的養(yǎng)分濃度及化學(xué)計(jì)量比之間的相關(guān)性均不顯著(P>0.05)。葉片P再吸收率與成熟葉片P濃度呈顯著正相關(guān)(P<0.05),但與衰老葉P濃度呈極顯著負(fù)相關(guān)(P<0.01);葉片P再吸收率與成熟葉C∶P呈顯著負(fù)相關(guān)(P<0.05),與衰老葉C∶P、N∶P呈極顯著正相關(guān)(P<0.01)(表4)。
3 結(jié)論與討論
本研究中,水曲柳對照樣地土壤全C、全N和全P含量分別為55.60、5.55和0.89 g/kg,與王淑平等[27]對東北東部森林土壤的研究相比,全N和全P均高于該地區(qū)的平均水平,但是略低于郝玉琢和王樹力[23]對帽兒山水曲柳人工林的研究結(jié)果;另外,土壤N∶P可以為土壤養(yǎng)分限制類型提供有效預(yù)測,隨N和P添加量的增加,水曲柳林地土壤N∶P分別表現(xiàn)增大和降低的趨勢,表明N和P添加改善了土壤的養(yǎng)分供應(yīng)情況,但是本研究中土壤的N∶P均高于郝玉琢和王樹力的研究結(jié)果,說明磷添加后本研究中林地土壤磷的供應(yīng)能力仍較低。葉片N∶P是植物養(yǎng)分限制的重要指示,本研究中水曲柳對照(CK)和N添加處理樣地中水曲柳成熟葉N∶P為20.07~23.32(表2),根據(jù)生態(tài)化學(xué)計(jì)量學(xué)研究中植物組織的N∶P大于16時(shí),生長主要受P限制[5]的研究結(jié)果,說明P是限制本研究中水曲柳林木生長的重要因素,而P添加后水曲柳成熟葉的N∶P均降低,且隨P添加量的增加而降低(表2),表明較高的P添加能夠明顯改善水曲柳林木的養(yǎng)分需求情況,P2處理時(shí)成熟葉N∶P<16,說明較高P添加開始對該地區(qū)的P限制起到緩解作用。與土壤N∶P的變化相比,水曲柳葉片N∶P的變化幅度明顯較大(表1),這可能與水曲柳林木對P的需求較大,吸收效率較高有關(guān)。本研究中水曲柳成熟葉的C∶N和C∶P都表現(xiàn)出隨N、P添加量的增加而逐漸降低的趨勢,根據(jù)生長速率假說[9-10]中葉片C∶N和C∶P一般與生長速率負(fù)相關(guān)的結(jié)論,表明N、P添加均提高了水曲柳的生長速率。
養(yǎng)分再吸收是植物提高環(huán)境適應(yīng)能力的重要策略,本研究中N、P添加處理下的水曲柳葉片再吸收率均高于對照,表明N、P添加提高了水曲柳葉片養(yǎng)分的再吸收利用效率,使其能夠回收更多的養(yǎng)分繼續(xù)用于生長,這與對日本落葉松[17]和麥冬(Ophiopogon japonicus)[28]的研究一致,但與施肥后興安落葉松葉片養(yǎng)分再吸收效率降低的結(jié)果相反[16],原因可能是短期施肥促進(jìn)植物快速生長,提高了碳同化速率,同時(shí)也加大了植物對養(yǎng)分的需求[29-30],所以通過養(yǎng)分再吸收將更多的養(yǎng)分回收然后流向植物的光合器官[31]。這一現(xiàn)象反映了本研究中的林地土壤氮磷養(yǎng)分的供應(yīng)能力尚不能滿足水曲柳生長提高后對養(yǎng)分的需求,因此葉片需要通過回收更多的養(yǎng)分滿足自身生長,也表明水曲柳的養(yǎng)分再吸收與環(huán)境養(yǎng)分供應(yīng)密切相關(guān)[17,28]。本研究中水曲柳N、P再吸收速率分別為20.64%~37.65%和17.52%~63.48%,其中P再吸收效率變化幅度明顯高于N再吸收速率,而且高N和高P添加下P再吸收率明顯高于N再吸收率(表3),通過Pearson相關(guān)性分析發(fā)現(xiàn),水曲柳葉片N再吸收率與葉片養(yǎng)分含量和養(yǎng)分計(jì)量比之間的相關(guān)性均未達(dá)到顯著水平,而葉片P再吸收率與成熟葉P含量和衰老葉C∶P、N∶P呈顯著正相關(guān),與成熟葉C∶P和衰老葉P含量呈顯著負(fù)相關(guān)(表4),表明水曲柳P素再吸收能力高于N素,但是水曲柳對P素的再吸收受環(huán)境影響較大,尤其是與葉片P素特征密切相關(guān)[31]。另外本研究中水曲柳衰老葉的N含量范圍在1.65%~2.13%之間,P含量范圍在0.06%~0.09%之間,與鄧浩俊等[32]的研究相似,根據(jù)Killingbeck[26]的研究結(jié)果衰老葉中N和P含量分別大于1.00%和0.08%則被不完全吸收的原則,說明水曲柳對P的再吸收率接近完全吸收,因此,通過N、P添加改變水曲柳養(yǎng)分供應(yīng)情況能夠調(diào)節(jié)水曲柳對P素的再吸收作用,提高水曲柳的養(yǎng)分利用效率。
【參 考 文 獻(xiàn)】
[1]GUSEWELL S. N∶P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266.
