劉衛(wèi)豐 杜林林 劉維寧
摘要: 建立曲線軌道解析模型,此軌道模型考慮為具有周期性離散彈簧-阻尼支承的曲線Timoshenko梁。在頻域內(nèi)將曲線鋼軌的位移及轉(zhuǎn)角表達(dá)為軌道模態(tài)的疊加,并將周期性結(jié)構(gòu)理論施加于軌道模型的運(yùn)動方程,進(jìn)而在一個基本單元內(nèi)高效地求解軌道的動力響應(yīng)。將橫向固定諧振荷載作用于鋼軌軌頭,考慮不同扣件剛度、扣件阻尼、扣件間距及曲線半徑,研究上述軌道參數(shù)對曲線軌道位移響應(yīng)的影響。經(jīng)計(jì)算分析可知:鋼軌軌頭的橫向位移響應(yīng)包括平面內(nèi)和平面外的位移響應(yīng),是鋼軌平移和扭轉(zhuǎn)效應(yīng)的疊加;增加扣件剛度或減小扣件間距可導(dǎo)致軌道系統(tǒng)一階自振的頻率增大,而其幅值減小,對于一階自振頻率以下的頻段,鋼軌位移幅值也有所減小;隨著扣件阻尼的增大,一階自振的幅值顯著下降,對于pinned-pinned共振,隨著扣件阻尼的增加,跨中處的鋼軌位移增大,而扣件上方的位移有所減小;pinned-pinned共振頻率隨著扣件間距的增大而減小,而其位移幅值增大;對于曲線地鐵軌道,曲線半徑對鋼軌的橫向位移基本沒有影響,但對豎向位移影響顯著,隨著曲線半徑的增加,鋼軌豎向位移幅值顯著下降。
關(guān)鍵詞: 曲線軌道; 固定諧振荷載; 軌道參數(shù); 鋼軌位移; 周期性結(jié)構(gòu)
中圖分類號: U213.2+12 ?文獻(xiàn)標(biāo)志碼: A ?文章編號: 1004-4523(2019)05-0837-08
DOI:10.16385/j.cnki.issn.1004-4523.2019.05.012
引 言
城市軌道交通在方便市民出行的同時(shí),也存在一些環(huán)境問題,其中,最主要的問題之一就是列車運(yùn)行引起的振動與噪聲。而在曲線軌道地段,列車引起的環(huán)境振動往往比直線地段要大,尤其是橫向振動,其振動幅值要比直線軌道地段大得多[1]。另外,曲線軌道的輪軌相互作用比直線軌道復(fù)雜得多,也會產(chǎn)生多種軌道振動與噪聲問題,例如鋼軌波磨、曲線嘯叫等[2-3]。而研究曲線軌道的振動與噪聲問題,首先需要研究曲線軌道的動力特性。
一般情況下,對于曲線軌道模型,軌道可以考慮為連續(xù)或離散支承上的Euler曲線梁或Timoshenko曲線梁,Timoshenko梁考慮了梁的剪切和彎扭耦合效應(yīng),比Euler梁更能全面地反映曲線軌道的動力特性,且對于高頻范圍內(nèi)的動力響應(yīng),Timoshenko梁比Euler梁更準(zhǔn)確。
對于曲線軌道的研究,近年來國內(nèi)外學(xué)者已經(jīng)開展了一些工作。Kostovasilis等建立一個曲線軌道有限元模型,并比較了曲梁單元和直梁單元的差異[4]。結(jié)果顯示:相比于直梁單元,雖然曲梁單元更符合實(shí)際,但曲梁單元比直梁單元復(fù)雜得多,卻沒有表現(xiàn)出更多優(yōu)勢,所以論文作者推薦采用直梁單元。另外,Kostovasilis等還建立了一個曲線軌道解析模型,可以計(jì)算曲線鋼軌豎向/橫向的相互作用 [5],利用Fourier變換法在波數(shù)域內(nèi)求解了固定諧振荷載作用下曲線鋼軌的動力響應(yīng)。Ang和Dai采用三角函數(shù)逼近法推導(dǎo)了移動荷載作用下黏彈性地基上的曲線軌道動力響應(yīng)的解析解,并討論了解的收斂性問題[6]。李克飛等推導(dǎo)了移動荷載作用下曲線Timoshenko梁平面外動力響應(yīng)解析解[7-9],將移動荷載作用下曲線鋼軌的位移表達(dá)成頻率波數(shù)域內(nèi)的外荷載與鋼軌傳遞函數(shù)的乘積,而鋼軌傳遞函數(shù)通過傳遞矩陣法求得。另外,張厚貴等建立了車輛-曲線軌道解析模型,并討論了移動列車作用下的曲線軌道的振動問題[10]。
由于鋼軌被軌枕或扣件周期性離散支承,許多學(xué)者把周期性理論引入到直線軌道模型中,用于提高計(jì)算效率。例如,Grassie等提出了一個周期性Timoshenko梁的軌道模型,并計(jì)算了豎向、橫向和縱向固定荷載作用下鋼軌的動力響應(yīng)[11-13]。Gry和Gontier基于梁的廣義橫截面位移法提出一個周期性鐵路軌道模型,用于計(jì)算軌道的動力響應(yīng) [14]。Sheng等推導(dǎo)了在固定荷載作用下無限長周期性Euler梁動力響應(yīng)的解析解,用于模擬鋼軌,并詳細(xì)分析了振動在鋼軌中的傳播規(guī)律以及軌道的共振特性[15-16]。文獻(xiàn)[17-19]基于Floquet變換建立了一個有限元-邊界元耦合模型,用于計(jì)算軌道-隧道-地層耦合系統(tǒng)的動力響應(yīng)。Thompson利用周期性結(jié)構(gòu)理論及有限元法分析了軌道的頻響函數(shù)及頻散曲線[20]。馬龍祥基于周期性結(jié)構(gòu)理論推導(dǎo)了普通整體道床軌道和浮置板軌道動力響應(yīng)的解析解[21]。
