陳威 錢靜 張偉
摘? ? ? 要:以典型無機(jī)結(jié)晶水合鹽四丁基氯化銨(Tetrabutylammonium chloride,TBAC)、四丁基溴化銨(Tetrabutylammonium bromide,TBAB)、四丁基溴化磷(Tetrabutylphosphonium bromide,TBPB)為原料,探究其混合水溶液相變溫度與季銨鹽組分配比的理論關(guān)系。差示掃描量熱儀(DSC)測(cè)試結(jié)果表明,在混合溶液質(zhì)量分?jǐn)?shù)為40%時(shí),各配比復(fù)合體系均表現(xiàn)為唯一的相變峰,融合性良好。TBPB/TBAB和TBPB/TBAC復(fù)合體系的相變溫度調(diào)節(jié)范圍分別為5.91~11.69 ℃和5.92~14.33 ℃。利用Origin軟件對(duì)兩種復(fù)合體系的季銨鹽組分配比-相變溫度曲線進(jìn)行擬合,所得預(yù)測(cè)公式的相關(guān)系數(shù)R2分別達(dá)到0.964 7和0.952 1,預(yù)測(cè)誤差小于5%。
關(guān)? 鍵? 詞:相變儲(chǔ)能;復(fù)合相變材料;Asymptotic1擬合;相變溫度預(yù)測(cè)
中圖分類號(hào):TQ050.4+3? ? ? ?文獻(xiàn)標(biāo)識(shí)碼: A? ? ? ?文章編號(hào): 1671-0460(2019)10-2183-04
Abstract: The typical inorganic crystalline hydrated salt tetrabutylammonium chloride (TBAC), tetrabutylammo -nium bromide (TBAB) and tetrabutylphosphonium bromide (TBPB) were used as raw materials to explore the theoretical relationship between the phase transition temperature of the aqueous solution and the distribution ratio of the quaternary ammonium salt group. The results of differential scanning calorimetry (DSC) showed that the phase ratio of TBPB/TBAB and TBPB/TBAC composite system was the only phase change peak when the mixed solution mass fraction was 40%. The ranges were 5.91 to 11.69 ℃ and 5.92 to 14.33 ℃, respectively. The quaternary ammonium salt group distribution ratio-phase transformation temperature curves of the two composite systems were fitted by using the Origin software. The correlation coefficient R2 of the obtained prediction formula reached 0.964 7 and 0.952 1, respectively, and the prediction error was less than 5%.
Key words: Phase change energy storage; Composite phase change material; Asymptotic1 fitting; Phase transition temperature prediction
相變材料通過物態(tài)轉(zhuǎn)變進(jìn)行能量儲(chǔ)放,可以解決能量供求在時(shí)間和空間上的矛盾[1]。在實(shí)際應(yīng)用中,要求相變材料具備適宜相變溫度、相變潛熱大、性能穩(wěn)定、導(dǎo)熱性能良好等特點(diǎn),但單一相變材料往往無法同時(shí)滿足上述條件,因而需要多種相變材料進(jìn)行復(fù)合以達(dá)到要求[2]。
具有適宜相變溫度是制備復(fù)合相變材料的重要一環(huán),也為復(fù)合相變材料各組分的選取提供了一項(xiàng)參考。但復(fù)合相變材料的配制絕大部分還停留在盲目試錯(cuò)的階段,對(duì)材料選取具有指導(dǎo)意義的理論尚不充分。張寅平等[3]根據(jù)熱力學(xué)第二定律和相平衡理論對(duì)(準(zhǔn))共晶系的熔點(diǎn)和融解熱進(jìn)行了分析預(yù)測(cè), 得到了共晶混合物熔點(diǎn)、 融解熱與組分物性間的關(guān)系??禄壅涞萚4]和Li等[5]根據(jù)Schrader公式計(jì)算多元脂肪酸低共熔質(zhì)量配比,再以此為指導(dǎo),通過實(shí)驗(yàn)和DSC測(cè)試得到實(shí)際配比,結(jié)果表明吻合度較高。Pan[6]等通過分析二元共晶合金相變中熵及焓等狀態(tài)量的變化特點(diǎn),推導(dǎo)出低熔點(diǎn)合金熔點(diǎn)和相變潛熱預(yù)測(cè)模型。結(jié)果表明,15種低熔點(diǎn)合金熔點(diǎn)和相變潛熱的計(jì)算值與DSC測(cè)試結(jié)果具有較好的一致性。上述研究都在一定范圍內(nèi)為復(fù)合相變材料的配制和“設(shè)計(jì)”提供了理論參考,但其適用范圍有局限性,尚有許多新材料和復(fù)合特性需要進(jìn)行研究和補(bǔ)充。
