郭志斌 黃湛勇 王中虎 王剛
摘要:? ?針對純電動(dòng)汽車電磁場數(shù)值分析時(shí)傳統(tǒng)有限元法(finite element method, FEM)因數(shù)值“過硬”而計(jì)算精度低的問題,在傳統(tǒng)FEM的基礎(chǔ)上引入梯度光滑技術(shù)和穩(wěn)定項(xiàng)修正,采用基于穩(wěn)定節(jié)點(diǎn)的光滑有限元法(stable nodebased smoothed FEM, SNSFEM)對長直接地金屬槽和純電動(dòng)汽車整車電磁場算例進(jìn)行仿真分析。結(jié)果表明,SNSFEM可顯著降低前處理網(wǎng)格劃分難度,在一定程度上軟化數(shù)值模型,具有計(jì)算效率高、精度高、收斂速度快和抗網(wǎng)格畸變能力強(qiáng)等優(yōu)點(diǎn),在工業(yè)應(yīng)用中具有較大潛力。
關(guān)鍵詞:
純電動(dòng)汽車; 穩(wěn)定節(jié)點(diǎn); 積分算法; 梯度光滑; 電磁場; 有限元
中圖分類號:? TB115.1; TM153.1
文獻(xiàn)標(biāo)志碼:? B
Electromagnetic field simulation of pure electric vehicle based
on stable nodebased smoothed finite element method
GUO Zhibin, HUANG Zhanyong, WANG Zhonghu, WANG Gang
(School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China;
Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, Tianjin 300130, China)
Abstract:
The numerical value is "overlystiff" in the traditional finite element method(FEM) for electromagnetic field numerical analysis of pure electric vehicle, which leads to its low precision. As to this issue, the gradient smoothing technique and the correction of stability term are employed based on the traditional FEM, the electromagnetic fields of long straight grounding metal slot and pure electric vehicle are simulated and analyzed by using stable nodebased smoothed FEM(SNSFEM). The results show that the difficulty of mesh generation can be reduced using SNSFEM, and the numerical model is softened in a certain extent. The advantages of SNSFEM are high efficiency, high precision, fast convergence and strong ability to resist grid distortion. SNSFEM has great potential in industrial application.
Key words:
pure electric vehicle; stable node; integration method; gradient smoothing; electromagnetic field; finite element
0 引 言
