宋靜 戎建榮
摘要:碳青霉烯類耐藥腸桿菌科細菌(CRE)已經(jīng)成為全球性公共衛(wèi)生問題,這類細菌往往伴隨高致病率、高致殘率、高死亡率,為臨床治療帶來了極大的挑戰(zhàn)。CRE的耐藥機制主要是產(chǎn)生碳青霉烯酶。快速、準確地檢測產(chǎn)碳青霉烯酶的腸桿菌科細菌,對于合理使用抗生素,預(yù)防和控制產(chǎn)酶菌株的傳播具有重要意義。本文就實驗室檢測腸桿菌科細菌產(chǎn)碳青霉烯酶的研究方法進展作一綜述。
關(guān)鍵詞:腸桿菌科細菌;碳青霉烯酶;表型檢測;碳青霉烯滅活試驗
中圖分類號:R33 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標識碼:A ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?DOI:10.3969/j.issn.1006-1959.2019.19.009
文章編號:1006-1959(2019)19-0025-04
Laboratory Test of Carbapenem-resistant Enterobacteriaceae Bacteria
SONG Jing,RONG Jian-rong
(Department of Clinical Laboratory,Affiliated Hospital of Shanxi Medical University,Taiyuan 030032,Shanxi,China)
Abstract:Carbapenem-resistant Enterobacteriaceae (CRE) has become a global public health problem. These bacteria are often accompanied by high morbidity, high disability, and high mortality, which have brought great treatment to clinical treatment challenge. The mechanism of CRE resistance is mainly the production of carbapenemases. Rapid and accurate detection of Enterobacteriaceae bacteria producing carbapenemase is of great significance for the rational use of antibiotics to prevent and control the spread of enzyme-producing strains. This article reviews the progress of laboratory research on the detection of carbapenemase in Enterobacteriaceae.
Key words:Enterobacteriaceae;Carbapenemase;Phenotypic detection;Carbapenem inactivation test
腸肝菌科細菌多數(shù)是人體的正常菌群,可引起呼吸道、泌尿道和手術(shù)切開等部位的感染,在臨床分離中居首位。隨著廣譜抗菌藥物的廣泛使用,多藥耐藥腸肝菌科細菌的比重不斷增加,臨床藥物選擇也更加困難。碳青霉烯類耐藥腸桿菌科細菌(carbapenem-resistant enterobacteriaceae,CRE)已經(jīng)成為全球性公共衛(wèi)生問題,其CRE耐藥機制主要包括產(chǎn)生各種類型碳青霉烯酶、膜孔蛋白缺失或突變或其聯(lián)合產(chǎn)超廣譜β-內(nèi)酰胺酶(ESBLs)、頭孢菌素酶(AmpC)和外排泵的過度表達[1],其中產(chǎn)生碳青霉烯酶是最常見的耐藥機制,碳青霉烯酶是指能夠明顯水解亞胺培南或美羅培南的一類β內(nèi)酰胺酶,包括Ambler分子分類為A、B、D類酶[2-5]。A類為絲氨酸酶,屬于Bush分群中的第2f亞組,多見于一些腸桿菌科細菌;B類為金屬酶,屬于Bush分群中的第3組,多見于銅綠假單胞菌、不動桿菌、腸桿菌科菌;D類絲氨酸酶,屬于Bush分群中2d亞組,僅見于不動桿菌。編碼這些酶的基因通常存在于可移動基因元件上,通過質(zhì)粒及轉(zhuǎn)座子在細菌之間進行水平傳播,從而使碳青霉烯酶不僅僅局限在碳青霉烯類耐藥腸桿菌科細菌,同時也加快了產(chǎn)碳青霉烯酶耐藥菌的出現(xiàn)和傳播。因此,快速、準確地檢測產(chǎn)碳青霉烯酶的腸桿菌科細菌,對于合理使用抗生素,預(yù)防和控制產(chǎn)酶菌株的傳播具有重要意義。本文就實驗室檢測腸桿菌科細菌產(chǎn)碳青霉烯酶的研究方法進展作一綜述。
