国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

元謀干熱河谷平溝建園土地治理工程效益及生態(tài)風(fēng)險(xiǎn)

2020-04-10 07:32:02熊東紅張聞多李琬欣張寶軍張信寶
關(guān)鍵詞:元謀沖溝建園

劉 琳,熊東紅,張聞多,李琬欣,袁 勇,張寶軍,張信寶

元謀干熱河谷平溝建園土地治理工程效益及生態(tài)風(fēng)險(xiǎn)

劉 琳1,2,3,熊東紅1,2※,張聞多1,2,3,李琬欣1,2,3,袁 勇1,2,3,張寶軍1,2,張信寶2

(1. 中國(guó)科學(xué)院山地災(zāi)害與地表過(guò)程重點(diǎn)實(shí)驗(yàn)室,成都 610041;2. 中國(guó)科學(xué)院、水利部成都山地災(zāi)害與環(huán)境研究所,成都 610041;3. 中國(guó)科學(xué)院大學(xué),北京 100049)

元謀干熱河谷沖溝侵蝕發(fā)育,水土流失嚴(yán)重,人地矛盾突出。自2010年以來(lái),該區(qū)開(kāi)展了一種集“水土流失治理、土地開(kāi)發(fā)和果蔬園建設(shè)”為一體的新型土地治理工程——平溝建園。該工程在增加耕地面積和增加土地收益等方面發(fā)揮了重要作用,但隨著工程的推進(jìn),其對(duì)生態(tài)環(huán)境的影響也不容忽視。該文采用遙感解譯結(jié)合實(shí)地調(diào)研方法,分析了元謀干熱河谷平溝建園土地治理工程現(xiàn)狀及產(chǎn)出效益,并對(duì)工程中存在的潛在生態(tài)風(fēng)險(xiǎn)進(jìn)行了探討。結(jié)果表明,平溝建園土地治理工程以民營(yíng)企業(yè)和個(gè)體戶為投資主體,截至2018年,已完成造地總面積超過(guò)6 700 hm2,顯著提高了該區(qū)土地資源利用效率。該工程造地投入為3.3~18萬(wàn)元/hm2,平均10.65萬(wàn)元/hm2,新造地主要種植葡萄、番茄等果蔬,年總產(chǎn)出最大可達(dá)造地平均投入的12.7倍,經(jīng)濟(jì)效益顯著。但在工程實(shí)施中,存在局部新造地邊坡溝蝕發(fā)育、水資源利用及其土壤水分平衡變化,以及農(nóng)藥化肥大量施用威脅水體安全等潛在生態(tài)風(fēng)險(xiǎn)。平溝建園工程是一項(xiàng)非官方組織的民間致富土地治理工程,未來(lái)需加強(qiáng)對(duì)工程具體生態(tài)效益及潛在生態(tài)風(fēng)險(xiǎn)問(wèn)題開(kāi)展科學(xué)監(jiān)測(cè)與試驗(yàn)研究,以期為元謀平溝建園工程的科學(xué)實(shí)施以及經(jīng)濟(jì)、生態(tài)與社會(huì)效益的持續(xù)發(fā)揮提供理論依據(jù)。

復(fù)墾;整治;土壤侵蝕;生態(tài)風(fēng)險(xiǎn);沖溝;干熱河谷

0 引 言

金沙江干熱河谷是中國(guó)西南地區(qū)典型的生態(tài)脆弱區(qū),沖溝侵蝕是其突出的生態(tài)環(huán)境問(wèn)題之一[1]。位于金沙江干熱河谷區(qū)核心地帶的元謀干熱河谷,沖溝極為發(fā)育,水土流失十分嚴(yán)重[2-3]。該區(qū)域溝壑密度3.0~5.0 km/km2,最大達(dá)7.4 km/km2[4],土壤侵蝕模數(shù)高達(dá)1.64×104t/(km2·a)[5-6],元謀縣中度以上水土流失面積占全縣國(guó)土面積的50%以上。沖溝侵蝕蠶食耕地,毀壞道路,形成支離破碎、溝壑縱橫的侵蝕劣地地貌[7-8],導(dǎo)致土地資源急劇減少[9]。隨著元謀人口數(shù)量的增長(zhǎng),人地矛盾日益突出,嚴(yán)重制約了區(qū)域經(jīng)濟(jì)發(fā)展。

