凡紹桂 段建東 孫力
Abstract:To solve the problem of synchronous generator uncontrollable voltage caused by the broken of voltage sampling PT, the high dynamic quality voltage measurement and excitation control technology was proposed. When the PT broken fault occurs, the measurement system will automatic switch from threephase measurement mode to singlephase measurement mode. To adapt to frequency fluctuation and voltage distortion, the RMS value of phase voltage was obtained by using the voltage square singlephase detection technique. However, the sampling delay caused by singlephase measurement will result in poor dynamic performance when the excitation controller has fixed PID parameters. To solve this problem, a sliding mode controller with the estimation of steady state voltage drop of generator winding was proposed. With the proposed control method, the system has high steadystate accuracy and fast dynamic performance and strong robustness to generator system model. The effectiveness of the proposed redundancy voltage sampling technique and the excitation control technique is proved by a 10 kW synchronous generator system.
Keywords:excitation controller; PT breaking fault; singlephase voltage measurement; sliding mode controller
0 引 言
中、小容量?jī)?nèi)燃發(fā)電機(jī)組如柴油發(fā)電機(jī)組,燃?xì)廨啓C(jī)發(fā)電機(jī)組等被廣泛用在石油鉆井平臺(tái)、船舶供電,海島供電等遠(yuǎn)離市電供電場(chǎng)合。孤島運(yùn)行的發(fā)電機(jī)組,要求其發(fā)電機(jī)勵(lì)磁控制器具有高可靠性,高穩(wěn)態(tài)精度,以及較快的動(dòng)態(tài)性能[1-2]。
勵(lì)磁控制器的電壓傳感器(potential transformer,PT)斷線故障會(huì)導(dǎo)致發(fā)電機(jī)無(wú)法正常工作,嚴(yán)重影響孤島發(fā)電機(jī)組可靠性。本文提出發(fā)電機(jī)電壓容錯(cuò)測(cè)量技術(shù),正常情況下采用三相四線制測(cè)量模式,當(dāng)發(fā)生PT斷線故障時(shí)自動(dòng)切換至單相容錯(cuò)測(cè)量模式。許多學(xué)者通過(guò)構(gòu)造直角坐標(biāo)系來(lái)實(shí)現(xiàn)單相電壓測(cè)量,如積分延時(shí)T/4構(gòu)造直角坐標(biāo)系[3]、基于反Park構(gòu)造直角坐標(biāo)系[4]、采用微分構(gòu)造直角坐標(biāo)系[5]以及采用廣義二階積分器(secondorder generalized integrator,SOGI)構(gòu)造直角坐標(biāo)系[6-7]等,以上構(gòu)造直角坐標(biāo)系的方法需要穩(wěn)定的頻率信號(hào),對(duì)于并網(wǎng)發(fā)電系統(tǒng),電網(wǎng)頻率基本恒定,可以采用以上方法[8-9]。而對(duì)于孤島發(fā)電系統(tǒng),發(fā)電機(jī)頻率波動(dòng)較大,電壓畸變嚴(yán)重,不易采用以上單相電壓測(cè)量方法。本文采用電壓自平方單相檢測(cè)方法,該方法對(duì)頻率波動(dòng)及電壓畸變有較大適應(yīng)性。由三相測(cè)量切換至單相測(cè)量后,單相測(cè)量帶來(lái)的采樣延時(shí)使經(jīng)典PID調(diào)節(jié)器在不改變PID參數(shù)情況下,很難達(dá)到三相測(cè)量時(shí)的控制效果,使發(fā)電機(jī)動(dòng)態(tài)性能受到較大影響。