1碳青霉烯酶檢測概況
準確檢測腸桿菌科細菌對碳青霉烯類抗菌藥物的耐藥性是篩選產(chǎn)酶菌株的關(guān)鍵,常見的檢測方法包括表型檢測方法、分子學檢測方法、質(zhì)譜檢測方法及免疫檢測方法。臨床微生物實驗室通常通過藥物敏感試驗來確定菌株是否有碳青霉烯酶產(chǎn)生,其檢測方法主要為最低抑菌濃度(MIC)測定法及紙片擴散法。當MIC值升高或抑菌環(huán)直徑縮小到一定范圍,則提示分離菌株為可疑的CRE菌株。也可根據(jù)美國臨床實驗室標準化協(xié)會(NCCLS)制定的碳青霉烯類抗生素折點來判斷,但因其耗時長、對某些存在膜孔蛋白缺失及高產(chǎn)AmpC酶的菌株易產(chǎn)生假陽性結(jié)果、對碳青霉烯類藥物水解能力弱的菌株可能產(chǎn)生假陰性等因素,使得產(chǎn)酶株與非產(chǎn)酶株藥敏結(jié)果會出現(xiàn)部分重疊。因此,需要通過實驗室進一步檢測以確定菌株是否產(chǎn)生了碳青霉烯酶。
4其他檢測方法
4.1質(zhì)譜檢測方法 ?自2011年發(fā)展基質(zhì)輔助激光解吸電離飛行時間質(zhì)譜(MALDI-TOF/MS)用于碳青酶烯酶檢測以來[24,25],該項檢測技術(shù)已成為微生物屬和物種檢測的成熟平臺,在臨床微生物實驗室中鑒定和應(yīng)用也越來越普遍。其在碳青霉烯酶快速鑒定中主要發(fā)揮水解作用,具體操作步驟是將細菌培養(yǎng)物與碳青霉烯類抗生素共同孵育,隨后進行離心,取上清液進行質(zhì)譜分析。該方法的敏感性和特異性分別在77%~100%和94%~100%之間,4 h內(nèi)可以完成。Hrabák J等[26]對質(zhì)譜檢測方法進行了改良,推薦在緩沖液中增加碳酸氫鹽,可以使OXA-48型的檢出率明顯提高(不影響其他酶型的檢出,敏感性提高到98%)。但使用MALDI-TOF法檢測碳青霉烯酶是需要使用與MALDI-TOF配套的儀器設(shè)置,而不是使用一般食品藥品監(jiān)督管理局(FDA)認證的微生物鑒定技術(shù)。因此,該測試目前僅對這些系統(tǒng)的專家用戶可用,且需要內(nèi)部驗證,其臨床影響目前可以忽略不計。但隨著碳青霉烯酶檢測手段的日益開發(fā)和普及,其可能在將來對碳青霉烯酶的檢測發(fā)揮作用。
4.2免疫層析方法 ?免疫層析方法是一種以抗體為基礎(chǔ)用于檢測碳青霉烯酶的方法。對于OXA-48-like及變異體OXA-181型,OXA-204型,OXA-232型的檢測表現(xiàn)出了良好的檢測性能。但是對廣譜頭孢菌素敏感,碳青霉烯類耐藥的OXA-163型或OXA-405型的菌株檢測不出來。有報道指出[27],免疫層析方法操作簡單,可以在幾分鐘之內(nèi)快速及準確從培養(yǎng)物中鑒定OXA-48及KPC型的菌株,其陽性預(yù)測值及陰性預(yù)測值分別可達100%和92.3%,且不受培養(yǎng)基種類的影響,但需要增加接種量來提高某些型別的檢出率,尤其是KPC-6、KPC-7、KPC-8及KPC-11型別的菌株。目前,免疫層析方法只能針對目標酶型進行檢測,抗體成本高,存在局限性。
5總結(jié)
隨著碳青霉類抗生素的廣泛應(yīng)用,耐碳青霉烯類抗生素的腸桿菌科菌株逐漸增加,其耐藥機制主要是產(chǎn)生碳青霉烯酶。碳青霉烯酶的檢測方法主要有改良Hodge試驗、Carba NP實驗、CIM實驗、分子學檢測方法、質(zhì)譜檢測、免疫層析方法。不同的方法各自有優(yōu)缺點,改良Hodge試驗對金屬酶的檢測性能差,尤其是NDM型產(chǎn)酶菌株;Carba NP試驗為生化反應(yīng),需要特殊試劑,操作繁瑣;分子檢測檢測技術(shù)及免疫學方法分別只能對已知存在的碳青霉烯酶基因及目標酶型進行檢測;全基因組測序可對未知基因組序列進行測序,但因其人員技術(shù)及儀器設(shè)備要求高,限制其發(fā)展。MALDI-TOF/MS作為新型的檢測手段開始用于細菌耐藥方面的研究,對于CRE的檢測主要依據(jù)碳青霉烯藥物的水解,對具體的酶類型無法分辨,如果能對酶類型進行檢測,將會有更大的應(yīng)用空間。免疫學方法同樣只能針對目標酶型進行檢測,抗體成本高,存在一定局限性。
目前,CLSI推薦將mCIM作為腸桿菌科細菌的篩選方法,建議在mCIM中使用CLSI折點來確定結(jié)果,此方法試驗操作簡單,步驟少,其試驗結(jié)果易于解釋,而且不受菌齡、藥敏紙片以及細菌是否產(chǎn)生黏液影響,在大多常規(guī)實驗室都可以開展,且培養(yǎng)時間中等,至少需要6 h或者過夜。相信隨著臨床微生物實驗室相關(guān)數(shù)據(jù)的不斷積累和方法學的進一步提高,此方法將成為檢測CRE的基礎(chǔ)方法。
