李隱俠 郭瀟瀟 張俊 孟春花 錢勇 仲躋峰 曹少先
摘要:轉(zhuǎn)錄因子CTCF在動物生長發(fā)育過程中發(fā)揮重要的調(diào)控作用,但其在綿羊中的序列特征、組織器官表達及功能目前尚不清楚。本研究以湖羊CTCF基因為研究對象,采用PCR方法克隆獲得其編碼區(qū)全序列,發(fā)現(xiàn)其序列全長2 187 bp,編碼727個氨基酸殘基,含有11個連續(xù)的鋅指結(jié)構(gòu)域。組織器官表達譜分析發(fā)現(xiàn)CTCF基因在湖羊各個組織器官中廣泛表達,在子宮中表達量相對較低,在胃中表達量相對較高。JASPAR在線軟件預測發(fā)現(xiàn)核受體NR5A1基因內(nèi)含子(翻譯起始位點ATG前393 bp片段)含有3個CTCF結(jié)合位點,雙熒光素酶試驗結(jié)果顯示,CTCF結(jié)合位點突變后NR5A1基因轉(zhuǎn)錄活性顯著或極顯著下降,表明CTCF可能通過調(diào)控NR5A1基因轉(zhuǎn)錄參與調(diào)控湖羊繁殖性能。
關鍵詞:轉(zhuǎn)錄因子CTCF;表達特征;NR5A1 基因;轉(zhuǎn)錄活性
中圖分類號:Q786文獻標識碼:A文章編號:1000-4440(2020)06-1482-07
Abstract:Transcription factor CTCF plays an important regulatory role in growth and development of animals, but its sequence characteristics, tissues and organs expression and function in sheep are still unclear. In this study, CTCF gene of Hu sheep was used as research object, the full coding sequence of CTCF was cloned by RT-PCR. The result showed that the full-length sequence of CTCF was 2 187 bp, encoding 727 amino acids and containing 11 consecutive zinc finger domains. CTCF gene was widely expressed in various tissues and organs of Hu sheep, with a relatively low expression in uterus and a relatively high expression in stomach. Predication results showed that the intron (the 393 bp fragment before translation initiation site ATG) of nuclear receptor NR5A1 gene contained three CTCF binding sites by the JASPAR online software. The results of dual luciferase assay showed that the transcription activity of NR5A1 gene decreased significantly or extrenely significantly when the CTCF binding sites were mutated, indicating that CTCF participated in the regulation of reproductive performance of Hu sheep by regulating NR5A1 gene transcription.
Key words:transcription factor CTCF;expression characteristics;NR5A1 gene;transcription activity
