朱志炎, 田志宏*, 李建雄*
鏈霉菌的功能及其在農(nóng)業(yè)上的應(yīng)用
朱志炎1,2, 田志宏1,2*, 李建雄1,2*
(1. 長江大學生命科學學院, 湖北 荊州 434025; 2. 中國科學院華南植物園, 廣東省應(yīng)用植物學重點實驗室, 廣州 510650)
鏈霉菌是自然界中大量存在的一類微生物,具有多種多樣的功能, 其基內(nèi)菌絲多核有間隔,氣生菌絲上附著孢子鏈, 從孢子萌發(fā)到孢子釋放完成整個生命周期。鏈霉菌以菌絲體的形式定殖于多種植物體的根、莖、葉等部位而發(fā)揮功能,能分泌多種具有促進植物生長與生物防治功能的代謝物。對近幾年鏈霉菌在提升植物營養(yǎng)吸收、促進植物生長、增強植物應(yīng)對逆境能力、改善土壤結(jié)構(gòu)、恢復(fù)污染水體等方面的研究進行了綜述,并對今后鏈霉菌的研究方向和應(yīng)用前景進行了展望。
鏈霉菌;生長;生物防治;菌肥
鏈霉菌是一類革蘭氏陽性菌,19世紀末,研究者從土壤中分離出大量好氣腐生菌,1943年將這類菌歸為鏈霉菌屬(sp.)[1]。鏈霉菌屬于原核生物界、放線菌目(Actinobacterales)、鏈霉菌科(Streptomycetaceae)。鏈霉菌是放線菌目中最大的一個屬,包含1 000多種菌。鏈霉菌從孢子萌發(fā)到孢子釋放完成整個生長周期。孢子在固體培養(yǎng)基上萌發(fā), 逐步產(chǎn)生基內(nèi)菌絲,基內(nèi)菌絲多核而有分支, 吸收營養(yǎng),進行營養(yǎng)生長。營養(yǎng)生長階段后期,基內(nèi)菌絲不斷降解,代謝出不同色素,形成不同顏色。培養(yǎng)基表面產(chǎn)生氣生菌絲,氣生菌絲具有疏水性,在氣生菌絲上繼而形成孢子絲,孢子絲是由單核的孢子構(gòu)成。孢子再萌發(fā)從而構(gòu)成鏈霉菌的一個生長周期[2]。在鏈霉菌分類系統(tǒng)中,孢子鏈與孢子形態(tài)是重要的參考依據(jù)。鏈霉菌基因組染色體呈線狀,結(jié)構(gòu)復(fù)雜,是目前已知最大的原核生物基因組。
鏈霉菌具有多種功能,有些能夠產(chǎn)生抗生素與植物生長激素類物質(zhì),促進植物生長,提高植物對于生物與非生物逆境的抵御能力[3]。目前已知的鏈霉菌產(chǎn)生的9 000多種具有生物活性的物質(zhì)中,超過120多種物質(zhì)得到了應(yīng)用,占微生物來源的生物活性物質(zhì)應(yīng)用品種數(shù)量的75%[4]。目前已知抗生素種類有16 500種,其中51%是由鏈霉菌產(chǎn)生。鏈霉菌分泌的農(nóng)用抗生素作為低毒、低殘留的生物農(nóng)藥逐步受到人們的關(guān)注。
微生物與植物之間通過互相作用各取所需。微生物通過在植物根部附近吸收植物分泌的營養(yǎng)物質(zhì),進行生長繁殖,而植物則攝取微生物的代謝物質(zhì)促進自身生長。鏈霉菌作為一類具有多種功能的微生物,在農(nóng)業(yè)生產(chǎn)活動中得到了廣泛的應(yīng)用。本文對國內(nèi)外有關(guān)鏈霉菌在植物生長上的功能研究進行綜述,并展望其應(yīng)用前景和將來的研究方向,為進一步發(fā)揮其生物防治作用,開發(fā)出環(huán)境友好型的低毒、高效與高產(chǎn)的抗生素提高幫助,從而更好地服務(wù)于國家生態(tài)文明建設(shè)。
鏈霉菌是細菌界、放線菌目中的一類細菌。大部分鏈霉菌具有菌絲與孢子,少數(shù)鏈霉菌在多次繼代培養(yǎng)過程中會喪失產(chǎn)生孢子能力。鏈霉菌定殖的植物種類廣泛,如在棉花(spp.)、黃瓜()、毛白楊()、黃花蒿()、水稻()、大麥()和花生()等30多種植物上都可以定殖,定殖部位多,從根、莖、葉片中都有鏈霉菌分離出來(表1)。有多種技術(shù)手段可以研究鏈霉菌在植物中的定殖情況。如攜帶綠色熒光蛋白基因的生防鏈霉菌株SSD49-pIJ8660Ep能夠定殖到毛白楊組培苗的莖和葉片中,當接種SSD49- pIJ8660Ep后,在莖段切片中可以看到明顯的綠色熒光,在葉片中也能看到散布的微弱綠色熒光,但根中并未觀察到綠色熒光。表明鏈霉菌沿著傷口進入植物體內(nèi),在莖中分布較多,隨后遷移至葉片中,但鏈霉菌難以進入根部[5]。壯觀鏈霉菌()在棉花根際土壤和根部長期定殖,30 d的定殖密度分別為1.38×105和2.95×103CFU g–1[6]。譙天敏等[7]利用實時熒光定量PCR技術(shù)監(jiān)測鐵核桃()根中絳紅褐鏈霉菌()特異性基因表達量,結(jié)果表明其呈先增大后降低的趨勢,40 d后穩(wěn)定。
在室內(nèi)培養(yǎng)時,不同的鏈霉菌在同種培養(yǎng)基上會有不同的形態(tài)特征,這也是早期鏈霉菌歸類的主要依據(jù)。目前鏈霉菌分類主要依靠表觀分類、數(shù)值分類、化學分類、分子分類與多相分類,從早期人為因素多、試驗結(jié)果重復(fù)性差逐步向著更加客觀與標準的方向發(fā)展。20世紀50~60年代,鏈霉菌分類主要依靠鏈霉菌孢子鏈的形態(tài)、孢子大小、孢子表面特征、氣生菌絲、基內(nèi)菌絲的顏色,是否產(chǎn)生可溶性色素、是否產(chǎn)生黑色素、對不同碳氮源的利用和對抗生素的敏感性等指標[8]。20世紀70年代開始,Lechevalier[9]將細胞壁化學組分分析應(yīng)用于細菌分類,提出將形態(tài)學分類與化學分類相結(jié)合的方法來劃分屬,鏈霉菌屬細胞壁類型為Ⅰ型。20世紀80年代,分子生物學技術(shù)開始應(yīng)用于放線菌的分類,Woese等[10]利用16S rDNA序列相似性,采用DNA-rRNA和DNA-DNA雜交等技術(shù)建立了放線菌的系統(tǒng)進化樹。目前,鏈霉菌分類通常采用多相分類的方法,將表觀分類、化學分類和分子分類綜合起來進行分析。依據(jù)鏈霉菌的生存環(huán)境不同,可以將鏈霉菌初步分為土壤鏈霉菌、海洋鏈霉菌與植物內(nèi)生鏈霉菌。