本文基于周期性結(jié)構(gòu)理論,建立一個曲線軌道解析模型。該模型中,鋼軌考慮為曲線Timoshenko梁,支承于周期性離散分布的扣件上,將橫向固定諧振荷載作用于鋼軌軌頭,利用此模型計(jì)算了曲線鋼軌的平面內(nèi)和平面外動力響應(yīng),并討論了扣件剛度、扣件阻尼、扣件間距和曲線半徑對曲線鋼軌位移響應(yīng)的影響。
1 周期性曲線軌道平面內(nèi)及平面外動力響應(yīng)推導(dǎo) ?本文所建立的曲線Timoshenko軌道梁具有如下假定:(1)等截面的勻質(zhì)梁;(2)曲線半徑為常數(shù);(3)忽略曲線梁的翹曲變形。曲線梁的坐標(biāo)系按照右手螺旋法則確定,如圖1所示。圖1中,R為曲線半徑,ux,uy和uz分別為x,y,z三個方向的位移,φx, φy和φz為繞三個坐標(biāo)軸的轉(zhuǎn)角。在曲線鋼軌的軌頭上作用一個移動的橫向單位諧振荷載eiwFt,速度為v,如圖2所示。圖2中C點(diǎn)為鋼軌橫截面的形心,S點(diǎn)為鋼軌橫截面的剪切中心,扣件的豎向支承和橫向支承作用于軌底,而扭轉(zhuǎn)支承作用點(diǎn)位于剪切中心。由于作用在軌頭B點(diǎn)上的荷載可以等效為一個作用于鋼軌形心C點(diǎn)的橫向荷載(屬于平面內(nèi)荷載)和一個繞z軸旋轉(zhuǎn)的力矩荷載h1eiwFt(屬于平面外荷載),所以在橫向荷載作用下,鋼軌將產(chǎn)生平面內(nèi)和平面外兩種運(yùn)動形式。根據(jù)曲線Timoshenko梁理論,平面內(nèi)與平面外運(yùn)動方程是解耦的。下式(1)-(3)為頻域內(nèi)曲線軌道的平面內(nèi)運(yùn)動方程[22-23],分別表示為x軸和z軸方向的平移運(yùn)動,以及繞y軸的扭轉(zhuǎn)運(yùn)動。
[2] Zhang Hougui, Liu Weining, Liu Weifeng, et al. Study on the cause and treatment of rail corrugation for Beijing metro [J]. Wear, 2014, 317(1-2): 120-128.
[3] Thompson D J. Railway Noise and Vibration: Mechanisms, Modelling and Means of Control [M].Oxford: Elsevier, 2009.
[4] Kostovasilis D, Koroma S, Hussein M F M, et al. A comparison between the use of straight and curved beam elements for modelling curved railway tracks [C]. 11th International Conference on Vibration Problems, Lisbon, Portugal, 2013.
[5] Kostovasilis D, Thompson D J, Hussein M F M. The effect of vertical-coupling of rails including initial curvature [C]. 22nd International Congress on Sound and Vibration, Florence, Italy, 2015.
[6] Ang K, Dai J. Response analysis of a curved rail subject to a moving load [C]. 11th International Conference on Vibration Problems, Lisbon, Portugal, 2013.
[7] 李克飛. 基于變速及曲線車軌耦合頻域解析模型的地鐵減振軌道動力特性研究[D]. 北京:北京交通大學(xué), 2012.
Li Kefei. Study on the dynamic characteristics of metro vibration mitigation track based on frequency-domain analytical model of coupled vehicle & track in variable-speed and curved sections[D]. Beijing: Beijing Jiaotong University, 2012.
[8] Li Kefei, Liu Weining, Markine V, et al. Analytical study on the dynamic displacement response of a curved track subjected to moving loads [J]. Journal of Zhejiang University (Science A), 2013, 14(12): 867-879.
[9] Li Kefei, Liu Weining, Markine V, et al. Analytical study on the vibration response of curved track subjected to moving load [C]. 2nd International Conference on Railway Engineering, ICRE, Beijing, China, 2012:556-562.