為提高勵(lì)磁控制器性能,很多學(xué)者對(duì)勵(lì)磁控制器進(jìn)行了改進(jìn),如文獻(xiàn)[10]設(shè)計(jì)了一種同時(shí)以機(jī)端電壓、有功功率、無(wú)功功率、角速度、功率角作為反饋量的線性最優(yōu)勵(lì)磁控制器,將發(fā)電機(jī)功角、無(wú)功功率這兩個(gè)與穩(wěn)定性和品質(zhì)密切相關(guān)的重要參量引入控制規(guī)律,提高了并網(wǎng)發(fā)電機(jī)穩(wěn)態(tài)性能;文獻(xiàn)[11]將預(yù)測(cè)函數(shù)與線性多變量反饋結(jié)合組成一種復(fù)合勵(lì)磁控制器,可在提高電力系統(tǒng)穩(wěn)定性的前提下解決發(fā)電機(jī)端電壓穩(wěn)定問(wèn)題。文獻(xiàn)[12]提出在最優(yōu)控制下,采用變?cè)鲆婵刂撇呗?,以保證系統(tǒng)小擾動(dòng)穩(wěn)定性。文獻(xiàn)[13] 將預(yù)測(cè)控制與模型降階技術(shù)相結(jié)合,以解決最優(yōu)勵(lì)磁控制和傳統(tǒng)比例積分微分勵(lì)磁控制無(wú)法考慮系統(tǒng)復(fù)雜狀態(tài)和控制輸入約束的問(wèn)題。
以上控制策略以并網(wǎng)發(fā)電機(jī)為研究對(duì)象,沒(méi)有考慮孤島發(fā)電系統(tǒng)運(yùn)行時(shí)負(fù)載擾動(dòng)問(wèn)題。滑??刂破骶哂休^強(qiáng)的魯棒性,被廣泛應(yīng)用于電動(dòng)機(jī)轉(zhuǎn)速控制[14]。文獻(xiàn)[15]將滑??刂破鲬?yīng)用在勵(lì)磁系統(tǒng),提出了一種非奇異終端滑??刂频恼{(diào)壓控制策略,使發(fā)電機(jī)系統(tǒng)具有良好的穩(wěn)態(tài)性能與優(yōu)越的動(dòng)態(tài)性能,不過(guò)該方法需要發(fā)電機(jī)參數(shù)較多,為工程應(yīng)用帶來(lái)一定的困難。本文提出一種不需要發(fā)電機(jī)精確模型的滑??刂破鳎摽刂破鲗?duì)發(fā)電機(jī)繞組穩(wěn)態(tài)壓降進(jìn)行估計(jì),簡(jiǎn)化了負(fù)載壓降模型,提高了負(fù)載條件下發(fā)電機(jī)穩(wěn)態(tài)性能,將負(fù)載擾動(dòng)以及三相測(cè)量切換至單相測(cè)量帶來(lái)的采樣延時(shí)歸為擾動(dòng)項(xiàng),提高了勵(lì)磁控制器動(dòng)態(tài)性能與對(duì)發(fā)電機(jī)參數(shù)的魯棒性能。
1 容錯(cuò)測(cè)量邏輯及單相測(cè)量方法
勵(lì)磁控制器正常電壓測(cè)量模式采用三相四線制,其測(cè)量電路如圖1所示。uAO,uBO,uCO為發(fā)電機(jī)相電壓,uN為中性線。R1,R2為采樣分壓電阻,uaO,ubO,ucO為進(jìn)入控制器模擬數(shù)字轉(zhuǎn)換器的采樣電壓。下面分析采樣電路在不同PT斷線情況下的采樣值。
表1中k=R2/(R1+R2),由表1可以看出,無(wú)論是否有中性線,當(dāng)出現(xiàn)單相斷線故障時(shí),另外兩相均有值,不易區(qū)分出現(xiàn)了哪種故障。通過(guò)觀察可以發(fā)現(xiàn),把剩余兩相相減可以得到相應(yīng)的線電壓,以A相斷線為例,有中性線時(shí),B相采樣與C相采樣電壓相減得ubc=k(uBO-uCO)=kuBC;無(wú)中性線時(shí),B相采樣與C相采樣電壓相減得ubc=0.5kuBC-(-0.5kuBC)=kuBC,所以當(dāng)出現(xiàn)單相斷線故障時(shí),可以測(cè)得發(fā)電機(jī)另外兩相線電壓,單相斷線情況下電壓測(cè)量為單相線電壓,定義該方式為測(cè)量方式一。有中性線時(shí)出現(xiàn)兩相斷線故障時(shí),可以測(cè)得另外一相相電壓,定義單相相電壓測(cè)量為測(cè)量方式二。測(cè)量方式一與測(cè)量方式二均采用單相測(cè)量技術(shù),只是轉(zhuǎn)換為發(fā)電機(jī)相電壓有效值時(shí)所乘系數(shù)不同。
當(dāng)出現(xiàn)PT斷線時(shí),斷線相相電壓測(cè)量值為0,這一現(xiàn)象可區(qū)別于短路故障,因?yàn)槎搪饭收舷孪嚯妷簳?huì)降低但不會(huì)為0。如果PT斷線相,參與了相應(yīng)的電壓有效值計(jì)算,則該計(jì)算值會(huì)變小,根據(jù)這一性質(zhì)設(shè)計(jì)容錯(cuò)測(cè)量切換邏輯,如圖2所示。
5 結(jié) 論