大部分鏈霉菌對植物具有促進生長、增強營養(yǎng)吸收、提高抵御生物與非生物逆境等有益作用[11–12], 但也有研究表明某些鏈霉菌具有病原菌的特性,如由鏈霉菌引起的馬鈴薯()瘡痂病[13],馬鈴薯品種對于土壤中鏈霉菌的豐度具有顯著影響,感病植株周圍存在大量鏈霉菌,而抗病植株附近鏈霉菌較少存在。鏈霉菌還可以提高其他微生物在植物根部的定殖能力,Nadine等[14]研究表明鏈霉菌AcH 505可以提高擔子菌331在云杉()根部的定殖率,鏈霉菌能誘導(dǎo)擔子菌331體內(nèi)水楊酸類似物的分泌。對鏈霉菌這些正面與負面影響的研究,為后續(xù)病原菌針對性防控奠定了一定的基礎(chǔ)。
研究表明,鏈霉菌主要通過分泌植物生長調(diào)節(jié)劑如IAA、嗜鐵素等發(fā)揮促進植物生長的作用[15]。
利迪鏈霉菌()能促進西紅柿()生長,增加葉片數(shù)目,增強光合作用,西紅柿體內(nèi)脫落酸、茉莉酸與水楊酸等植物生長調(diào)節(jié)劑含量都有增加[16]。鏈霉菌RP1A-12能夠促進花生種子發(fā)芽,提高莖與芽的長度[17]。溫室與大田試驗表明,鏈霉菌C2012與C801可以提高薄荷()地上部分的鮮質(zhì)量與干質(zhì)量[18]。分離自雙孢蘑菇()培養(yǎng)基質(zhì)的鏈霉菌A06, 對雙孢蘑菇產(chǎn)量提升31.5%[19]。
表1 鏈霉菌在植物生長和生物防治中的功能
續(xù)表(Continued)
IAA是一類含有1個不飽和芳香族環(huán)和1個乙酸側(cè)鏈的內(nèi)源生長調(diào)節(jié)劑,對植物生長具有兩重性作用。植物不同部位對其敏感度不同,一般根的敏感性大于芽,芽又大于莖。不同植物對IAA敏感度也不同。植物內(nèi)生菌中產(chǎn)生大量生物活性物質(zhì),其中就包含IAA等吲哚衍生物[20]。最初報道鏈霉菌產(chǎn)生IAA的菌株是灰綠鏈霉菌(),經(jīng)過制作成孢子懸浮液、菌體凍干粉末和上清液粉末制劑,施用后提高了黃瓜產(chǎn)量[21]。近期研究也表明鏈霉菌A1RT能分泌IAA等植物生長調(diào)節(jié)劑,促進了馬鈴薯塊莖質(zhì)量增加和莖部發(fā)育。IAA在鏈霉菌體內(nèi)主要通過吲哚-3-乙酰胺(Trp-IAM-IAA)途徑合成[22]。
土壤中存在氮、磷、鉀等大量元素,同時也存在鈣、鐵、鎂等微量元素。植物從土壤中吸收營養(yǎng)進行生長。固氮作用是指將大氣中的氮轉(zhuǎn)變?yōu)榘睉B(tài)氮或含氮化合物的過程,主要分為生物固氮與非生物固氮。而生物固氮主要通過一些微生物的固氮作用,將氮素提供給植物吸收。鏈霉菌能夠協(xié)助一些微生物進行固氮作用,如鏈霉菌AUR4單獨處理鷹嘴豆(),可以促進生長,提高種子質(zhì)量和數(shù)量的同時也提升豆莢的質(zhì)量與數(shù)量。鏈霉菌AUR4與鏈霉菌ARR2同時接種,對鷹嘴豆促生具有協(xié)同作用。鏈霉菌AUR4與鏈霉菌ARR2分別同固氮菌同時處理鷹嘴豆,提高了鷹嘴豆根部固氮瘤的產(chǎn)生與根內(nèi)固氮酶活性[23]?;尹S鏈霉菌() P4能刺激大豆()根瘤的形成,促進生長。大豆品種‘Yezin-9’與‘Shan Seine’接種灰黃鏈霉菌P4后,根瘤形成分別提升75%與39%[24]。
嗜鐵素是一類微生物產(chǎn)生的水溶性小分子化合物,能夠特異性地結(jié)合鐵離子[25]。按照結(jié)合鐵的官能基團不同,嗜鐵素可以分為4種類型:異羥肟酸型、兒茶酚型、羥基羧酸型和混合型[26]。微生物分泌嗜鐵素,結(jié)合環(huán)境中的鐵離子,一部分供給自身營養(yǎng)生長,一部分作為物質(zhì)交換,傳遞給植物。在滅菌的土壤中,植物生長出現(xiàn)缺綠現(xiàn)象,表明微生物在植物營養(yǎng)吸收中占有重要地位[27]。分離的酸性瘡痂鏈霉菌()可以產(chǎn)生異羥肟酸型嗜鐵素,能夠促進鎳離子脅迫下豇豆()的生長[28]。接種分泌嗜鐵素的鏈霉菌后,水稻種子的發(fā)芽率與生長勢明顯提高[29],橡膠樹()與葡萄()也同樣表現(xiàn)出良好的生長趨勢[30]。鹽屋鏈霉菌()發(fā)酵上清液中富含嗜鐵素,鉻天青(CAS)平板法檢測時,鏈霉菌菌落周圍透明圈直徑達到(11.75±0.76) mm,上清液處理橡膠樹幼苗后,促進生長并提高株高,并對橡膠樹根腐病起到防控的作用[25]。鏈霉菌RP1A- 12分泌嗜鐵素,抑制產(chǎn)生草酸,控制由引起的花生莖腐病的蔓延,促進生長[31]。
鏈霉菌也可以提高植物對磷、鉀等元素的吸收,促進生長。鏈霉菌能夠提高鷹嘴豆植株體內(nèi)生物碳和磷含量[32]。鏈霉菌提高植物體內(nèi)礦質(zhì)營養(yǎng)元素具有選擇性,鏈霉菌可提高大麥體內(nèi)氮、磷、鉀含量,但鈣含量并未見明顯變化。千葉鏈霉菌()能提高蠶豆()體內(nèi)氮、磷、鉀含量,并且促進營養(yǎng)蛋白的積累和提高礦質(zhì)含量,提升產(chǎn)量[33]。
植物在生長過程中,隨著環(huán)境變化,會遭遇各種各樣的逆境, 大體上可以分為生物逆境與非生物逆境。生物逆境主要為病蟲與病害,可以通過外界噴施含有抑制病原菌或病害蟲生長的藥物和提高植物系統(tǒng)抗性來減輕病蟲害。非生物逆境主要為干旱、鹽堿、水漬與重金屬污染等外在條件引起的不適合植物生長的環(huán)境因素,主要的預(yù)防措施是提高植物體內(nèi)脯氨酸、抗氧化酶活性及相關(guān)抗性蛋白基因的表達來抵御(圖1)。
圖1 鏈霉菌與植物的互作(引自Vardharajula等[76], 略加修改)