電動(dòng)汽車電磁場的數(shù)值分析,對于評估其電磁安全性具有重要意義。有限元法(finite element method, FEM)是電磁場數(shù)值計(jì)算中最常用的方法之一,廣泛應(yīng)用于電動(dòng)汽車的電磁仿真中。[13]黃劭剛等[4]利用FEM研究發(fā)電機(jī)旋轉(zhuǎn)磁場波形和電壓波形;王春蘭等[5]利用FEM研究電渦流傳感器的電磁場問題,并驗(yàn)證計(jì)算結(jié)果的有效性。傳統(tǒng)FEM可以解決大部分電磁場數(shù)值計(jì)算問題,但是也存在缺陷,離散網(wǎng)格的尺寸、插值函數(shù)的階次等因素對算法精度影響很大。對于某些復(fù)雜的工程結(jié)構(gòu),F(xiàn)EM需要重復(fù)多次進(jìn)行網(wǎng)格劃分和加密操作,增加設(shè)計(jì)難度且降低計(jì)算效率。[6]針對傳統(tǒng)FEM的缺點(diǎn),邊界元法(boundary element method, BEM)被提出。BEM只需對邊界進(jìn)行離散,在前處理階段有較大優(yōu)勢,廣泛應(yīng)用于無界區(qū)域的電磁分析。[710]但是,使用邊界積分方程離散得到的系數(shù)矩陣是滿秩矩陣,因此BEM計(jì)算效率較低,難以解決大規(guī)模的實(shí)際工程問題。
近年來,針對電磁問題,專家學(xué)者提出多種新的方法,并取得較大進(jìn)展。LIU等[11]在FEM中引入梯度光滑的概念,提出基于節(jié)點(diǎn)的光滑有限元法(nodebased smoothed FEM, NSFEM),可有效軟化計(jì)算模型的剛度,顯著提高數(shù)值解精度,數(shù)值分析的計(jì)算結(jié)果較好[1213]。但是,NSFEM模型“過軟”,其不穩(wěn)定性阻礙其在復(fù)雜工程中的應(yīng)用。[14]FENG等[15]和WANG等[16]將應(yīng)變梯度項(xiàng)引入能量方程,進(jìn)一步提出基于穩(wěn)定節(jié)點(diǎn)的光滑有限元法(stable nodebased smoothed FEM, SNSFEM),可用于模擬電磁成形和電磁鉚接過程[1720]。通過添加穩(wěn)定項(xiàng)進(jìn)行修正,NSFEM的穩(wěn)定性得到有效改善,并可獲得理想的系統(tǒng)剛度。CUI等[17]驗(yàn)證SNSFEM具有較高的計(jì)算精度并且可以消除NSFEM解的不穩(wěn)定性缺陷?;谏鲜鲅芯抗ぷ?,本文建立純電動(dòng)汽車電磁場分析數(shù)值模型,推導(dǎo)利用SNSFEM求解純電動(dòng)汽車電磁場的基本公式。利用SNSFEM分析長直接地金屬槽模型和純電動(dòng)汽車整車電磁場模型,驗(yàn)證其可靠性,結(jié)果表明:與FEM相比,SNSFEM計(jì)算精度更高、收斂性更好,可有效地用于工程電磁場的仿真分析。
1 電磁場基本方程
在二維靜態(tài)電磁域中,對于任意形狀封閉的域Ω,場函數(shù)Φ(x)(x=[x y]T)應(yīng)滿足
與標(biāo)準(zhǔn)伽遼金弱形式相比,SNSFEM對電磁剛度矩陣進(jìn)行光滑處理,下面對電磁問題的SNSFEM方案進(jìn)行推導(dǎo)。
3 SNSFEM的離散形式
3.1 構(gòu)造光滑域
采用SNSFEM求解問題時(shí),插值在單元內(nèi)進(jìn)行,而積分基于重新構(gòu)建的光滑域。二維問題中光滑域的構(gòu)造方式分兩步:首先,將分析域離散為3節(jié)點(diǎn)三角形網(wǎng)格,節(jié)點(diǎn)總數(shù)為Nn,單元總數(shù)為Ne;然后,基于三角形網(wǎng)格各節(jié)點(diǎn)進(jìn)一步形成光滑域。二維問題中基于節(jié)點(diǎn)k的光滑域示意見圖1。節(jié)點(diǎn)k與相連的三角形形心和各邊中點(diǎn)順次連接形成各節(jié)點(diǎn)的光滑域,因此該光滑域滿足條件
在相同條件下,將求解域模型劃分為三角形網(wǎng)格。不同網(wǎng)格密度時(shí),SNSFEM和FEM求解得到的電勢誤差范數(shù)收斂對比見圖5。由此可知:采用SNSFEM計(jì)算得到的誤差范數(shù)更小,以節(jié)點(diǎn)自由度最多的網(wǎng)格模型為例,SNSFEM的誤差范數(shù)僅為FEM的54%;在收斂速度方面,SNSFEM比FEM更快逼近精確解,說明SNSFEM具有更好的收斂性。
SNSFEM和FEM求解得到的L2誤差范數(shù)與CPU占用時(shí)間關(guān)系對比見圖6。在保證相同計(jì)算精度的情況下,SNSFEM比FEM計(jì)算時(shí)間短,且精度要求越高優(yōu)勢越明顯,說明SNSFEM可以提高電磁場數(shù)值計(jì)算的求解效率。