本文提出在發(fā)電機(jī)勵(lì)磁控制器出現(xiàn)PT斷線故障時(shí),由三相測(cè)量自動(dòng)切換到單相測(cè)量,實(shí)現(xiàn)容錯(cuò)測(cè)量。采用電壓自平方單相檢測(cè)測(cè)量方案可以在頻率變化以及電壓畸變情況下實(shí)現(xiàn)單相電壓測(cè)量。單相測(cè)量中的低通濾波器帶來(lái)采樣延時(shí),由三相測(cè)量切換至單相測(cè)量后,若不改變PID參數(shù),則發(fā)電機(jī)動(dòng)態(tài)性能會(huì)變差。本文提出采用具有發(fā)電機(jī)定子穩(wěn)態(tài)壓降估計(jì)的滑??刂破?,提出的滑??刂破鲗?duì)系統(tǒng)模型參數(shù)具有較強(qiáng)魯棒性,可以消除因單相采樣延時(shí)帶來(lái)動(dòng)態(tài)性能變差的問(wèn)題。文中所提容錯(cuò)測(cè)量方法及控制器,在10 kW發(fā)電機(jī)系統(tǒng)中得到驗(yàn)證,實(shí)驗(yàn)證明冗余測(cè)量方法在測(cè)量方式切換過(guò)程中發(fā)電機(jī)端電壓無(wú)擾動(dòng)。采用提出的滑??刂破鞯膭?lì)磁控制器可以使系統(tǒng)在切換前后動(dòng)態(tài)性能不變。所提容錯(cuò)測(cè)量方法及勵(lì)磁控制器具有較強(qiáng)的工程實(shí)用意義。
參 考 文 獻(xiàn):
[1] 尚敬,年曉紅,劉可安,等. 負(fù)載轉(zhuǎn)矩前饋的電勵(lì)磁同步電機(jī)定子磁鏈定向矢量控制[J].電機(jī)與控制學(xué)報(bào),2015,19(11):25.
SHANG Jing, NIAN Xiaohong, LIU Kean, et al. Stator flux oriented vector control of excited synchronous motor based on load torque observer feedforward control [J]. Electric Machines and Control,2015,19(11):25.
[2] 楊新法,蘇劍,呂志鵬,等. 微電網(wǎng)技術(shù)綜述[J].中國(guó)電機(jī)工程學(xué)報(bào),2014,34(1):57.
YANG Xinfa,SU Jian,L Zhipeng,et al. Overview on microgrid technology [J]. Proceedings of the CSEE,2014,34(1):57.
[3] 武琳,楊林,姜遠(yuǎn),等. 一種改進(jìn)的單相整流器控制策略研究[J]. 電機(jī)與控制學(xué)報(bào),2017,21(11):97.
WU Lin, YANG Lin, JIANG Yuan, et al. Improved control strategy of single phase rectifier[J]. Electric Machines and Control,2017,21(11):97.
[4] SAEED Golestan, MOHAMMAD Monfared. Dynamics assessment of advanced singlephase PLL structures[J]. IEEE Transactions on Industrial Electronics,2013,60(6):2167.
[5] GUAN Qingxin, ZHANG Yu, KANG Yong, et al. Singlephase phaselocked loop based on derivative elements[J]. IEEE Transactions on Power Electronics,2017,32(6):4411.
[6] XIAO Furong, DONG Lei, LI Li, et al. A frequencyfixed SOGI based PLL for singlephase gridconnected converters[J]. IEEE Transactions on Power Electronics,2017,32(3):1713.
[7] CHEN Ke, AI Wu, CHEN Bing, et al. A simulation study on tracking and restructuring AC signals based on enhanced SOGIPLL[C]//2016 IEEE Power and Energy Conference at Illinois, February, 2016, Urbana, IL, USA. 2016:1-5.
[8] SAEED Golestan, MOHAMMAD Monfared, FRANCISCO D. Freijedo, et al. Design and tuning of a modified powerbased PLL for singlephase gridconnected power conditioning systems[J]. IEEE Transactions on Power Electronics, 2012,27(8):3639.