CTCF(CCCTC binding factor)是一個重要的轉(zhuǎn)錄因子,由一個N末端結(jié)構(gòu)域,一個包含11個C2H2鋅指中心結(jié)構(gòu)域和一個C末端結(jié)構(gòu)域組成[1]。哺乳動物基因組中大約含有30 000~70 000個CTCF結(jié)合位點[2],調(diào)控多種功能,包括微調(diào)基因表達、X染色體失活、印記和三維染色質(zhì)組織等[3-4]。體內(nèi)、外研究發(fā)現(xiàn),CTCF結(jié)合位點完全破壞或缺失的純合子在整個胚胎期都是致死的[5],且在特定細胞如卵母細胞[6]、淋巴細胞[7]、神經(jīng)元[8]中特異性敲除CTCF后導致器官特異性功能失效、異常的增強子-啟動子相互作用和轉(zhuǎn)錄失調(diào)。小鼠雄性生殖細胞中CTCF失活導致精子發(fā)生異常和不育[9]。說明CTCF在動物生長發(fā)育過程中具有非常重要的作用。
CTCF作為轉(zhuǎn)錄因子發(fā)揮重要的調(diào)控作用。作為轉(zhuǎn)錄抑制因子負調(diào)控c-myc和溶菌酶基因轉(zhuǎn)錄[10-12],作為轉(zhuǎn)錄激活因子與Cohesin蛋白參與調(diào)控人UGT1基因簇的轉(zhuǎn)錄[13],驅(qū)動端粒重復編碼RNA的轉(zhuǎn)錄進而促進端粒DNA復制的完成[14]。
孤兒核受體NR5A1基因參與調(diào)控湖羊的繁殖性能[15-17],JASPAR在線軟件預測發(fā)現(xiàn),在NR5A1基因內(nèi)含子(翻譯起始位點“ATG”前393 bp內(nèi))含有3個CTCF結(jié)合位點,但CTCF是否參與調(diào)控湖羊NR5A1基因轉(zhuǎn)錄尚未知道。本研究以湖羊為研究對象,擴增卵巢組織中CTCF基因編碼區(qū)序列,進行序列特征分析,同時鑒定其在湖羊各組織中的表達模式,最后構(gòu)建CTCF結(jié)合位點野生型/突變型NR5A1序列的熒光素酶報告載體,研究CTCF對NR5A1活性的影響,解析CTCF對湖羊NR5A1基因的調(diào)控作用。
1材料與方法
1.1試驗動物
試驗湖羊母羊(來自西來原生態(tài)農(nóng)業(yè)有限公司)屠宰后,立即采集各個組織器官樣(包括心、肝、脾、肺、腎、子宮、卵巢、大腸、小腸和肌肉等)于液氮中保存?zhèn)溆谩2捎脗鹘y(tǒng)的酚-氯仿方法提取DNA,用RNA提取試劑盒(百邁客生物科技有限公司產(chǎn)品)提取RNA,并使用HiScript II Q RT SuperMix(諾唯贊生物科技股份有限公司產(chǎn)品)完成cDNA第一鏈的合成。
1.2引物的合成和擴增
用Primer Premier 5.0 軟件先設計2對CTCF基因(序列號:XM_027978089.1)特異性引物P-CTCF1和P-CTCF2,用于擴增湖羊CTCF編碼區(qū);再設計P-CTCF3引物,以β-actin為內(nèi)參(表1)進行湖羊CTCF基因組織表達譜的鑒定。引物由南京擎科生物有限公司合成,引物序列的相關信息見表1。
以湖羊卵巢組織為模板,擴增湖羊CTCF基因編碼區(qū)序列; 以湖羊各組織逆轉(zhuǎn)錄的cDNA為模板,以β-actin為內(nèi)參,擴增不同組織中CTCF基因及對應β-actin,分析湖羊CTCF基因組織表達譜。RT-PCR反應體系為20 μl,含模板DNA或者cDNA 60 ng、1.5 TM2X High-Fidelity Master Mix (南京擎科生物科技有限公司產(chǎn)品) 10 μl、引物(100 μmol/L)1 μl,加滅菌雙蒸水至20 μl。PCR擴增程序:98 ℃預變性2 min;98 ℃變性10 s,53~58 ℃(表1)退火10 s,72 ℃延伸2 min ,35個循環(huán);最后72 ℃延伸5 min。
1.3序列分析和轉(zhuǎn)錄因子結(jié)合位點預測