元謀干熱河谷區(qū)光熱資源極其豐富,素有“天然溫室”之稱。充足的光照使得該區(qū)種植冬早蔬菜和熱帶經(jīng)濟(jì)林果非常有優(yōu)勢(shì),是全國(guó)僅有的露天冬早蔬菜種植區(qū),種植的果蔬因其產(chǎn)量高、品質(zhì)好、上市早、反季節(jié)等特點(diǎn),具有較高經(jīng)濟(jì)價(jià)值。

元謀干熱河谷區(qū)人均耕地面積僅為0.06 hm2,遠(yuǎn)低于全國(guó)平均水平。當(dāng)?shù)剞r(nóng)民為了擴(kuò)大種植面積,選擇在溝蝕程度較輕的荒溝荒坡地帶,自發(fā)性地開(kāi)展小面積的土地整理。他們采用小型機(jī)械將荒溝荒坡改造成階梯狀臺(tái)地,用以種植冬早蔬菜和熱帶經(jīng)濟(jì)林果,獲得了可觀的經(jīng)濟(jì)效益。但部分農(nóng)民因前期整地資金投入較大,且后期運(yùn)營(yíng)中需要耗費(fèi)大量人力物力,因而無(wú)法支撐園地正常運(yùn)營(yíng),使得整地工程在元謀干熱河谷區(qū)沒(méi)有得到普遍推廣。

近年來(lái),隨著社會(huì)的不斷進(jìn)步與發(fā)展,大量外來(lái)企業(yè)涌入元謀,在巨大利益的驅(qū)動(dòng)下,各私營(yíng)企業(yè)和個(gè)體老板開(kāi)始與當(dāng)?shù)剞r(nóng)民合作,采用大型機(jī)械,更大規(guī)模地開(kāi)發(fā)利用沖溝侵蝕劣地,更大面積地種植以獲得巨大經(jīng)濟(jì)效益。因此,一種新型的開(kāi)發(fā)利用荒溝荒坡、治理水土流失的模式-平溝建園工程模式,在光熱資源豐富的元謀干熱河谷地區(qū)逐漸興起。據(jù)元謀縣國(guó)土局不完全統(tǒng)計(jì),2010—2018年,通過(guò)對(duì)沖溝發(fā)育區(qū)進(jìn)行土地整理新開(kāi)辟的土地達(dá)6 700 hm2以上,將昔日“千溝萬(wàn)壑”的水土流失嚴(yán)重地帶變?yōu)椤罢R平坦、郁郁蔥蔥”的果蔬園,不僅大大降低了水土流失程度,還產(chǎn)生了顯著的經(jīng)濟(jì)效益。但由于平溝建園工程實(shí)施缺乏科學(xué)規(guī)劃,且果蔬園一年內(nèi)多季節(jié)種植水肥耗用量極大,可能導(dǎo)致局部地帶的水土流失、水資源平衡、農(nóng)業(yè)生態(tài)系統(tǒng)污染等系列生態(tài)風(fēng)險(xiǎn)問(wèn)題。

本研究首先采用目視解譯方法,之后對(duì)平溝建園工程數(shù)量較多、規(guī)模較大且較集中分布的老城鄉(xiāng)、平田鄉(xiāng)、黃瓜園鎮(zhèn)、新華鄉(xiāng)、物茂鄉(xiāng)及元馬鎮(zhèn)共6個(gè)鄉(xiāng)鎮(zhèn)進(jìn)行了野外實(shí)地調(diào)研,并最終選取了具有代表性的8個(gè)典型工程進(jìn)行了走訪調(diào)查。該研究深入調(diào)查分析元謀干熱河谷區(qū)平溝建園工程現(xiàn)狀、效益及新出現(xiàn)的生態(tài)問(wèn)題,并提出相應(yīng)的對(duì)策建議,為今后更科學(xué)、合理地實(shí)施平溝建園工程提供理論指導(dǎo),這對(duì)促進(jìn)該地區(qū)土地資源保護(hù)與可持續(xù)利用、降低區(qū)域生態(tài)風(fēng)險(xiǎn)、提高生態(tài)環(huán)境質(zhì)量等均具有重要意義。