參考文獻:
[1]Little ML,Qin X,Zerr DM,et al.Molecular diversity in mechanisms of carbapenem resistance in paediatric Enterobacteriaceae[J].Int J Antimicrob Agents,2012,39(1):52-57.
[2]Nordmann P,Poirel L.Emerging carbapenemases in Gramnegative aerobes[J].Clin Microbiol Infect,2002(8):321-331.
[3]Livermore DM,Woodford N.Carbapenemases:a problem in waiting?[J].Curr Opin Microbiol,2000(3):489-495.
[4]Bush K.Metallo-beta-lactamases:a class apart[J].Clin Infect Dis,1998,27(Suppl 1):S48-S53.
[5]Rasmussen BA,Bush K.Carbapenem-hydrolyzing beta-lactamases[J].Antimicrob Agents Chemother,1997(41):223-232.
[6]Girlich D,Poirel L,Nordmann P.Value of the modified Hodge test for detection of emergingcarbapenemases in Enterobacteriaceae[J].J Clin Microbiol,2012,50(2):477-479.
[7]Pasteran F,Gonzalez LJ,Albornoz E,et al.Triton Hodge Test: Improved Protocol for Modified Hodge Test for Enhanced Detection of NDM and Other Carbapenemase Producers[J].J Clin Microbiol,2016,54(3):640-649.
[8]Roth AL,Kurpiel PM,Lister PD,et al.bla(KPC) RNA expression correlates with two transcriptional start sites but not always with gene copy number in four genera of Gram-negative pathogens[J].Antimicrob Agents Chemother,2015,5(8):3936-3938.
[9]Dortet L,Bréchard L,Poirel L,et al.Impact of the isolation medium for detection of carbapenemase-producing Enterobacteriaceae using an updated version of the Carba NP test[J].J Med Microbiol,2014,63(Pt 5):772-776.
[10]Segawa T,Matsui M,Suzuki M,et al.Utilizing the Carba NP test as an indicator of expression level of carbapenemase genes in Enterobacteriaceae[J].J Microbiol Methods,2017(133):35-39.
[11]Literacka E,Herda M,Baraniak A,et al.Evaluation of the Carba NP test for carbapenemase detection in Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp,and its practical use in the routine work of a national reference laboratory for susceptibility testing[J].Eur J Clin Microbiol Infect Dis,2017,36(11):2281-2287.