微生物在與植物互相作用的過程中逐漸形成了互惠互利的關(guān)系。植物供給微生物合適的生長環(huán)境,微生物提供植物必需的礦質(zhì)營養(yǎng)。微生物協(xié)助植物抵抗逆境的方式有直接分泌具有抑菌抗蟲作用的代謝物(化合物、幾丁質(zhì)酶、葡萄糖酶等)抑制病原菌生長,或者間接促進植物生長、提高系統(tǒng)抗性(抗氧化酶系、抗性蛋白)來抵御病原菌的入侵。
鏈霉菌分泌的代謝物包含多種類型的抑菌化合物,鏈霉菌的初期研究主要集中在醫(yī)學抗生素的發(fā)掘上, 近期鏈霉菌分泌的代謝物在農(nóng)業(yè)上也得到了廣泛的應(yīng)用。鏈霉菌代謝物中具有生物活性的物質(zhì)主要分為生物堿類化合物、聚酮類化合物、萜類化合物、多肽類化合物、糖苷類化合物與酮類化合物[77],這些活性物質(zhì)在農(nóng)業(yè)生產(chǎn)與醫(yī)學應(yīng)用中發(fā)揮重要作用。白葉枯病菌造成水稻葉片枯萎,導(dǎo)致重大經(jīng)濟損失,其致病力與生物膜的形成能力有關(guān),抑制白葉枯病菌生物膜的形成,就能夠減輕水稻白葉枯病害的發(fā)生和產(chǎn)量的降低。鏈霉菌菌株0320和4359可以抑制白葉枯病菌生物膜的形成,而不影響白葉枯病菌細胞的生長[78]。進一步研究表明, 是鏈霉菌分泌的化合物鄰氨基苯甲酰氨在起作用, 由于并未影響白葉枯病菌細胞的生長,所以未來出現(xiàn)對該化合物有耐受性的白葉枯病菌的幾率較小[78]。鏈霉菌代謝物不僅自身具有抑菌活性,也可以活化其他無抑菌活性的物質(zhì)。最近的研究表明,鏈霉菌代謝物還能夠合成納米粒子,進而增強代謝物抑制病原菌生長的能力。Vijayabharathi等[79]的研究表明鏈霉菌SAI-25具有合成AgNPs的能力,通過在上清液中加入AgNO3, 可以反應(yīng)生成AgNPs, AgNPs可以有效抑制芽腐病菌()的生長,降低高粱()芽腐病的發(fā)生。
在鏈霉菌與病原真菌的寄生過程中,幾丁質(zhì)酶是一種關(guān)鍵因素。微生物通過分泌幾丁質(zhì)酶降解病原真菌細胞壁,從而進入病原真菌體內(nèi)并獲取營養(yǎng)。這也為植物病害防治提供了有效措施, 鹽屋鏈霉菌能夠分泌幾丁質(zhì)酶抑制病菌生長,降低橡膠樹()白根病的發(fā)病率。Shivalee等[80]通過添加膠體幾丁質(zhì)和優(yōu)化培養(yǎng)條件等措施,使得鏈霉菌KLSL55產(chǎn)生的幾丁質(zhì)酶含量提升14.30倍。Gao等[81]從鏈霉菌ATCC 27414中克隆到一種新的幾丁質(zhì)酶基因,轉(zhuǎn)入大腸桿菌中得到表達,且?guī)锥≠|(zhì)酶活性具有pH與溫度穩(wěn)定性。
鏈霉菌作用于植物根部,可以激活葉片對于病原菌的抵御能力,誘導(dǎo)植物產(chǎn)生系統(tǒng)性抗性。植物系統(tǒng)性抗性主要通過水楊酸等信號途徑進行傳導(dǎo), 誘導(dǎo)抗氧化酶系統(tǒng)、脯氨酸和蛋白酶的改變,增強對病蟲病害的防御,促進植物生長。Sunpapao等[82]的研究表明,鏈霉菌V76-12對米彎孢菌()生長的抑制率達到85.71%,椰子()幼苗經(jīng)鏈霉菌V76-12處理后,病情指數(shù)由75.33%降至21%,提高了幼苗的抗氧化酶系統(tǒng)(PAL、PPO和POD)的活性。Shariffah-Muzaimah等[83]篩選的鏈霉菌AGA347,使椰子幼苗莖腐病病情指數(shù)降低73.1%。鏈霉菌JD211可以誘導(dǎo)水稻的系統(tǒng)抗性,幾丁質(zhì)酶與抗病相關(guān)蛋白1 (PR1)的基因表達量提升, 抗氧化酶(PAL與葡聚糖酶)的活性得到增強, 有效控制水稻稻瘟病的蔓延[84]。SM3通過提升鷹嘴豆的抗氧化酶(POD、CAT和PPO等)活性和酚類物質(zhì)含量,增強抵御葡萄球菌的侵染能力[35]。
鏈霉菌不僅能夠協(xié)助植物抵御病蟲病害的侵染,也能夠幫助植物順利渡過非生物逆境的不利影響,并改善生態(tài)環(huán)境。溫室與大田試驗表明,鏈霉菌C2012和C801可以提高薄荷地上部分鮮質(zhì)量和干質(zhì)量[12],薄荷在水漬逆境中,鮮質(zhì)量和干質(zhì)量都降低,但接種鏈霉菌后有效緩解了水漬逆境帶來的負面影響,有效提高鮮質(zhì)量和干質(zhì)量,提高了薄荷油與揮發(fā)油含量。鏈霉菌MM10也能夠顯著提高小麥對高鹽土壤的耐受力,并且提高產(chǎn)量[52]。二氯喹啉酸是一種廣泛應(yīng)用于水稻等作物中的除草劑,可有效控制雜草生長,由于其較難降解,長期大量使用后,在土壤中殘留過多,對環(huán)境造成不良影響。Lang等[85]報道鏈霉菌AB-H對二氯喹啉酸具有降解作用,實驗室研究表明,其降解率達到97.2%, 應(yīng)用于土壤后, 降解率為87.5%。因此,鏈霉菌AB-H在生態(tài)環(huán)境的優(yōu)化方面具有良好的市場前景。鏈霉菌HBUM174787具有產(chǎn)生生物絮凝劑的能力,絮凝劑具有羥基、羧基、甲氧基與氨基基團,能夠降低63.1%的河流含氧量和46.6%的肉制品加工廢水含氧量, 使其混濁度分別降低84.3%和75.6%,在河流污染治理方面具有廣闊的應(yīng)用前景[86]。龜裂鏈霉菌能夠從水溶液中吸收重金屬(鉛和鎳),為治理重金屬污染的土壤提供思路[87]。
目前,國內(nèi)生物菌肥產(chǎn)業(yè)還處于初步發(fā)展階段,微生物菌肥生產(chǎn)廠家大約在1000家左右,微生物肥料年產(chǎn)量在1.0×108t水平,推廣應(yīng)用面積1.3× 107hm2[88],產(chǎn)品數(shù)量、類型與企業(yè)分布在逐漸走向多元化的過程中。隨著人們對于生態(tài)環(huán)境的關(guān)注,生物菌肥的需求將逐步遞增。