克隆測序獲得的序列在NCBI 的ORF Finder(http://www.ncbi.nlm. nih.gov/projects/gorf/)中進行開放閱讀框預測,并用DNAMAN6.0軟件進行編碼區(qū)序列翻譯。用SMART(http://smart.embl-heidelberg.de/)軟件預測CTCF蛋白功能域。用JASPAR在線預測數(shù)據(jù)庫(http://jaspar.bin.ku.dk)預測轉(zhuǎn)錄因子結(jié)合位點。
1.4熒光素酶載體構(gòu)建
以湖羊DNA為模板擴增NR5A1基因自翻譯起始位點ATG前393 bp至ATG后85 bp的片段(片段長481 bp),連接到pMD-19T載體上,由南京擎科生物科技有限公司測序鑒定后獲得pMD-19T-NR5A1載體。用內(nèi)切酶Nhe I 和Hind III 雙酶切熒光素酶報告載體(pGL3-basic)和pMD19T-NR5A1,目的片段切膠回收后T4連接酶連接過夜,轉(zhuǎn)化DHα感受態(tài)細胞,測序鑒定后獲得pGL3-NR5A1載體。
1.5點突變載體構(gòu)建
以獲得的pMD19T-NR5A1質(zhì)粒為模板,根據(jù)TaKaRa MutanBEST Kit 引物設計原理設計3對5′端鄰接、3′端方向相反的引物用以導入變異點,同時使用高保真DNA聚合酶(Pyrobest DNA Polymerase)進行PCR 擴增、連接和質(zhì)粒DNA轉(zhuǎn)化,構(gòu)建3個NR5A1基因CTCF結(jié)合位點突變型pMD19T-NR5A1-TU1、pMD19T-NR5A1-TU2和pMD19T-NR5A1-TU3載體,用內(nèi)切酶Nhe I 和Hind III 分別雙酶切熒光素酶報告載體(pGL3-basic)和pMD19T-NR5A1-TU1、pMD19T-NR5A1-TU2和pMD19T-NR5A1-TU3載體,目的片段切膠回收后T4連接酶連接過夜,轉(zhuǎn)化DHα感受態(tài)細胞,測序鑒定后獲得pGL3-NR5A1-TU1、pGL3-NR5A1-TU2和pGL3-NR5A1-TU3載體,引物見表1。
1.6細胞轉(zhuǎn)染和熒光素酶活性測定
293T細胞傳代到含有10%胎牛血清[賽默飛世爾科技(中國)有限公司產(chǎn)品]、100 U/L氨芐/四環(huán)素[賽默飛世爾科技(中國)有限公司產(chǎn)品] 的DMEM(Dulbeccos modified Eagles media) 培養(yǎng)基的12孔板中,在5% CO2 的37 ℃培養(yǎng)箱中培養(yǎng)到細胞匯合度85%~90% 時,使用Lipofectamine 3000[賽默飛世爾科技(中國)有限公司產(chǎn)品]分別轉(zhuǎn)染空載pGL3-basic、NR5A1野生型載體pGL3-NR5A1和3個CTCF結(jié)合位點突變型NR5A1載體pGL3-NR5A1-TU1、pGL3-NR5A1-TU2、pGL3-NR5A1-TU3于細胞中,轉(zhuǎn)染后48 h 搜集細胞進行熒光素酶活性測定。
1.7數(shù)據(jù)分析
試驗結(jié)果用平均數(shù) ± 標準差表示,用SPSS16.0軟件中t檢驗進行獨立樣本統(tǒng)計分析,用One-way中的ANOVA進行多重比較分析。
2結(jié)果與分析
2.1湖羊CTCF基因編碼區(qū)序列擴增
以湖羊卵巢組織cDNA為模板,2對特異性引物擴增湖羊CTCF編碼區(qū)序列,1%瓊脂糖凝膠電泳檢測發(fā)現(xiàn)2對引物在湖羊中均有特異性擴增(圖1),切膠回收測序后進行序列比對和拼接,得到湖羊CTCF基因的整個編碼區(qū)CDS序列。
2.2湖羊CTCF基因序列特征分析
測序獲得的CTCF序列用在線軟件(ORF Finder )預測發(fā)現(xiàn),完整的開放閱讀框長度為2 187 bp,編碼727 個氨基酸殘基。SMART在線預測發(fā)現(xiàn)湖羊CTCF編碼的蛋白質(zhì)與其他哺乳動物一樣,含有11個連續(xù)的鋅指結(jié)構(gòu)域,11個鋅指結(jié)構(gòu)域在編碼區(qū)的起始位點見表2,說明CTCF基因在哺乳動物中高度保守。
2.3CTCF基因在湖羊組織器官中的表達