[12]Akyar I,Kaya Ayas M,Karatuna O.Performance Evaluation of MALDI-TOF MS MBT STAR-BL Versus In-House Carba NP Testing for the Rapid Detection of Carbapenemase Activity in Escherichia coli and Klebsiella pneumoniae Strains[J].Microb Drug Resist,2019.
[13]van der Zwaluw K,de Haan A,Pluister GN,et al.Carbapenem Inactivation Method (CIM),a simple and low-cost alternative to the Carba NP test to assess phenotypic carbapenemase activity in Gram-negativerods[J].PLoS One,2015(10):e0123690.
[14]Pragasam AK,Veeraraghavan B,Bakthavatchalam YD,et al.Strengths and limitations of various screening methods for carbapenem-resistant Enterobacteriaceae including new method recommended by clinical and laboratory standards institute,2017:A tertiary care experience[J].Indian J Med Microbiol,2017,35(1):116-119.
[15]馬玉蘭,宋文杰,梁屹,等.CIM與mCIM篩選腸桿菌科細菌產(chǎn)碳青霉烯酶能力比較[J].河北醫(yī)科大學學報,2018,39(8):943-948.
[16]Aktas E,Malkosoglu G,Otlu B,et al.Evaluation of the Carbapenem Inactivation Method for Detection of Carbapenemase-Producing Gram-Negative Bacteria in Comparison with the RAPIDEC CARBA NP[J].Microb Drug Resist,2017,23(4):457-461.
[17]Zhou M,Wang D,Kudinha T,et al.Comparative Evaluation of Four Phenotypic Methods for Detection of Class A and B Carbapenemase-Producing Enterobacteriaceae in China[J].J Clin Microbiol,2018,56(8):e00395-18.
[18]Jing X,Zhou H,Min X,et al.The Simplified Carbapenem Inactivation Method (sCIM) for Simple and Accurate Detection of Carbapenemase-Producing Gram-Negative Bacilli[J].Front Microbiol,2018(9):2391.
[19]Glupczynski Y,Evrard S,Ote I,et al.Evaluation of two new commercial immunochromatographic assays for the rapid detection of OXA-48 and KPC carbapenemases from cultured bacteria[J].J Antimicrob Chemother,2016,71(5):1217-1222.
[20]Chen L,Mediavilla JR,Endimiani A,et al.Multiplex real-time PCR assay for detection and classification of Klebsiella pneumoniae carbapenemase gene (bla KPC) variants[J].J Clin Microbiol,2011,49(2):579-585.
[21]Subirats J,Royo E,Balcázar JL,et al.Real-time PCR assays for the detection and quantification of carbapenemase genes (bla KPC, bla NDM, and bla OXA-48) in environmental samples[J].Environ Sci Pollut Res Int,2017,24(7):6710-6714.
[22]Weiβ D,Engelmann I,Braun SD,et al.A multiplex real-time PCR for the direct,fast,economic and simultaneous detection of the carbapenemase genes blaKPC ,blaNDM ,blaVIM and blaOXA-48[J].J Microbiol Methods,2017(142):20-26.
[23]Mathers AJ,Stoesser N,Sheppard AE,et al.Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from wholegenome sequencing[J].Antimicrob Agents Chemother,2015(59):1656-1663.
[24]Burckhardt I,Zimmermann S.Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours[J].J Clin Microbiol,2011,49(9):3321-3324.
[25]Hrabák J,Walková R,Studentová V,et al.Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry[J].J Clin Microbiol,2011,49(9):3222-3227.
[26]Hrabák J,Studentová V,Walková R,et al.Detection of NDM-1,VIM-1,KPC,OXA-48,and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry[J].J Clin Microbiol,2012,50(7):2441-2443.
[27]Youn JH,Drake SK,Weingarten RA,et al.Clinical Performance of a Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method for Detection of Certain blaKPC-Containing Plasmids[J].J Clin Microbiol,2016,54(1):35-42.