[9] CHEN Xin, ZHANG Yang, WANG Shanshan, et al. Impedancephased dynamic control method for gridconnected inverters in a weak grid[J]. IEEE Transactions on Power Electronics, 2016,32(1):274.
[10] 羅建,任成君,馮樹(shù)輝, 等. 基于線性最優(yōu)控制和積分控制的勵(lì)磁控制器設(shè)計(jì)[J].電力系統(tǒng)保護(hù)與控制,2013,41(11):134.
LUO Jian, REN Chengjun, FENG Shuhui, et al. Design of excitation controller based on linear optimal control and integral control[J]. Power System Protection and Control, 2013,41(11):134.
[11] 肖健梅,張科,王錫淮. 基于預(yù)測(cè)函數(shù)與線性多變量反饋控制的同步發(fā)電機(jī)勵(lì)磁控制[J]. 電力自動(dòng)化設(shè)備,2015,35(7):153.
XIAO Jianmei, ZHANG Ke, WANG Xihuai. Excitation control based on predictive function control and linear multivariable feedback control for synchronous generator[J]. Power System Protection and Control, 2015,35(7):153.
[12] 李江,李國(guó)慶,鄒維,等. 固定增益與變?cè)鲆孀顑?yōu)勵(lì)磁控制策略的小擾動(dòng)穩(wěn)定域研究[J]. 電力自動(dòng)化設(shè)備,2014,34(2):97.
LI Jiang, LI Guoqing, ZOU Wei, et al. Small signal stability region of power system with fixed or variable gain optimal excitation control[J]. Power System Protection and Control, 2014,34(2):97.
[13] 趙洪山,蘭曉明,周雪青. 基于平衡降階模型的多機(jī)系統(tǒng)非線性勵(lì)磁預(yù)測(cè)控制[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2013,33(22):61.
ZHAO Hongshan, LAN Xiaoming, ZHOU Xueqing. Nonlinear excitation prediction control of multimachine power systems based on balanced reduced model[J]. Proceedings of the CSEE,2013,33(22):61.
[14] 高慶忠,關(guān)煥新,于子淞,等. 自適應(yīng)補(bǔ)償器永磁同步電機(jī)積分型連續(xù)滑??刂芠J]. 電機(jī)與控制學(xué)報(bào),2017,21(2):103.
GAO Qingzhong, GUAN Huanxin, WANG Zisong, et al. Integral continuous sliding mode control strategy with adaptive compensator for permanent magnet synchronous motor[J]. Electric Machines and Control,2017,21(2):103.
[15] 戴衛(wèi)力,丁駿,田浩,等. 雙凸極電勵(lì)磁發(fā)電機(jī)系統(tǒng)非奇異終端滑??刂破鞯脑O(shè)計(jì)與仿真[J]. 電力自動(dòng)化設(shè)備,2015,35(6):130.
DAI Weili, DING Jun, TIAN Hao, et al. Design and simulation of nonsingular terminal sliding mode controller for doubly salient electromagnetic generator system[J]. Power System Protection and Control, 2015,35(6):130.
[16] 王良,沈善德,朱守真,等. 基于EE模型的勵(lì)磁系統(tǒng)參數(shù)時(shí)域辨識(shí)法[J].電力系統(tǒng)自動(dòng)化,2002,(8):25.
WANG Liang, SHEN Shande, ZHU Shouzhen, et al. A method of time domain identification based on EE model for the excitation system parameters[J]. Automation of Electric Power Systems, 2002,(8):25.
[17] 陳伯時(shí).電力拖動(dòng)自動(dòng)控制系統(tǒng)[M].北京:機(jī)械工業(yè)出版社,2000: 67-79.
[18] 中國(guó)標(biāo)準(zhǔn)化委員會(huì).GBT7409.3-2007同步發(fā)電機(jī)勵(lì)磁系統(tǒng)-大、中型同步發(fā)電機(jī)勵(lì)磁系統(tǒng)技術(shù)要求[S].北京:中國(guó)質(zhì)檢出版社,2014:2-4.
[19] 覃平生,劉覺(jué)民,周有慶,等. 基于80C196KC的原動(dòng)機(jī)仿真系統(tǒng)設(shè)計(jì)[J]. 電力自動(dòng)化設(shè)備,2003,23(2):41.
TAN Pingsheng, LIU Juemin, ZHOU Youqing, et al. Design of prime mover simulation system based on 80C196KC[J]. Electric Power Automation Equipment,2003,23(2):41.
(編輯:劉琳琳)