RT-PCR方法檢測CTCF基因在湖羊子宮、卵巢、脾臟、肝臟、腎臟、胃、肌肉、肺臟、小腸和大腸等10個組織器官中的表達模式,結(jié)果發(fā)現(xiàn)CTCF基因在檢測的10個湖羊組織器官中廣泛表達 (圖2),在子宮中表達量相對較低,胃中表達量相對最高。統(tǒng)計分析發(fā)現(xiàn)子宮、卵巢、脾臟和肝臟中CTCF表達量顯著低于腎臟、胃、肌肉、腸等組織(P<0.05)(圖2)。
2.4轉(zhuǎn)錄因子CTCF調(diào)控湖羊NR5A1基因活性
2.4.1湖羊NR5A1基因翻譯起始位點ATG前393 bp序列擴增以湖羊DNA為模板,擴增湖羊NR5A1基因翻譯起始位點ATG前393 bp至ATG后85 bp(共計481 bp)的片段,測序后比對分析發(fā)現(xiàn)其與引物源序列高度一致。JASPAR軟件預測發(fā)現(xiàn)在翻譯起始位點ATG前的393 bp片段內(nèi)存在3個轉(zhuǎn)錄因子CTCF結(jié)合位點(圖3)。
2.4.2CTCF 調(diào)控湖羊NR5A1基因轉(zhuǎn)錄活性構(gòu)建湖羊NR5A1基因ATG前393 bp至ATG后85 bp的片段野生型熒光素酶報告載體pGL3-NR5A1和3個突變型熒光素酶報告載體pGL3-NR5A1 TU1、pGL3-NR5A1 TU2、pGL3-NR5A1 TU3 (圖4A)。將4個熒光素酶報告載體轉(zhuǎn)染293T細胞,雙熒光素酶檢測試劑盒檢測熒光素酶活性,結(jié)果(圖4 B)發(fā)現(xiàn)第一個CTCF轉(zhuǎn)錄因子結(jié)合位點突變后熒光活性下降,但是與野生型相比差異不顯著;第二個CTCF轉(zhuǎn)錄因子結(jié)合位點突變后,熒光活性與野生型相比顯著下降(P=0.042);第三個CTCF轉(zhuǎn)錄因子結(jié)合位點突變后,熒光活性與野生型相比極顯著下降(P=0.001)。說明轉(zhuǎn)錄因子CTCF參與調(diào)控湖羊NR5A1基因的轉(zhuǎn)錄活性。
3討論
轉(zhuǎn)錄因子CTCF在調(diào)控動物生長發(fā)育過程中發(fā)揮重要作用[18-19]。CTCF通過抑制S100A1上調(diào)RYR2,從而抑制心肌細胞的內(nèi)質(zhì)網(wǎng)應激和凋亡[20],CTCF缺失胚胎無法植入[21-22],CTCF在人類胚胎發(fā)生過程中的3D染色質(zhì)結(jié)構(gòu)建立中具有關鍵作用,CTCF缺失導致小鼠早期大腦發(fā)育中PUMA(受P53上調(diào)表達的凋亡調(diào)控基因)上調(diào)和隨后大量凋亡[23]。
研究發(fā)現(xiàn)CTCF可調(diào)控脊椎動物大腦、心血管、四肢和肌肉發(fā)育等[24],而本研究組織器官表達譜顯示CTCF基因在湖羊各個組織器官中廣泛表達,是一種組成型表達基因,提示可能在湖羊各個組織中均發(fā)揮重要的調(diào)控作用,與前人的研究結(jié)果一致[24-25]。
人[26]、牛[27]、豬[28]、小鼠[29]和斑馬魚[30]等的CTCF基因均已被克隆,本研究首次克隆獲得湖羊CTCF 編碼區(qū)全序列,比對發(fā)現(xiàn)CTCF編碼的蛋白質(zhì)含有連續(xù)的11個鋅指結(jié)構(gòu)域,與其他哺乳動物一致。CTCF轉(zhuǎn)錄因子一般通過其第3到第7結(jié)構(gòu)域結(jié)合DNA的15 bp 核心基序調(diào)控靶基因表達[31],但CTCF中的11個鋅指結(jié)構(gòu)域在不同物種中參與調(diào)控靶基因的功能也時有不同,轉(zhuǎn)錄因子CTCF調(diào)控靶基因c-myc基因時,第2至第7鋅指結(jié)構(gòu)域?qū)τ陔uc-myc 基因V位點的結(jié)合是必需的,而第3至第7鋅指結(jié)構(gòu)域?qū)μ禺愋越Y(jié)合人c-myc 基因A位點是必須的[32],說明轉(zhuǎn)錄因子CTCF通過不同鋅指結(jié)構(gòu)域與不同DNA靶序列結(jié)合參與調(diào)控多種生物學功能[33-35],是一個多價轉(zhuǎn)錄因子。