微生物在農(nóng)業(yè)生產(chǎn)上的應(yīng)用形態(tài)主要有粉劑、顆粒劑和水劑。粉劑和顆粒劑便于運輸,水劑的活性更好。具體應(yīng)用何種形態(tài)的微生物制劑,需隨菌種不同選擇更加高效的成品制劑。微生物制劑的主要問題是活性問題,大部分微生物受環(huán)境影響較大,溫度變化會對微生物制劑活性產(chǎn)生較大影響。關(guān)于微生物制劑的保存條件,濕度與溫度都是需要考慮的因素。在應(yīng)用上,主要處理方式有浸種、灌根與噴施葉片,浸種方法省時省力,是目前微生物處理的主要方式;灌根需要微生物菌量大,但效果持久;噴施葉片具有見效快的優(yōu)點。近期有一種含金黃垂直鏈霉菌HN6的可濕性粉劑,是將潤濕劑、分散劑、穩(wěn)定劑、填料投入到氣流粉碎機中粉碎,過325目篩,降溫后,加入金黃垂直鏈霉菌HN6液體發(fā)酵物,繼續(xù)粉碎,使其最終水分含量≤5%,活性孢子數(shù)為(0.1~10)×109g–1,該藥劑屬于微生物活體制劑,對香蕉枯萎病有顯著防治效果,對其它病害也有較好的防治作用,同時對生態(tài)環(huán)境無毒副作用,保障了農(nóng)產(chǎn)品的質(zhì)量與安全[89]。貨架期短是生物菌肥應(yīng)用過程中,需要克服的一個技術(shù)難點, 開發(fā)出高效、貯存期長的生物菌肥是農(nóng)業(yè)生產(chǎn)上所急需的。目前的研究大多數(shù)以實驗室以及溫室等控制條件為主,在這種條件下,鏈霉菌作為生防菌能取得良好的效果。但在大田等復(fù)雜環(huán)境中,鏈霉菌應(yīng)用的成功報道還相對較少,今后需要進一步在大田等復(fù)雜環(huán)境中進行鏈霉菌生物防治的試驗。
[1] Actinomycetes Classification Group of Institute of Microbiology in Chinese Academy of Sciences. Identification Manual for[M]. Beijing: Science Press, 1975: 6–12.中國科學院微生物研究所放線菌分類組. 鏈霉菌鑒定手冊 [M]. 北京: 科學出版社, 1975: 6–12.
[2] BUSH M J, TSCHOWRI N, SCHLIMPERT S, et al. c-di-GMP signalling and the regulation of developmental transitions in streptomycetes [J]. Nat Rev Microbiol, 2015, 13(12): 749–760. doi: 10.1038/nrmicro3546.
[3] KIM Y C, LEVEAU J, McCSPADDEN G B B, et al. The multifactorial basis for plant health promotion by plant-associated bacteria [J]. Appl Environ Microb, 2011, 77(5): 1548–1555. doi: 10.1128/AEM.01867-10.
[4] János B. Bioactive microbial metabolites [J]. J Antibiot, 2005, 58(1): 1–26. doi: 10.1038/ja.2005.1.
[5] LIU X Y, MA Y C. Green fluorescent protein marker of biocontrolSSD49 and its colonization on thesomaclone [J]. Biotechnol Bull, 2016, 32(9): 197–202. doi: 10.13560/ j.cnki.biotech.bull.1985.2016.09.026.劉曉瑜, 馬玉超. 生防鏈霉菌SSD49的綠色熒光蛋白標記及其在毛白楊組培苗中的定殖[J]. 生物技術(shù)通報, 2016, 32(9): 197–202. doi: 10.13560/j.cnki.biotech.bull.1985.2016.09.026.
[6] DAI P B, LAN X J, ZHANG W W, et al. Identification, colonization and disease suppressive effect of strain SC11 against cottonwilt [J]. Acta Phytopath Sin, 2016, 46(2): 273–279. doi: 10.13926/j. cnki.apps.2016.02.016.戴蓬博, 藍星杰, 張偉衛(wèi), 等. 生防菌株SC11的鑒定、定殖及對棉花枯萎病防治效果研究 [J]. 植物病理學報, 2016, 46(2): 273–279. doi: 10.13926/j.cnki.apps.2016.02.016.
[7] QIAO T M, ZHENG L, ZHANG J, et al. Dynamic detection for coloni- zation ofinrhizosphere [J]. J Nanjing For Univ (Nat Sci), 2015, 39(5): 21–26. doi: 10.3969/j.issn. 1000-2006.2015.05.004.譙天敏, 鄭磊, 張靜, 等. 絳紅褐鏈霉菌的根際定殖能力動態(tài)監(jiān)測 [J]. 南京林業(yè)大學學報(自然科學版), 2015, 39(5): 21–26. doi: 10. 3969/j.issn.1000-2006.2015.05.004.