1 元謀干熱河谷平溝建園工程現(xiàn)狀

1.1 研究區(qū)概況

元謀干熱河谷位于金沙江下游南側(cè)元謀縣境內(nèi)的元謀盆地(101°35'~102°06'E,25°23'~26°06'N)(圖1a)。該區(qū)屬南亞熱帶季風(fēng)氣候,具有“炎熱干燥、降水集中、干濕季分明”的特征[10]。年均降水量615 mm,年均氣溫21.9 ℃,無(wú)霜期350~365 d,年日照時(shí)數(shù)2 550~2 744 h,>10 ℃年積溫達(dá)8 000 ℃[11]。區(qū)內(nèi)元謀組地層廣泛分布,主要為第四紀(jì)河湖沉積物,厚達(dá)673.6 m,可分為4段28層,并具有“結(jié)構(gòu)松散、膠結(jié)度差、易侵蝕”等特征。主要土壤類型是燥紅土,土壤砂礫含量較高,植被以稀樹(shù)灌木草叢為主。特殊的氣候條件和巖土性質(zhì),使得該區(qū)域沖溝極為發(fā)育,沖溝年均溯源侵蝕速率50 cm/a左右,最大達(dá)200 cm/a。

1.2 平溝建園工程分布概況

元謀縣國(guó)土面積2 021.69 km2,海拔898~2 835.9 m,其中低于1 600 m的干熱河谷區(qū)面積占62%。元謀縣總?cè)丝跀?shù)為21.58萬(wàn)(2010年),人均耕地約為0.06 hm2,遠(yuǎn)低于全國(guó)人均耕地0.09 hm2的水平,土地資源極為緊缺。自2010年來(lái),元謀平溝建園工程總面積超過(guò)6 700 hm2,約占干熱河谷區(qū)面積5%。工程主要分布在老城鄉(xiāng)(48.3%)、平田鄉(xiāng)(17.88%)、物茂鄉(xiāng)(14.42%)、黃瓜園鎮(zhèn)(8.25%),元馬鎮(zhèn)、江邊鄉(xiāng)、羊街鎮(zhèn)和新華鄉(xiāng)等其他鄉(xiāng)鎮(zhèn)有零星分布(圖1d)。

圖1 元謀干熱河谷位置、平溝建園工程前后對(duì)比及工程分布圖

1.3 平溝建園工程技術(shù)模式與運(yùn)作方式

在元謀干熱河谷平溝建園工程中,民營(yíng)企業(yè)或個(gè)體戶以租賃土地的形式向當(dāng)?shù)卮逦瘯?huì)租用荒溝、荒坡地,利用挖掘機(jī)、推土機(jī)等現(xiàn)代化機(jī)械,從坡頂?shù)綔系?,由上至下,層層進(jìn)行推坡、填溝、壓實(shí),快速建成階梯狀分布、面積大小在500~1 000 m2不等的臺(tái)地(圖1c)。干熱河谷區(qū)內(nèi)元謀組地層土層深厚,超過(guò)600 m,且大部分沖溝發(fā)育短淺,下切深度大多小于50 m[12-13],地形落差相對(duì)較小。這些地形地貌、巖土特征以及現(xiàn)代機(jī)械化的推廣,為平溝建園工程的實(shí)施奠定了良好的基礎(chǔ)。對(duì)于工程新造地,民營(yíng)企業(yè)和個(gè)體戶一般擁有30~40 a使用年限,可自行種植或轉(zhuǎn)售給其他老板進(jìn)行經(jīng)營(yíng),以獲得利益。這有別于黃土高原延安地區(qū)的治溝造地技術(shù)模式:延安治溝造地工程以加高、維修現(xiàn)有淤地壩或者新建淤地壩為基礎(chǔ),人工挖取溝道兩岸坡地土體,填滿壩庫(kù),快速造地[14-16]。