進一步研究發(fā)現(xiàn)CTCF主要與基因間區(qū)域和內(nèi)含子相關聯(lián),像增強子一樣作為調(diào)控元件調(diào)控基因表達[36]。CTCF通過與FMR1基因啟動子區(qū)、外顯子區(qū)和內(nèi)含子2相結(jié)合參與調(diào)控FMR1基因轉(zhuǎn)錄調(diào)控[37],通過與BCL6基因第一內(nèi)含子結(jié)合參與調(diào)控基因轉(zhuǎn)錄和表觀遺傳學修飾[38],CTCF與巨細胞病毒(CMV)MIE基因的內(nèi)含子A結(jié)合并具有抑制MIE基因表達和病毒復制的功能[34]。NR5A1是核受體NR5A家族重要成員之一,與哺乳動物雌性生殖、卵泡發(fā)育、類固醇生成等關系密切[39-40],是維持雌性卵巢功能和繁殖力必需的因子[41-43]。在湖羊中發(fā)現(xiàn)NR5A1基因在卵巢組織中高表達,是調(diào)控湖羊產(chǎn)羔數(shù)的重要候選基因之一[15-17],5′RACE 方法鑒定其轉(zhuǎn)錄起始位點與翻譯起始位點(ATG)間有一個長度為1 424的內(nèi)含子存在[16],可能對NR5A1的轉(zhuǎn)錄發(fā)揮調(diào)控作用。本研究發(fā)現(xiàn)的NR5A1基因ATG前393 bp片段位于此內(nèi)含子中, 此393 bp片段存在3個CTCF轉(zhuǎn)錄因子結(jié)合位點,熒光素酶活性分析結(jié)果顯示CTCF轉(zhuǎn)錄因子參與調(diào)控湖羊NR5A1基因的轉(zhuǎn)錄活性,該結(jié)果初步說明轉(zhuǎn)錄因子CTCF可能通過調(diào)控NR5A1基因轉(zhuǎn)錄進而參與調(diào)控湖羊繁殖性能。
參考文獻:
[1]FILIPPOVA G N. Genetics and epigenetics of the multifunctional protein CTCF[J]. Curr Top Dev Biol, 2008, 80:337-360.
[2]ARZATE-MEJA R G, RECILLAS-TARGA F, CORCES V G. Developing in 3D: the role of CTCF in cell differentiation[J]. Development,2018, 145(6):137729.
[3]FEDORIW A M, STEIN P, SVOBODA P, et al. Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting[J]. Science, 2004, 303(5655): 238-240.
[4]MERKENSCHLAGER M, NORA E P. CTCF and cohesin in genome folding and transcriptional gene regulation[J]. Annu Rev Genomics Hum Genet, 2016, 17: 17-43.
[5]CARMONA-ALDANA F,? ZAMPEDRI C,? SUASTE-OLMOS F,? et al. CTCF knockout reveals an essential role for this protein during the zebrafish development[J]. Mech Dev, 2018, 154: 51-59.
[6]WAN L B, PAN H, HANNENHALLI S, et al. Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development[J]. Development,2008, 135(16): 2729-2738.
[7]RIBEIRO D E ALMEIDA C, STADHOUDERS R, DE BRUIJN M J W, et al. The DNA-binding protein CTCF limits proximal Vκ recombination and restricts κ enhancer interactions to the immunoglobulin κ light chain locus[J]. Immunity,2011, 35(4): 501-513.