[8] SHIRLING E B, GOTTLIEB D. Methods for characterization ofspecies [J]. Int J Syst Bacteriol, 1966, 16(3): 313–340. doi: 10.1099/00207713-16-3-313.
[9] LECHEVALIER M P, LECHEVALIER H. Chemical composition as a criterion in the classification of aerobic actinomycetes [J]. Int J Syst Bacteriol, 1970, 20(4): 435–443. doi: 10.1099/00207713-20-4-435.
[10] Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms: Proposal for the domains archaea, bacteria, and eucarya [J]. Proc Natl Acad Sci USA, 1990, 87(12): 4576–4579. doi: 10.1073/pnas.87.12.4576.
[11] XIA Q H. Effects of an endophyticsp. on growth and artemisinin biosynthesis ofL. [D]. Suzhou: Soochow University, 2016: 21–26.夏倩華. 內(nèi)生鏈霉菌(sp)對黃花蒿生長和青蒿素合成的影響 [D]. 蘇州: 蘇州大學, 2016: 21–26.
[12] SUN P Y. Study on the isolation, identification and antimicrobial activity ofagainst cucumber fusarium wilt [D]. Harbin: Northeast Agricultural University, 2017: 23–38.孫鵬宇. 黃瓜枯萎病拮抗內(nèi)生放線菌分離、鑒定與抑菌活性研究 [D]. 哈爾濱: 東北農(nóng)業(yè)大學, 2017: 23–38.
[13] NAHAR K, GOYER C, ZEBARTH B J, et al. Pathogenicspp. abundance affected by potato cultivars [J]. Phytopathology, 2018, 108(9): 1046–1055. doi: 10.1094/PHYTO-03-18-0075-R.
[14] KEILHOFER N, NACHTIGALL J, KULIK A, et al.AcH 505 triggers production of a salicylic acid analogue in the fungal pathogenthat enhances infection of Norway spruce seedlings [J]. Anton Leeuw, 2018, 111(5): 691–704. doi: 10. 1007/s10482-018-1017-9.
[15] WANG Z, PAND F, GU C C, et al. Establishment and optimization ofWZS021 transconjugation system [J]. J S Agric, 2017, 48(4): 581–586. doi: 10.3969/j.issn.2095-1191.2017.04.003.王震, 龐妃, 顧彩彩, 等. 固氮鏈霉菌WZS021接合轉(zhuǎn)移系統(tǒng)的建立及優(yōu)化[J]. 南方農(nóng)業(yè)學報, 2017, 48(4): 581– 586. doi: 10.3969/j.issn.2095-1191.2017.04.003.
[16] WU Q, NI M, LIU W C, et al. Omics for understanding the mecha- nisms ofA01 promoting the growth of tomato seedlings [J]. Plant Soil, 2018, 431(1/2): 129–141. doi: 10.1007/s11104- 018-3750-2.
[17] JACOB S, SAJJALAGUDDAM R R, SUDINI H K.sp. RP1A-12 mediated control of peanut stem rot caused by[J]. J Integr Agric, 2018, 17(4): 892–900. doi: 10.1016/S2095- 3119(17)61816-1.
[18] ESMAEIL Z N S, SADEGHI A, MORADI P.strains alleviate water stress and increase peppermint () yield and essential oils [J]. Plant Soil, 2019, 434(1/2): 441–452. doi: 10. 1007/s11104-018-3862-8.
[19] ?ANTRI? L, POTO?NIK I, RADIVOJEVI? L, et al. Impact of a nativefrom mushroom compost on green mold control and yield of[J]. J Environ Sci Heal B, 2018, 53(10): 677–684. doi: 10.1080/03601234.2018.1474559.
[20] LIN L, XU X D. Indole-3-acetic acid production by endophyticsp. En-1 isolated from medicinal plants [J]. Curr Microbiol, 2013, 67(2): 209–217. doi: 10.1007/s00284-013-0348-z.
[21] TUOMI T, LAAKSO S, ROSENQVIST H. Indole-3-acetic acid (IAA) production by a biofungicidestrain [J]. Ann Bot Fenn, 1994, 31(1): 59–63.
[22] MANULIS S, SHAFRIR H, EPSTEIN E, et al. Biosynthesis of indole- 3-acetic acidthe indole-3-acetamide pathway inspp. [J]. Microbiology, 1994, 140(5): 1045–1050. doi: 10.1099/13500872- 140-5-1045.
[23] VIJAYABHARATHI R, GOPALAKRISHNAN S, SATHYA A, et al. Deciphering the tri-dimensional effect of endophyticsp. on chickpea for plant growth promotion, helper effect withand host-plant resistance induction against[J]. Microb Pathog, 2018, 122: 98–107. doi: 10.1016/j.micpath. 2018.06.019.
[24] HTWE A Z, YAMAKAWA T. Low-density co-inoculation withSAY3-7 andP4 promotes plant growth and nitrogen fixation in soybean cultivars [J]. Amer J Plant Sci, 2016, 7(12): 1652–1661. doi: 10.4236/ajps.2016.712156.
[25] GUERINOT M L. Microbial iron transport [J]. Annu Rev Microbiol, 1994, 48(1): 743–772. doi: 10.1146/annurev.mi.48.100194.003523.
[26] BOUKHALFA H, CRUMBLISS A L. Chemical aspects of siderophore mediated iron transport [J]. Biometals, 2002, 15(4): 325–339. doi: 10. 1023/a:1020218608266.
[27] MASALHA J, KOSEGARTEN H, ELMACI ?, et al. The central role of microbial activity for iron acquisition in maize and sunflower [J]. Biol Fert Soils, 2000, 30(5/6): 433–439. doi: 10.1007/s003740050021.
[28] DIMKPA C, SVATO? A, MERTEN D, et al. Hydroxamate sidero- phores produced byE13 bind nickel and promote growth in cowpea (L.) under nickel stress [J]. Can J Microbiol, 2008, 54(3): 163–172. doi: 10.1139/w07-130.
[29] TAMREIHAO K, NIMAICHAND S, CHANU S B, et al. Acidotolerantsp. MBRL 10 from limestone quarry site showing anta- gonism against fungal pathogens and growth promotion in rice plants [J]. J King Saud Univ Sci, 2018, 30(2): 143–152. doi: 10.1016/j.jksus. 2016.10.003.