[2]BINKLEY D. Forest nutrition management[M]. New York: John Wiley & Sons, Inc, 1986.
[3]閻恩榮, 王希華, 郭明. 浙江天童常綠闊葉林、常綠針葉林與落葉闊葉林的C∶N∶P化學(xué)計(jì)量特征[J]. 植物生態(tài)學(xué)報(bào), 2010, 34(1): 48-57.
YAN E R, WANG X H, GUO M. C∶N∶P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 48-57.
[4]ZHANG Q F, XIE J S, LYU M K, et al. Short-term effects of soil warming and nitrogen addition on the N∶P stoichiometry of Cunninghamia lanceolata in subtropical regions[J]. Plant & Soil, 2017, 411: 395-407.
[5]KOERSELMAN W, MEULEMAN A F M. The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450.
[6]TIAN H Q, CHEN G S, ZHANG C, et al. Pattern and variation of C∶N∶P ratios in Chinas soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(3): 139-151.
[7]黃菊瑩, 余海龍. 不同氮磷比處理對甘草生長與生態(tài)化學(xué)計(jì)量特征的影響[J]. 植物生態(tài)學(xué)報(bào), 2017, 41(3): 325-336.
HUANG J Y, YU H L. Effects of different nitrogen: phosphorus levels on the growth and ecological stoichiometry of Glycyrrhiza uralensis[J]. Chinese Journal of Plant Ecology, 2017, 41(3): 325-336.
[8]劉芳,葛江麗,施漢鈺,等.西洋參地氮磷鉀含量變化規(guī)律研究[J].林業(yè)科技,2017,42(6):19-21.
LIU F,GE J L,SHI H Y,et al.Study on changing rule of nitrogen, phosphorus and potassium content in Panax quinquefolium field[J].Forestry Science & Technology,2017,42(6):19-21.
[9]TESSIER J T, RAYNAL D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology, 2003, 40(3): 523-534.
[10]ELSER J J, DOBBERFUHL D R, MACKAY N A, et al. Organism size, life history, and N:P stoichiometry[J]. BioScience, 1996, 46(9): 674-684.
[11]YOU C M, WU F Z, YANG W Q, et al. Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: A global meta-analysis[J]. Environmental Pollution, 2018, 241: 740-749.
[12]MO Q F, ZOU B, LI Y W, et al. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest[J]. Scientific Reports, 2015, 5(1): 14605.
[13]KILLINGBECK K T. The terminological jungle revisited: Making a case for use of the term resorption[J]. Oikos, 1986, 46(2): 263-264.
[14]AERTS R. Nutrient use efficiency in evergreen and deciduous species[J]. Oecologia, 1990, 84(3): 391-397.
[15]REED S C, TOWNSEND A R, DAVIDSON E A, et al. Stoichiometric patterns in foliar nutrient resorption across multiple scales[J]. New Phytologist, 2012, 196(1): 173-180.
[16]趙瓊, 劉興宇, 胡亞林. 氮添加對興安落葉松養(yǎng)分分配和再吸收效率的影響[J]. 林業(yè)科學(xué), 2010, 46(5): 14-19.
ZHAO Q, LIU X Y, HU Y L. Effects of nitrogen addition on nutrient allocation and nutrient resorption efficiency in Larix gmelinii[J]. Scientia Silvae Sinicae, 2010, 46(5): 14-19.
[28]陳伏生, 胡小飛, 葛剛. 城市地被植物麥冬葉片氮磷化學(xué)計(jì)量比和養(yǎng)分再吸收效率[J]. 草業(yè)學(xué)報(bào), 2007, 16(4): 47-54.
CHEN F S, HU X F, GE G. Nitrogen and phosphorus stoichiometry and nutrient resorption efficiency of urban ground cover[J]. Acta Prataculturae Sinica, 2007, 16(4): 47-54.
[29]曹昊,劉瑰琦,施漢鈺,等.氮、磷、鉀肥施肥量對半夏產(chǎn)量影響的研究[J].林業(yè)科技,2017,42(2):35-37.
CAO H, LIU G Q, SHI H Y, et al. Effect of nitrogen, phosphorus and potassium fertilizer application rate on pinellia ternata yield[J]. Forestry Science & Technology, 2017, 42(2):35-37.
[30]CORREIA P J, MARTINSLOUCAO M A. Leaf nutrient variation in mature carob (Ceratonia siliqua) trees in response to irrigation and fertilization[J]. Tree Physiology, 1997, 17(12): 813-819.
[31]WEI H X, XU C Y, MA L Y, et al. Short-term nitrogen (N)-retranslocation within Larix olgensis seedlings is driven to increase by N-deposition: evidence from a simulated 15N experiment in northeast China[J]. International Journal of Agriculture & Biology, 2014, 16(6):1031-1040.
[32]鄧浩俊, 陳愛民, 嚴(yán)思維,等. 不同林齡新銀合歡重吸收率及其C∶N∶P化學(xué)計(jì)量特征[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2015, 21(3): 522-527.
DENG H J, CHEN A M, YAN S W, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry in different ages of Leucaena leucocephala[J]. Chinese Journal of Applied Environmental Biology, 2015, 21(3): 522-527.