[8]HIRAYAMA T, TARUSAWA E, YOSHIMURA Y, et al. CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons[J]. Cell Rep,2012, 2(2): 345-357.
[9]HERNNDEZ-HERNNDEZ A, LILIENTHAL I, FUKUDA N, et al. CTCF contributes in a critical way to spermatogenesis and male fertility[J]. Sci Rep,2016, 6: 28355.
[10]LOBANENKOV V V, NICOLAS R H, ADLER V V, et al. A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5′-flanking sequence of the chicken c-myc gene[J]. Oncogene,1990, 5: 1743-1753.
[11]BANIAHMAD A, STEINER C, KHNE A C, et al. Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site[J]. Cell,1990, 61: 505-514.
[12]OUBOUSSAD L, KREUZ S, LEFEVRE P F. CTCF depletion alters chromatin structure and transcription of myeloid-specific factors[J]. J Mol Cell Biol,2013, 5: 308-322.
[13]鄭曉飛,黃海燕,吳強. 染色質(zhì)構(gòu)架蛋白CTCF調(diào)控UGT1基因簇的表達[J]. 遺傳, 2019,41(6):509-523.
[14]BEISHLINE K, VLADIMIROVA O, TUTTON S, et al. CTCF driven TERRA transcription facilitates completion of telomere DNA replication[J]. Nat Commun,2017, 8(1): 2114.
[15]李隱俠,張俊,錢勇,等. 湖羊NR5A1基因全序列克隆和表達特征分析[J]. 江蘇農(nóng)業(yè)學報, 2019, 35(1): 114-121.
[16]LI Y, ZHANG J, QIAN Y, et al. Mutation -388 C>G of NR5A1 gene affects litter size and promoter activity in sheep[J]. Anim Reprod Sci,2018, 196: 19-27.
[17]李隱俠,張俊,錢勇,等. 湖羊NR5A1基因SNPs篩選及其與產(chǎn)羔數(shù)的關聯(lián)分析[J]. 江蘇農(nóng)業(yè)學報,2017, 33(1): 124-132.
[18]SEITAN VC, KRANGEL MS, MERKENSCHLAGER M. Cohesin, CTCF and lymphocyte antigen receptor locus rearrangement[J]. Trends Immunol,2012, 33: 153-159.
[19]OHLSSON R, BARTKUHN M, RENKAWITZ R. CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin[J]. Chromosoma,2010, 119: 351-360.
[20]ZENG Z, HUANG N, ZHANG Y, et al. CTCF inhibits endoplasmic reticulum stress and apoptosis in cardiomyocytes by upregulating RYR2 via inhibiting S100A1[J]. Life Sci,2020, 242: 117158.
[21]CHEN X, KE Y, WU K, et al. Key role for CTCF in establishing chromatin structure in human embryos[J]. Nature,2019, 576(7786): 306-310.
[22]MOORE J M, RABAIA N A, SMITH L E, et al. Loss of maternal CTCF is associated with peri-implantation lethality of Ctcf null embryos[J]. PLoS One,2012, 7: e34915.
[23]WATSON LA, WANG X, ELBERT A, et al. Dual effect of CTCF loss on neuroprogenitor differentiation and survival[J]. J Neurosci,2014, 34: 2860-2870.
[24]ARZATE-MEJíA R G, RECILLAS-TARGA F, CORCES V G. Developing in 3D: the role of CTCF in cell differentiation[J]. Developmet,2018, 145(6): 137729.
[25]PHILLIPS J E, CORCES V G. CTCF: master weaver of the genome[J]. Cell,2009, 137(7): 1194-1211.
[26]VOSTROV A A, QUITSCHKE W W. The zinc finger protein CTCF binds to the APB beta domain of the amyloid beta-protein precursor promoter. Evidence for a role in transcriptional activation[J]. J Biol Chem, 1997, 272(52): 33353-33359.