[30] NAKAEW N, RANGJAROEN C, SUNGTHONG R. Utilization of rhizosphericfor biological control ofsp. causing white root disease in rubber tree [J]. Eur J Plant Pathol, 2015, 142(1): 93–105. doi: 10.1007/s10658-015-0592-0.
[31] JACOB S, SAJJALAGUDDAM R R, KUMAR K V K, et al. Assessing the prospects ofsp. RP1A-12 in managing groundnut stem rot disease caused bySacc [J]. J Gen Plant Pathol, 2016, 82(2): 96–104. doi: 10.1007/s10327-016-0644-0.
[32] GOPALAKRISHNAN S, SRINIVAS V, ALEKHYA G, et al. Evaluation of broad-spectrumsp. for plant growth promotion traits in chickpea (L.) [J]. Phil Agric Sci, 2015, 98(3): 270–278.
[33] HEWEDY M A. Associative effect of the rhizobacteriaand commercial biofertilizers on the growth, yield and nutritional value of[J]. Egypt J Biol Pest Co, 2011, 21(2): 219–225.
[34] de KLERK A, MCLEOD A, FAURIE R, et al. Net blotch and necrotic warts caused byon pods of peanut () [J]. Plant Dis, 2007, 81(8): 958. doi: 10.1094/PDIS.1997. 81.8.958B.
[35] SRIVASTAVA S, PATEL J S, SINGH H B, et al.SM3 induces stress tolerance in chickpea againstand NaCl [J]. J Phytopathol, 2015, 163(7/8): 583–592. doi: 10. 1111/jph.12358.
[36] ZHOU D B, JING T, QI D F, et al. Isolation and identification ofand its control effect on the banana fusarium wilt disease [J]. Acta Hort Sin, 2017, 44(4): 664–674. doi: 10.16420/j. issn.0513-353x.2016-0598.周登博, 井濤, 起登鳳, 等. 抗香蕉枯萎病菌的盧娜林瑞鏈霉菌的分離及防效鑒定 [J]. 園藝學報, 2017, 44(4): 664–674. doi: 10.16420/ j.issn.0513-353x.2016-0598.
[37] MA J N, LIU Y T, LI Y L, et al. Effects and mechanism of twostrains on promoting plant growth and increasing grain yield of maize [J]. Chin J Appl Ecol, 2017, 28(1): 315–326. doi: 10.13287/j. 1001-9332.201701.038.馬軍妮, 劉玉濤, 李玉龍, 等. 兩株鏈霉菌對玉米的促生增產(chǎn)作用及機理 [J]. 應(yīng)用生態(tài)學報, 2017, 28(1): 315–326. doi: 10.13287/j. 1001-9332.201701.038.
[38] POSTOLAKY O, BALTSAT K, BURTSEVA S, et al. Effect ofmetabolites on some physiological parameters of maize seeds [J]. Bull Univ Agric Sci Vet, 2012, 69(1): 23–29.
[39] BRESSAN W, FIGUEIREDO J E F. Biological control ofin maize seed with antagonisticsp. isolates [J]. J Phytopathol, 2005, 153(10): 623–626. doi: 10.1111/j.1439-0434. 2005.01014.x.
[40] BRESSAN W, FIGUEIREDO J E F. Efficacy and dose-response relationship in biocontrol ofdisease in maize byspp. [J]. Eur J Plant Pathol, 2008, 120(3): 311–316. doi: 10. 1007/s10658-007-9220-y.
[41] QI B S, YANG W X, LIU D Q. A preliminary study on antagonism ofspp. againstleaf spot of maize [J]. J Agric Univ Hebei, 2000, 23(3): 76–79. 祁碧菽, 楊文香, 劉大群. 鏈霉菌對玉米彎孢霉菌抑制作用的初步研究 [J]. 河北農(nóng)業(yè)大學學報, 2000, 23(3): 76–79.
[42] NA J, HUI X, LI W J, et al. Field evaluation ofHDZ-9-47 for biocontrol ofon tomato [J]. J Integr Agric, 2017, 16(6): 1347–1357. doi: 10.1016/S2095-3119 (16)61553-8.
[43] SABARATNAM S, TRAQUAIR J A. Mechanism of antagonism by(strain Di944) against fungal pathogens of greenhouse-grown tomato transplants [J]. Can J Plant Pathol, 2015, 37 (2): 197–211. doi: 10.1080/07060661.2015.1039062.
[44] LI Q L, NING P, ZHENG L, et al. Effects of volatile substances ofJK-1 on control ofon tomato fruit [J]. Biol Control, 2012, 61(2): 113–120. doi: 10.1016/j.iocontrol. 2011.10.014.
[45] JAYAKUMAR J.as a biopesticide for the management of root knot nematodein tomato [J]. Karnataka J Agric Sci, 2009, 22(3): 564–566.
[46] SABARATNAM S, TRAQUAIR J A. Formulation of abiocontrol agent for the suppression ofdamping-off in tomato transplants [J]. Biol Control, 2002, 23(3): 245–253. doi: 10. 1006/bcon.2001.1014.
[47] LIU P P. The ultraviolet mutagenesis of antagonisticsp. CC5 and biocontrol potential against potato scab [D]. Nanjing: Nanjing Agricultural University, 2016: 40–42.劉萍萍. 生防鏈霉菌sp. CC5的紫外誘變育種及其在馬鈴薯瘡痂病防控中的應(yīng)用 [D]. 南京: 南京農(nóng)業(yè)大學, 2016: 40–42.
[48] ZHANG J, WANG L M, LI Y H, et al. Biocontrol of cereal cyst nematode byisolate S07[J]. Australas Plant Pathol, 2016, 45(1): 57–64. doi: 10.1007/s13313-015-0385-0.
[49] TOUMATIA O, COMPANT S, YEKKOUR A, et al. Biocontrol and plant growth promoting properties ofstrain IA1 isolated from a Saharan soil on wheat seedlings and visualization of its niches of colonization [J]. S Afr J Bot, 2016, 105: 234–239. doi: 10. 1016/j.sajb.2016.03.020.
[50] EL-SHANSHOURY A R. Growth promotion of wheat seedlings by[J]. J Agron Crop Sci, 1989, 163(2): 109– 114. doi: 10.1111/j.1439-037X.1989.tb00743.x.
[51] TAHVONEN R, HANNUKKALA A, AVIKAINEN H. Effect of seed dressing treatment ofon barley and spring wheat in field experiments [J]. Agric Food Sci, 1995, 4(4): 419–427. doi: 10.23986/afsci.72619.