大部分季銨鹽具有良好的水溶性,其水溶液相變潛熱值可以達(dá)到190 J/g以上,遠(yuǎn)遠(yuǎn)優(yōu)于普通的水合鹽相變蓄冷材料[7]。季銨鹽水溶液相變溫度對(duì)體系質(zhì)量分?jǐn)?shù)十分敏感,蓄冷范圍為0~26 ℃,是應(yīng)用前景巨大的蓄冷材料[8]。對(duì)于單一季銨鹽水溶液的相變特性,已有大量文獻(xiàn)進(jìn)行了探究。朱華[9]在文獻(xiàn)中提到,TBAB水溶液相變溫度為0~12 ℃,相變潛熱為180~190 J/g,并在質(zhì)量分?jǐn)?shù)為41%時(shí)形成唯一的相變峰。謝應(yīng)明等[10]通過研究發(fā)現(xiàn),TBAC溶液的相變溫度隨質(zhì)量分?jǐn)?shù)增加而升高,并在質(zhì)量分?jǐn)?shù)為40%時(shí)趨于穩(wěn)定。Takuya等[11]在文獻(xiàn)中提到,TBPB水合物在質(zhì)量分?jǐn)?shù)為33%~35%時(shí)相變溫度最高,并在35%時(shí)達(dá)到相變潛熱峰值214 J/g。對(duì)于季銨鹽二元混合溶液的蓄冷特性,目前已有的文獻(xiàn)十分有限。Motoi Oshima等[12]通過研究表明,隨著TBAB組分含量的增加,TBAB/ TBAC混合溶液體系的相變溫度由15 ℃逐漸降低為12.3 ℃。Wang等[8]通過對(duì)TBAF(Tetrabutylammonium fluoride ,四丁基氟化銨)、TBAB、TBPB單一及二元混合溶液的水合物形成行為進(jìn)行探究,得出結(jié)論:三種物質(zhì)單一及二元混合溶液的相變溫度,均隨溶液質(zhì)量分?jǐn)?shù)增大而增大。同一質(zhì)量分?jǐn)?shù)條件下,二元混合溶液的相變溫度隨高熔點(diǎn)組分的比例增加而增加。由此可知,季銨鹽組分配比與二元復(fù)配溶液的相變溫度反映出一定的規(guī)律,但其理論關(guān)系需要繼續(xù)探究。
參考文獻(xiàn):
[1]? 張仁元. 相變材料與相變儲(chǔ)能技術(shù)[M]. 北京:科學(xué)出版社,2009:10-11.
[2] 焦華. 溶膠-凝膠法制備復(fù)合相變PEG/SiO2的實(shí)驗(yàn)研究[J]. 當(dāng)代化工, 2018, 47(4): 739-741.
[3] 張寅平, 蘇躍紅, 葛新石.(準(zhǔn))共晶系相變材料融點(diǎn)及融解熱的理論預(yù)測(cè)[J]. 中國科學(xué)技術(shù)大學(xué)學(xué)報(bào), 1995 (04): 474-478.
[4] 柯惠珍, 李永貴. 脂肪酸多元低共熔物的共晶質(zhì)量比例、儲(chǔ)熱性能及其應(yīng)用[J]. 材料科學(xué)與工程學(xué)報(bào), 2018,36(1):82-86.
[5] Li M , Kao H , Wu Z , et al. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials[J]. Applied Energy, 2011, 88(5):1606-1612.
[6] Pan A , Wang J , Zhang X . Prediction of Melting Temperature and Latent Heat for Low-melting Metal PCMs[J]. Rare Metal Materials and Engineering, 2016, 45 (4): 874-880.
[7] 孫志高,江承明,孫立. 新型空調(diào)蓄冷材料四丁基溴化銨-水相變條件和相變熱實(shí)驗(yàn)研究[J]. 制冷學(xué)報(bào),2009,30 (5):24-26.
[8] WANG X L,DENNIS M. An Experimental Study on the Formation Behaviour of Single And Binary Hydrates of TBAB, TBAF and TBPB for Cold Storage Air Conditioning Applications[J]. Chemical Engineering Science, 2015,137:938-946.
[9] 朱華. 相變材料的熱物性測(cè)量和流動(dòng)傳熱特性研究[D]. 上海:上海交通大學(xué), 2015.
[10]謝應(yīng)明,魏晶晶,劉道平,時(shí)競(jìng)競(jìng),劉妮,祁影霞.四丁基氯化銨水合物的蓄冷特性[J].化工學(xué)報(bào),2010,61(S2):77-80.
[11]SUGINAKA T,SAKAMOTO H,IINO K,et al. Thermodynamic Properties of Ionic Semiclathrate Hydrate Formed with Tetrabuty -lphosphonium Bromide[J]. Fluid Phase Equilibria,2012,317(1):25-28.
[12]Dissociation behaviour of (tetra-n-butylammonium bromide+tetra- n-butylammonium chloride) mixed semiclathrate hydrate systems[J]. The Journal of Chemical Thermodynamics, 2015, 90:277-281.
[13]謝應(yīng)明, 魏晶晶, 劉道平. 蓄冷新工質(zhì)—四丁基氯化銨水合物的蓄冷特性實(shí)驗(yàn)研究[C].全國制冷空調(diào)新技術(shù)研討會(huì), 2010.
[14]Lin W , Dalmazzone D , Walter Fürst, et al. Accurate DSC measure -ment of the phase transition temperature in the TBPB–water system[J]. Journal of Chemical Thermodynamics, 2013, 61 (61): 132- 137.