[27]蘇節(jié),朱鵬,劉慶友,等. 水牛轉(zhuǎn)錄抑制因子CTCF基因克隆分析及不同組織中的表達研究[J]. 中國畜牧獸醫(yī), 2013, 40(3): 1-6.
[28]UENISHI H, EGUCHI T, SUZUKI K, et al. PEDE (pig EST data explorer): construction of a database for ESTs derived from porcine full-length cDNA libraries[J]. Nucleic Acids Res, 2004, 32 (Suppl): D484-D488.
[29]LUTZ M, BURKE LJ, BARRETO G, et al. Transcription repression by the insulator protein CTCF involves histone deacetylases[J]. Nucl Acids Res, 2000, 28(8): 1707-1713.
[30]PUGACHEVA E M, KWON Y W, HUKRIEDE N A, et al. Cloning and characterization of zebrafish CTCF: developmental expression patterns, regulation of the promoter region, and evolutionary aspects of gene organization[J]. Gene,2006, 375: 26-36.
[31]HASHIMOTO H, WANG D, HORTON J R, et al. Structural basis for the versatile and methylation-dependent binding of CTCF to DNA[J]. Mol Cell, 2017, 66: 711-720.
[32]FILIPPOVA G N, FAGERLIE S, KLENOVA E M, et al. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes[J]. Mol Cell Biol,1996, 16(6): 2802-2813.
[33]KUZMIN I, GEIL L, GIBSON L, et al. Transcriptional regulator CTCF controls human interleukin 1 receptor-associated kinase 2 promoter[J]. J Mol Biol,2005, 346 (2): 411-422.
[34]AWAD T A, BIGLER J, ULMER J E, et al. Negative transcriptional regulation mediated by thyroid hormone response element 144 requires binding of the multivalent factor CTCF to a novel target DNA sequence[J]. J Biol Chem,1999, 274 (38): 27092-27098.
[35]TORRANO V, CHERNUKHIN I, DOCQUIER F, et al. CTCF regulates growth and erythroid differentiation of human myeloid leukemia cells[J]. J Biol Chem,2005, 280 (30): 28152-28161.
[36]RUIZ-VELASCO M, KUMAR M, LAI M C, et al. CTCF-mediated chromatin loops between promoter and gene body regulate alternative splicing across individuals[J]. Cell Syst,2017, 5(6): 628-637.
[37]LANNI S, GORACCI M, BORRELLI L, et al. Role of CTCF protein in regulating FMR1 locus transcription[J]. PLoS Genet,2013, 9(7): e1003601.
[38]BATLLE-LPEZ A, CORTIGUERA M G, ROSA-GARRIDO M, et al. Novel CTCF binding at a site in exon1A of BCL6 is associated with active histone marks and a transcriptionally active locus[J]. Oncogene,2015, 34(2): 246-256.
[39]MARTíNEZ F P, CRUZ R, LU F, et al. CTCF binding to the first intron of the major immediate early (MIE) gene of human cytomegalovirus (HCMV) negatively regulates MIE gene expression and HCMV replication[J]. J Virol,2014, 88(13): 7389-7401.
[40]KIM KW, LI S, ZHAO H, et al. CNS-specific ablation of steroidogenic factor 1 results in impaired female reproductive function[J]. Mol Endocrinol,2010, 24(6): 1240-1250.
[41]YIN M, L M, YAO G, et al. Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1[J]. Mol Endocrinol,2012, 26(7): 1129-1143.
[42]JEYASURIA P, IKEDA Y, JAMIN S P, et al. Cell-specific knockout of steroidogenic factor 1 reveals its essential roles in gonadal function[J]. Mol Endocrinol,2004, 18(7): 1610-1619.
[43]BUAAS F W, GARDINER J R, CLAYTON S, et al. In vivo evidence for the crucial role of SF1 in steroid-producing cells of the testis, ovary and adrenal gland[J]. Development,2012, 139(24): 4561-4570.
(責任編輯:陳海霞)