[10] Zhang H, Liu W, Li K, et al. Analytical solution for dynamic response of curved rail subjected to moving train [J]. Journal of Vibroengineering, 2014, 16(4): 2070-2081.
[11] Grassie S L, Gregory R, Harrison D, et al. The dynamic response of railway track to high frequency vertical excitation [J]. Journal of Mechanical Engineering Science, 1982, 24(2): 77-90.
[12] Grassie S L, Gregory R, Johnson K. The dynamic response of railway track to high frequency lateral excitation [J]. Journal of Mechanical Engineering Science, 1982, 24(2): 91-95.
[13] Grassie S L, Gregory R, Johnson K. The dynamic response of railway track to high frequency longitudinal excitation [J]. Journal of Mechanical Engineering Science, 1982, 24(2): 97-102.
[14] Gry L, Gontier C. Dynamic modeling of railway track: A periodic model based on a generalized beam formulation[J]. Journal of Sound and Vibration, 1997, 199: 531-558.
[15] Sheng X, Li M. Propagation constants of railway tracks as a periodic structure[J]. Journal of Sound and Vibration, 2007, 299: 1114-1123.
[16] Sheng X, Jones C J C, Thompson D J. Responses of infinite periodic structures to moving or stationary harmonic loads[J]. Journal of Sound and Vibration, 2005, 282: 125-149.
[17] Clouteau D, Arnst M, Al-Hussaini T M, et al. Free field vibrations due to dynamic loading on a tunnel embedded in a stratified medium[J]. Journal of Sound and Vibration, 2005, 283(1-2): 173-199.
[18] Degrande G, Clouteau D, Othman R, et al. A numerical model for groundborne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation[J]. Journal of Sound and Vibration, 2005, 293(3-5): 645-666.
[19] Gupta S, Liu Weifeng, Degrande G, et al. Prediction of vibrations induced by underground railway traffic in Beijing[J]. Journal of Sound and Vibration, 2008, 310: 608-630.
[20] Thompson D J. Wheel-rail noise generation, Part III: Rail vibration[J]. Journal of Sound and Vibration, 1993, 161(3): 421-446.
[21] 馬龍祥. 基于周期-無限結(jié)構(gòu)理論的車軌耦合及隧道-地層振動響應(yīng)預(yù)測模型研究[D]. 北京:北京交通大學(xué), 2014.
Ma Longxing. Study on the model of coupled vehicle-track and the prediction model for tunnel-ground vibration response based on the periodic-infinite structure theory[D]. Beijing: Beijing Jiaotong University, 2014.
[22] Lee J. In-plane free vibration analysis of curved Timoshenko beams by the pseudospectral method[J]. KSME International Journal, 2003, 17(8): 1156-1163.
[23] Timoshenko S P. Vibration Problems in Engineering [M]. New York: D. Van Nostrand,1955.
[24] Howson W P, Jemah A K. Exact out-of-plane natural frequencies of curved Timoshenko beams[J]. Journal of Engineering Mechanics, 1999, 125(1): 19-25.
[25] Belotserkovskiy P M. Forced oscillations of infinite periodic structures. Vehicle system dynamics [J]. International Journal of Vehicle Mechanics and Mobility, 1998, 29: 85-103.
[26] Belotserkovskiy P M. On the oscillations of infinite periodic beams subjected to a moving concentrated force [J]. Journal of Sound and Vibration, 1996, 193: 705-712.
Abstract: An analytical model of the curved track is presented. The track is modelled as a curved Timoshenko beam supported by periodically-spaced discrete spring-dashpots. The displacement and rotation of the curved track in the frequency domain are expressed as the superposition of track modes, and then the periodic structure theory is applied to motion equations of the curved track, so the dynamic response of the track can be calculated efficiently in a reference cell. The frequency response of the displacement of the curved track due to a lateral non-moving harmonic load on the rail head is calculated, and the effects of some parameters of track are analyzed, including the stiffness, damping and spacing of fasteners, and the radius of curvature. Some conclusions are drawn as follows. The lateral response of the rail head consists of in-plane and out-of-plane motions, which is the superposition of displacement and rotation of the rail. The first-order resonance frequency of the track rises and the displacement amplitude reduces with increasing stiffness or decreasing spacing of the fasteners, and the amplitudes get lower for the frequencies below the first-order resonance frequency. The displacement amplitude of the first-order resonance goes down significantly as the damping gets larger. The displacement increases at mid-span and decreases above a fastener as the fastener damping rises for the pinned-pinned resonances. The frequency of the pinned-pinned resonances becomes lower and its amplitude increases as the fastener spacing gets greater. The radius of curvature does not affect the lateral response for curved metro tracks, whereas the radius affects the vertical response significantly. The vertical displacement goes down greatly as the radius increases.
Key words: curved track; non-moving harmonic load; parameters of track; displacement of rail; periodic structure
作者簡介: 劉衛(wèi)豐(1975-),男,博士,副教授。電話:(010)51682752;E-mail:wfliu@bjtu.edu.cn