為測試SNSFEM的抗網(wǎng)格畸變能力,對圖4的網(wǎng)格模型進(jìn)行畸變處理,產(chǎn)生非均勻分布節(jié)點(diǎn)坐標(biāo)的表達(dá)式為
式中:Δx和Δy分別為初始均勻分布節(jié)點(diǎn)在x和y方向的節(jié)點(diǎn)間距;r為計(jì)算機(jī)在-1.0~1.0范圍內(nèi)產(chǎn)生的隨機(jī)數(shù);αir為畸變因子,取值范圍為0~0.5,αir越大則網(wǎng)格畸變越嚴(yán)重。αir=0(正常網(wǎng)格)和αir=0.5(畸變網(wǎng)格)的誤差范數(shù)對比見圖7。FEM受網(wǎng)格畸變的影響較大,誤差范數(shù)明顯上升,而SNSFEM計(jì)算結(jié)果幾乎不受網(wǎng)格畸變影響。在實(shí)際工程中,利用規(guī)則網(wǎng)格離散問題域的可能性較小,因此SNSFEM具有更高的工程應(yīng)用價(jià)值。
4.2 純電動(dòng)汽車的磁場分布
將純電動(dòng)汽車作為研究對象,驗(yàn)證SNSFEM在實(shí)際工程中的高效性。在汽車電磁場分析中,電機(jī)和電池系統(tǒng)均影響車內(nèi)腔體的電磁環(huán)境,因此必須研究具有多個(gè)磁場發(fā)生源的汽車車內(nèi)復(fù)雜電磁場分布。電動(dòng)汽車的形狀和內(nèi)部結(jié)構(gòu)復(fù)雜,電磁場計(jì)算時(shí)可將整車模型簡化為二維平面模型,只研究動(dòng)力電池和電機(jī)對整車電磁場的影響。
當(dāng)網(wǎng)格節(jié)點(diǎn)數(shù)相同時(shí),SNSFEM和FEM計(jì)算得到的汽車車內(nèi)腔體的磁勢分布云圖分別見圖9(a)和9(b)。因?yàn)闊o解析解,所以采用節(jié)點(diǎn)間距極?。ü?jié)點(diǎn)數(shù)7 234個(gè))時(shí)的有限元解作為參考解,見圖9(c)。由此可知:FEM的數(shù)值解與參考解偏差較大,且在前部電機(jī)周圍表現(xiàn)明顯;SNSFEM得到的數(shù)值解與參考解吻合度較高,誤差較小。
SNSFEM的計(jì)算結(jié)果比FEM結(jié)果更接近參考解,SNSFEM計(jì)算的磁勢分布與參考解吻合,而FEM結(jié)果有一定偏差。SNSFEM在分析純電動(dòng)汽車復(fù)雜電磁問題時(shí)具有較高的精度,說明SNSFEM更適用于工程計(jì)算。
5 結(jié) 論
基于SNSFEM建立純電動(dòng)汽車電磁場分析數(shù)學(xué)模型,研究純電動(dòng)汽車的電磁場分布,通過數(shù)值算例驗(yàn)證SNSFEM可靠性,結(jié)論如下。
(1)SNSFEM采用三角形單元對問題域進(jìn)行離散,可顯著降低網(wǎng)格劃分難度。
(2)梯度光滑技術(shù)和穩(wěn)定項(xiàng)修正使SNSFEM具有與真實(shí)模型更相近的剛度。在相同單元條件下,SNSFEM的精度明顯優(yōu)于FEM。
(3)與傳統(tǒng)FEM相比,SNSFEM具有計(jì)算效率高、收斂速度快和抗網(wǎng)格畸變能力強(qiáng)等優(yōu)點(diǎn)。
(4)對于邊界復(fù)雜的純電動(dòng)汽車電磁場問題,SNSFEM的計(jì)算結(jié)果比FEM的計(jì)算結(jié)果更精確,因此SNSFEM在工業(yè)應(yīng)用中具有較大潛力。
參考文獻(xiàn):
[1]JIN J M. Finite element method in electromagnetics[M]. 3rd ed. New Jersey: Wiley IEEE Press, 2014: 59.
[2] 張景明, 黃劭剛, 陳瑛. 同步發(fā)電機(jī)負(fù)載時(shí)二維電磁場有限元分析[J]. 微特電機(jī), 2005, 33(6): 910. DOI: 10.3969/j.issn.10047018.2005.06.002.
[3] 姜峰, 張建峰, 賈洪仁, 等. AC接觸器電磁場有限元分析[J]. 計(jì)算機(jī)輔助工程, 2010, 19(2): 8790. DOI: 10.3969/j.issn.10060871.2010.02.020.
[4] 黃劭剛, 夏永洪, 張景明. 基于ANSYS軟件的電機(jī)電磁場有限元分析[J]. 微特電機(jī), 2004, 32(5): 1214. DOI: 10.3969/j.issn.10047018.2004.05.003.
