柯常嬌
摘 ?要:開發(fā)一種既具有強可見光吸收又具有高電荷遷移率的高效光催化劑是非常重要的研究,但這仍然是一個巨大的挑戰(zhàn)。為了可以獲得具有強可見光吸收和高電荷遷移率的最佳光催化材料,文章將利用第一性原理,探究C-Mg共摻GaN納米片的電子性質(zhì)。研究結(jié)果表明C-Mg的共摻不會引起結(jié)構(gòu)的可見變化,但是可以降低有效帶隙值,以利用可見光。同時會引入雜質(zhì)能級,這將會形成載流子復(fù)合中心。
關(guān)鍵詞:GaN納米片;能帶結(jié)構(gòu);光催化
中圖分類號:O643.3 文獻標(biāo)志碼:A ? ? ? ? 文章編號:2095-2945(2020)02-0049-02
Abstract: It is very important to develop an efficient photocatalyst with both strong visible light absorption and high charge mobility, but it is still a great challenge. In order to obtain the best photocatalytic materials with strong visible light absorption and high charge mobility, this paper will use the first principles to explore the electronic properties of C-Mg co-doped GaN nanowires. The results show that the co-doping of C-Mg does not cause a visible change in the structure, but it can reduce the effective band gap to make use of visible light. At the same time, the impurity energy level will be introduced, which will form the carrier recombination center.
Keywords: GaN nanowires; energy band structure; photocatalysis
引言
寬帶隙的半導(dǎo)體氮化鎵在發(fā)光二極管[1]、太陽光電板[2]、熱電器件[3]等領(lǐng)域都具有廣泛地運用。由于氮化鎵具有很好的熱力學(xué)穩(wěn)定性,因此很多的研究者致力于探索氮化鎵的光催化性能。其中Kida研究發(fā)現(xiàn)GaN的導(dǎo)帶邊緣比H+/H2的氧化還原電位高0.5eV,這說明GaN可以分解水中的氫[4]。這引起了研究者們對氮化鎵在光催化領(lǐng)域應(yīng)用的研究興趣。近年來,低維的氮化鎵納米結(jié)構(gòu)因其在光電器件和光子器件中的潛在應(yīng)用而得到廣泛的研究。特別是二維的納米結(jié)構(gòu)顯示出非凡的電子特性與光學(xué)特性。與塊狀氮化鎵相比,氮化鎵的納米片具有較大的比表面積和較短的載流子遷移距離等優(yōu)點,并且可以在高溫環(huán)境中保持良好的性能。但是納米片的氮化鎵與塊體氮化鎵相同的是,它們都具有較寬的帶隙[5](3.44eV),不利于誘導(dǎo)可見光的響應(yīng)。然而要利用可見光的關(guān)鍵因素在于光催化劑具有合適的帶隙值,介于1.6eV到2.2eV[6]之間。因此調(diào)節(jié)帶隙是優(yōu)化催化劑性能的一個重要課題。而在半導(dǎo)體中引入外來元素的摻雜是調(diào)整電子結(jié)構(gòu)的有效策略。本文將采用第一性原理探究C-Mg共摻GaN納米片對其能帶結(jié)構(gòu)的影響。
1 計算方法
3 結(jié)束語
本文采用了第一性原理計算了C-Mg共摻GaN納米片的結(jié)構(gòu)變化以及電子結(jié)構(gòu)性質(zhì)。結(jié)果表明,C-Mg共摻后在原先的帶隙中產(chǎn)生了雜質(zhì)能級,使得有效帶隙降低。但是產(chǎn)生的雜質(zhì)能級會形成光生載流子的復(fù)合中心,增大載流子的符合幾率,降低載流子濃度。有效帶隙的降低有助于可見光的利用。
參考文獻:
[1]Ha G Y, Park T Y, Kim J Y, et al. Improvement of Reliability of GaN-Based Light-Emitting Diodes by Selective Wet Etching With p-GaN[J]. IEEE Photonics Technology Letters, 2007,19(11):813-815.
[2]Tang Y B, Chen Z H, Song H S, et al. Vertically Aligned p-Type Single-Crystalline GaN Nanorod Arrays on n-Type Si for Heterojunction Photovoltaic Cells[J]. Nano Letters, 2008,8(12):4191-4195.
[3]Elisa N. Hurwitz, Muhammad Asghar, Andrew Melton, et al. Thermopower Study of GaN-Based Materials for Next-Generation Thermoelectric Devices and Applications[J]. Journal of Electronic Material,2011,40(5):513-517.
[4]Kida T, Minami Y, Guan G, et al. Photocatalytic activity of gallium nitride for producing hydrogen from water under light irradiation[J]. Journal of Materials Science, 2006,41(11):3527-3534.
[5]Seager C H, Tallant D R, Yu J, et al. Luminescence in GaN co-doped with carbon and silicon[J]. Journal of Luminescence, 2004,106(2):115-124.
[6]Bai Y, Zhang Q, Luo G, etal. GaS0.5Te0.5 monolayer as an efficient water splitting photocatalyst[J]. Phys. Chem. Chem. Phys,2017,19(23):15394-15402.
[7]P E Blochl. Projector augmented-wave method[J]. Phys Rev B Condens Matter, 1994,50:17953-17979.
[8]Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B (Condensed Matter), 1996,54(16):11169-11186.
[9]Ernzerhof M, Scuseria G E. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional[J]. Journal of Chemical Physics, 1999,110(11):5029.
[10]White J A, Bird D M. Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations[J]. Physical Review B, 1994,50(7):4954-4957.
[11]Chadi, D. J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1977,16(4):1746-1747.
[12]Heyd J, Scuseria G E. Hybrid Functional Based on a Screened Coulomb Potential[J]. The Journal of Chemical Physics, 2003,118(18):8207-8215.
[13]Xia C, Peng Y, Wei S, et al. The feasibility of tunable p-type Mg doping in a GaN monolayer nanosheet[J]. Acta Materialia, 2013,61(20):7720-7725.
[14]Bassani, F, Yoshimine, M. Electronic Band Structure of Group IV Elements and of III-V Compounds[J]. Physical Review, 1963,130(1):20-33.