[52] ALY M M, EL SAYED H E S A, JASTANIAH S D. Synergistic effect betweenandsp. isolated from saline soil on seed germination and growth of wheat plant [J]. J Amer Sci, 2012, 8(5): 667–676.
[53] MANHAS R K, KAUR T. Biocontrol potential ofstrain DH16 towardto control damping off and black leaf spot of[J]. Front Plant Sci, 2016, 7: 1869. doi: 10.3389/fpls.2016.01869.
[54] GAO X N, HE Q R, JIANG Y, et al. Optimization of nutrient and fermentation parameters for antifungal activity byXjy and its biocontrol efficacies againstand[J]. J Phytopathol, 2016, 164(3): 155–165. doi: 10.1111/jph.12440.
[55] PENG J, WU X P, ZHANG K S, et al. Separation of active compounds againstfrom sponge-associated actinobacteriasp. A01059 [J]. Chin Agric Sci Bull, 2009, 25(9): 51–54.彭杰, 吳曉鵬, 張開山, 等. 海綿共附生放線菌sp. A01059抗稻瘟病活性物質(zhì)的分離研究 [J]. 中國農(nóng)學通報, 2009, 25 (9): 51–54.
[56] ZARANDI M E, BONJAR G H S, DEHKAEI F P, et al. Biological control of rice blast () by use ofisolate 263 in greenhouse [J]. Amer J Appl Sci, 2009, 6(1): 194–199. doi: 10.3844/ajassp.2009.194.199.
[57] HUANG S W, YU L Q, WASTON A K. Inhibiting efficacy of metabolites ofand its ultraviolet induced strain on two rice diseases [J]. Chin Rice Res Newslett, 2000, 8(2): 5–6.
[58] XUE L, GU M Y, XU W L, et al. Antagonisticenhances defense-related responses in cotton for biocontrol of wilt caused by phytotoxin of[J]. Phytoparasitica, 2016, 44(2): 225–237. doi: 10.1007/s12600-016-0517-2.
[59] XIAO K, KINKEL L L, SAMAC D A. Biological control ofroot rots on alfalfa and soybean with[J]. Biol Control, 2002, 23(3): 285–295. doi: 10.1006/bcon.2001.1015.
[60] SHEN T, ZHANG Y Y, WANG C, et al. Study on solid fermentation ofCT205 and biocontrol effect against straw- berry root rot [J]. J Nanjing Agric Univ, 2015, 38(4): 596–601. doi: 10. 7685/j.issn.1000-2030.2015.04.011.沈婷, 張園園, 王辰, 等. 白刺鏈霉菌() CT205菌株固體發(fā)酵及防控草莓根腐病的研究 [J]. 南京農(nóng)業(yè)大學學報, 2015, 38(4): 596–601. doi: 10.7685/j.issn.1000-2030.2015. 04.011.
[61] CHENG G L. Study on mutation breeding ofand the biocontrol ofby mutant strains [D]. Chengdu: Sichuan Agricultural University, 2014: 47–55.程光龍. 苦膽鏈霉菌的誘變選育及其對油菜菌核病的生物防治 [D]. 成都: 四川農(nóng)業(yè)大學, 2014: 47–55.
[62] HAN X Y, ZHANG C S, CHEN X, et al. Screening, identification and biocontrol effect of antagonisticstrain Tra69 against tobacco bacterial wilt [J]. Plant Dis Pest, 2012, 3(1): 10–13,32.
[63] BOUKAEW S, CHUENCHIT S, PETCHARAT V. Evaluation ofspp. for biological control ofroot and stem rot andwilt of chili pepper [J]. Biocontrol, 2011, 56(3): 365–374. doi: 10.1007/s10526-010-9336-4.
[64] EZZIYYANI M, REQUENA M E, EGEA-GILABERT C, et al. Biolo- gical control of Phytophthora root rot of pepper usingandin combination [J]. J Phytopathol, 2007, 155(6): 342–349. doi: 10.1111/j.1439-0434.2007.01237.x.
[65] SINGH A K, CHHATPAR H S. Combined use ofsp. A6 and chemical fungicides against fusarium wilt ofmay reduce the dosage of fungicides required in the field [J]. Crop Prot, 2011, 30(7): 770–775. doi: 10.1016/j.cropro.2011.03.015.
[66] MOHAMED B, BENALI S. The talc formulation ofantagonist againstfoot rot in pea (L.) seedlings [J]. Arch Phytopathol Plant Prot, 2010, 43(5): 438–445. doi: 10.1080/03235400701851027.
[67] MANSOUR M T M, MOHAMED S H, ZAYED S M E, et al. Field evaluation of someisolates to suppress powdery mildew of flax () [J]. Pak J Biotechnol, 2010, 7(1/2): 101–107.
[68] YOUSSEF Y A, EL-TARABILY K A, HUSSEIN A M.root rot disease of white lupine (Forsk.) and its biological control byspecies [J]. J Phytopathol, 2001, 149(1): 29–33. doi: 10.1046/j.1439-0434.2001.00565.x.
[69] SAMAC D A, KINKEL L L. Suppression of the root-lesion nematode () in alfalfa () byspp.[J]. Plant Soil, 2001, 235(1): 35–44. doi: 10.1023/a:1011820002779.
[70] CHEAH L H, KENT G, GOWERS S. Brassica crops and asp. as potential biocontrol for clubroot of brassicas [C]// ZYDENBOS S M. New Zealand Plant Protection. New Zealand: New Zealand Plant Protection Society, 2001: 80–83.
[71] CHEAH L H, VEERAKONE S, KENT G. Biological control of club- root on cauliflower withandspp. [C]// ZYDENBOS S M. New Zealand Plant Protection. New Zealand: New Zealand Plant Protection Society, 2000: 18–21.
[72] HILTUNEN L H, LINFIELD C A, WHITE J G. The potential for the biological control of basal rot ofbysp. [J]. Crop Prot, 1995, 14(7): 539–542. doi: 10.1016/0261-2194(95)00068-2.
[73] DIXIT R B, GUPTA J S. Studies on the biological control of leaf blotch disease of barley by[J]. Acta Bot Ind, 1980, 8(2): 190–192.
[74] KUSAKARI S, OKADA K, KAWARATANI M, et al. Suppression ofwilt of egg plants bysp(C-26in infested soil [J]. P Kan Plant Prot Soc, 1990, 32(1): 17–20. doi: 10.4165/kapps 1958.32.0_17.
[75] O’BRIEN J G, BLANCHETTE R A, SUTHERLAND J B. Assessment ofspp. from elms for biological control ofdisease [J]. Plant Dis, 1984, 68(2): 104–106. doi: 10.1094/PD-69-104.