[5] 王春蘭, 張鋼, 董魯寧, 等. 電渦流傳感器的有限元仿真研究與分析[J]. 傳感器與微系統(tǒng), 2006, 25(2): 4143. DOI: 10.3969/j.issn.10009787.2006.02.014.
[6] 張勇. 計(jì)算電磁學(xué)的無單元方法研究[D]. 武漢: 華中科技大學(xué), 2006. DOI: 10.7666/d.d048580.
[7] DRANDIC' A, TRKULJA B. Computation of electric field inside substations with boundary element methods and adaptive cross approximation[J]. Engineering Analysis with Boundary Elements, 2018, 91: 16. DOI: 10.1016/j.enganabound.2018.03.002.
[8] PARREIRA G F, SILVA E J, FONSECA A R, et al. Elementfree Galerkin method in threedimensional electromagnetic problems[J]. IEEE Transactions on Magnetics, 2006, 42(4): 711714. DOI: 10.1109/TMAG.2006.872014.
[9] SIMPSON R N, LIU Z, VZQUEZ R, et al. An isogeometric boundary element method for electromagnetic scattering with compatible Bspline discretizations[J]. Journal of Computational Physics, 2018, 362: 264289. DOI: 10.1016/j.jcp.2018.01.025.
[10] 聶昕, 李永利, 何智成. 基于一種新型數(shù)值算法的電磁場仿真研究[J]. 機(jī)械強(qiáng)度, 2018, 40(2): 378383. DOI: 10.16579/j.issn.1001.9669.2018.02.020.
[11] LIU G R, NGUYENTHOI T, NGUYENXUAN H, et al. A nodebased smoothed finite element method (NSFEM) for upper bound solutions to solid mechanics problems[J]. Computers & Structures, 2009, 87(1/2): 1426. DOI: 10.1016/j.compstruc.2008.09.003.
[12] NGUYENTHOI T, LIU G R, NGUYENXUAN H, et al. Adaptive analysis using nodebased smoothed finite element method (NSFEM)[J]. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27(2): 198218. DOI: 10.1002/cnm.1291.
[13] LIU G R, CHEN L, NGUYENTHOI T, et al. A novel singular nodebased smoothed finite element method (NSFEM) for upper bound solutions of fracture problems[J]. International Journal for Numerical Methods in Engineering, 2010, 83(11): 14661497. DOI: 10.1002/nme.2868.
[14] WANG G, CUI X Y, LI G Y. Temporal stabilization nodal integration method for static and dynamic analyses of ReissnerMindlin plates[J]. Computers & Structures, 2015, 152: 125141. DOI: 10.1016/j.compstruc.2015.02.007.
[15] FENG H, CUI X Y, LI G Y. A stable nodal integration method with strain gradient for static and dynamic analysis of solid mechanics[J]. Engineering Analysis with Boundary Elements, 2016, 62: 7892. DOI: 10.1016/j.enganabound.2015.10.001.
[16] WANG G, CUI X Y, FENG H, et al. A stable nodebased smoothed finite element method for acoustic problems[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 297: 348370. DOI: 10.1016/j.cma.2015.09.005.
[17] CUI X Y, LI S, FENG H, et al. A triangular prism solid and shell interactive mapping element for electromagnetic sheet metal forming process[J]. Journal of Computational Physics, 2017, 336: 192211. DOI: 10.1016/j.jcp.2017.02.014.
[18] FENG H, CUI X Y, LI G Y. Coupledfield simulation of electromagnetic tube forming process using a stable nodal integration method[J]. International Journal of Mechanical Sciences, 2017, 128/129: 332344. DOI: 10.1016/j.ijmecsci.2017.05.003.
[19] LI S, CUI X Y, LI G Y. Multiphysics analysis of electromagnetic forming process using an edgebased smoothed finite element method[J]. International Journal of Mechanical Sciences, 2017, 134: 244252. DOI: 10.1016/j.ijmecsci.2017.10.018.
[20] LI S, CUI X Y, LI G Y. Modelling and demonstration of electromagnetically assisted stamping system using an interactive mapping method[J]. International Journal of Mechanical Sciences, 2018, 144: 312323. DOI: 10.1016/j.ijmecsci.2018.06.003.
(編輯 章夢)