2 平溝建園工程效益

平溝建園的造地投入主要包括土地流轉(zhuǎn)成本與施工成本。本研究對(duì)平溝建園工程進(jìn)行了詳細(xì)調(diào)查,列舉了8個(gè)典型平溝建園工程的造地投入(表1)??傮w來(lái)看,造地總投入在3.3~18萬(wàn)元/hm2,平均為10.65萬(wàn)元/hm2。通過(guò)遙感解譯,較2011年,元謀平溝建園工程增加耕地面積23.6%,充分提高土地資源利用率。平溝建園工程建設(shè)后基本用于果蔬種植,其中果蔬基地比例分別為60%和40%。自2010年平溝建園工程實(shí)施以來(lái),至2011、2014、2017年平溝建園總面積占縣果蔬種植面積分別為9%、16%、35%。由此可見(jiàn),平溝建園工程對(duì)元謀縣果蔬種植及經(jīng)濟(jì)作物生產(chǎn)總值的貢獻(xiàn)日趨凸顯(圖2)。

同時(shí),本研究基于調(diào)查結(jié)果,以分別代表水果和蔬菜且種植數(shù)量最多的葡萄、番茄為例,列舉了8個(gè)典型基地的產(chǎn)出狀況(表1)。由表可見(jiàn),種植葡萄年均產(chǎn)量達(dá)30~45 t/hm2,年總產(chǎn)出約15~135萬(wàn)元/hm2,約為平均造地成本(10.65萬(wàn)元/hm2)的1.4~12.7倍;種植番茄年均產(chǎn)量可達(dá)165~225 t/hm2,年總產(chǎn)出約14.4~67.5萬(wàn)元/hm2,約為平均造地成本的1.3~6.3倍。平溝建園工程實(shí)施后,其總產(chǎn)出顯著大于投入,將過(guò)去“土地貧瘠、干旱缺水、道路不暢”的荒溝荒坡,變成了一片片“整齊寬闊、道路相通、畝產(chǎn)值高達(dá)數(shù)萬(wàn)元”的果蔬基地,使得昔日的荒溝荒坡?lián)u身變成“聚寶盆”。

圖2 平溝建園工程面積與元謀縣果蔬種植面積對(duì)比

表1 不同果蔬基地每公頃投入產(chǎn)出

除經(jīng)濟(jì)效益外,元謀平溝建園工程也取得了較好的生態(tài)效益。平溝建園工程充分利用荒溝荒坡,通過(guò)平整土地、種植作物,也在一定程度上改善了當(dāng)?shù)氐乇砀脖粻顩r,改變了地表景觀(圖3)?;臏匣钠缕秸麨榕_(tái)地后,也促進(jìn)了雨水就地入滲[17-18],從而減少地表徑流,減輕坡面、溝道侵蝕,減少了河道、塘庫(kù)泥沙淤積;同時(shí),作物種植使得耕作層土壤黏粒含量增加,降低了土壤砂性,提高了土壤保水保肥能力[19]。

圖3 平溝建園工程完成后典型景觀

3 存在的主要生態(tài)問(wèn)題及分析

3.1 局部地帶邊坡溝蝕發(fā)育

平溝建園工程新造臺(tái)地邊坡,由于缺乏必要的生物和工程護(hù)坡措施,在短時(shí)間內(nèi)邊坡溝蝕發(fā)育問(wèn)題突出。大多數(shù)民營(yíng)企業(yè)和個(gè)體老板為提高造地速率,在施工過(guò)程中并未進(jìn)行層層壓實(shí),且新造地未經(jīng)過(guò)充分沉降就投入使用,導(dǎo)致臺(tái)地邊坡土體松軟、穩(wěn)定性差;加之地帶性土壤燥紅土極易侵蝕[20]、雨季降水集中且暴雨頻發(fā)[21]等原因,導(dǎo)致新造臺(tái)地邊坡建成初期普遍存在細(xì)溝、淺溝發(fā)育問(wèn)題(圖4a,4b)。