[76] VARDHARAJULA S, SKZ A, VURUKONDA S S K P, et al. Plant growth promoting endophytes and their interaction with plants to alle- viate abiotic stress [J]. Curr Biotechnol, 2017, 6(3): 252–263. doi: 10. 2174/2211550106666161226154619.
[77] CHENG J, ZHANG X L, ZHAO J Y, et al. The recent progress of study on secondary metabolites of[J]. Chin J Antibiot, 2015, 40(10): 791–800. doi: 10.3969/j.issn.1001-8689.2015.10.015.程舉, 張孝龍, 趙江源, 等. 近年鏈霉菌次生代謝產(chǎn)物研究進展 [J]. 中國抗生素雜志, 2015, 40(10): 791–800. doi: 10.3969/j.issn.1001- 8689.2015.10.015.
[78] HAM Y, KIM T J. Anthranilamide fromspp. inhibitedbiofilm formation without affecting cell growth [J]. Appl Biol Chem, 2018, 61(6): 673–680. doi: 10.1007/s13765-018- 0405-1.
[79] VIJAYABHARATHI R, SATHYA A, GOPALAKRISHNAN S. Extra- cellular biosynthesis of silver nanoparticles usingSAI-25 and its antifungal activity against, the charcoal rot pathogen of sorghum [J]. Biocatal Agric Biotechnol, 2018, 14: 166–171. doi: 10.1016/j.bcab.2018.03.006.
[80] SHIVALEE A, LINGAPPA K, MAHESH D. Influence of bioprocess variables on the production of extracellular chitinase under submerged fermentation bystrain KLSL55[J]. J Genet Eng Biotechnol, 2018, 16(2): 421–426. doi: 10.1016/j.jgeb.2017.12.006.
[81] GAO L, SUN J N, SECUNDO F, et al. Cloning, characterization and substrate degradation mode of a novel chitinase fromATCC 27414 [J]. Food Chem, 2018, 261: 329–336. doi: 10. 1016/j.foodchem.2018.04.068.
[82] SUNPAPAO A, CHAIRIN T, ITO S I. The biocontrol byandof leaf spot disease caused byin oil palm seedlings [J]. Biol Control, 2018, 123: 36–42. doi: 10.1016/j. biocontrol.2018.04.017.
[83] SHARIFFAH-MUZAIMAH S A, IDRIS A S, MADIHAH A Z, et al. Characterization ofspp. isolated from the rhizosphere of oil palm and evaluation of their ability to suppress basal stem rot disease in oil palm seedlings when applied as powder formulations in a glass- house trial [J]. World J Microb Biot, 2018, 34(1): 15. doi: 10.1007/ s11274-017-2396-1.
[84] SHAO Z Y, LI Z, FU Y H, et al. Induction of defense responses againstin rice seedling by a new potential biocontrol agentJD211 [J]. J Bas Microb, 2018, 58(8): 686–697. doi: 10.1002/jobm.201800100.
[85] LANG Z, QI D, DONG J J, et al. Isolation and characterization of a quinclorac-degrading Actinobacteriasp. strain AH-B and its implication on microecology in contaminated soil [J]. Chemosphere, 2018, 199: 210–217. doi: 10.1016/j.chemosphere.2018.01.133.
[86] AGUNBIADE M, POHL C, ASHAFA O. Bioflocculant production fromand its potential for river and waste water treatment [J]. Braz J Microbiol, 2018, 49(4): 731–741. doi: 10.1016/j. bjm.2017.02.013.
[87] YOUS R, MOHELLEBI F, CHERIFI H, et al. Competitive biosorption of heavy metals from aqueous solutions onto[J]. Korean J Chem Eng, 2018, 35(4): 890–899. doi: 10.1007/s11814-018- 0004-1.
[88] MA C B, SHI M Y. Development of microbial fertilizer industry in China [J]. China Agric Technol Ext, 2016, 32(2): 13–18. doi: 10.3969/ j.issn.1002-381X.2016.02.004.馬常寶, 史夢雅. 我國微生物肥料產(chǎn)業(yè)發(fā)展狀況 [J]. 中國農(nóng)技推廣, 2016, 32(2): 13–18. doi: 10.3969/j.issn.1002-381X.2016.02.004.
[89] WANG L Y, WANG Q, LUO Y P. Disease preventing and growth promoting effects ofstrain HN6 on banana [J]. J NW Agric For Univ (Nat Sci), 2015, 43(5): 163–167. doi: 10.13207/j.cnki.jnwafu.2015.05.008.王蘭英, 王琴, 駱焱平. 金黃垂直鏈霉菌HN6對香蕉的防病促生作用 [J]. 西北農(nóng)林科技大學學報(自然科學版), 2015, 43(5): 163–167. doi: 10.13207/j.cnki.jnwafu.2015.05.008.
Function ofand Their Application in Agriculture
ZHU Zhi-yan1,2, TIAN Zhi-hong1,2*, LI Jian-xiong1,2*
(1. College of Life Sciences, Yangtze University,Jingzhou 434025, Hubei, China; 2. Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences,Guangzhou 510650, China)
widely exist in nature with various functions. Their basal hyphae are multi-nucleated with septa, and spore chains are attached to aerial hyphae. The life cycle is completed from spore germination to spore release.are able to colonize the roots, stems, leaves and other parts of plants. They secrete various metabolites which play important roles in plant growth promotion and biological control. The functions ofmainly focused on the enhancement of plant nutrient uptake, promotion of plant growth, and increase of the ability of plants coping with biotic and abiotic stresses were reviewed. The future research directions and application were also prospected.
; Growth; Biological control; Bacterial fertilizer
10.11926/jtsb.4095
2019–05–22
2019–07–12
中國科學院STS區(qū)域重點項目(KFJ-STS-QYZX-044);廣東省農(nóng)業(yè)廳委托研究項目;廣東省應(yīng)用植物學重點實驗室開放課題(AB2018008)資助
This work was supported by the Regional Key Project of Science and Technology Service Network Initiative from Chinese Academy of Sciences (Grant No. KFJ-STS-QYZX-044), and the Project from Department of Agriculture of Guangdong Province, and the Open Project from Guangdong Provincial Key Laboratory of Applied Botany.
朱志炎(1989~ ),男,博士研究生,主要從事作物遺傳育種與生物防治研究。E-mail: 201673036@yangtzeu.edu.cn.
E-mail: zhtian@yangtzeu.edu.cn; jxli@scbg.ac.cn