新造臺(tái)地也缺乏完善的水土保持措施,配置排水溝、蓄水池、擋墻等措施會(huì)使得施工成本增加6~9萬(wàn)元/hm2。據(jù)野外調(diào)查,平溝建園工程中水土保持工程措施配套整體相對(duì)薄弱(表2),以土質(zhì)排水溝、蓄水池為主,未見(jiàn)護(hù)坡措施。在臺(tái)地周圍和道路兩側(cè)直接開(kāi)溝挖渠作為簡(jiǎn)易土質(zhì)截、排水溝(圖4c),雖然可以達(dá)到一定的截水、排水效果,但其極易被暴雨沖毀或填埋,不能很好地發(fā)揮效益。這導(dǎo)致邊坡溝蝕不斷發(fā)育,局部地帶甚至出現(xiàn)切溝。據(jù)前期野外調(diào)查,邊坡侵蝕發(fā)育溝道寬度和深度最大均可達(dá)100 cm以上。

隨著新造地種植年限的延長(zhǎng),在作物生長(zhǎng)和機(jī)械碾壓共同作用,邊坡土體緊實(shí)度會(huì)有一定程度增加,加之植被自然恢復(fù)或人為采取邊坡保護(hù)措施,如在邊坡及田埂上種植鄉(xiāng)土草本-象草、扭黃茅、在發(fā)生水毀的排水溝上方布設(shè)鐵質(zhì)排導(dǎo)槽等,使得邊坡穩(wěn)定性有所提高、侵蝕程度有所減輕(圖4d)。但是,由于局部邊坡陡立、邊坡較長(zhǎng),植被覆蓋率低,仍然會(huì)存在細(xì)溝、切溝發(fā)育的可能性,對(duì)邊坡溝蝕問(wèn)題的防控仍不容忽視。

表2 平溝建園水土保持措施概況

注:表中“√”表示在平溝建園工程中布設(shè)有該措施。

Note: “√” indicates that the measure was adopted in the Gully Reclamation Project.

圖4 簡(jiǎn)易土質(zhì)排水溝、臺(tái)地邊坡溝蝕發(fā)育

3.2 新造地水資源及其土壤水分平衡問(wèn)題

大量研究表明,土地整理對(duì)地表擾動(dòng)大,顯著改變了下墊面條件,進(jìn)而會(huì)影響降雨入滲、地表徑流等水文過(guò)程[22]。羅明等[23]提出坡地墾殖與梯田建設(shè)會(huì)改變地表水系的網(wǎng)絡(luò)結(jié)構(gòu),不僅會(huì)直接影響自然生境類型的改變,還可能影響伴隨原有水系網(wǎng)絡(luò)而形成的各種相關(guān)生態(tài)過(guò)程。平溝建園工程通過(guò)平整荒溝荒坡變?yōu)樘菪闻_(tái)地,直接改變了原來(lái)荒溝荒坡的下墊面條件,在極大程度上影響了原有坡溝系統(tǒng)的水文過(guò)程。此外,大面積的果蔬種植在一定程度上增加了地表覆蓋,促進(jìn)了雨水入滲、減少了地表徑流。元謀干熱河谷所屬的龍川江流域,為金沙江一級(jí)支流。長(zhǎng)遠(yuǎn)來(lái)看,平溝建園工程導(dǎo)致元謀干熱河谷區(qū)水文過(guò)程的變化可能會(huì)影響龍川江流域水文過(guò)程變化,進(jìn)而影響流域水資源平衡。

耕地增加、提高糧食產(chǎn)出等在內(nèi)的土地整理活動(dòng)都會(huì)相應(yīng)提高水資源需求量,并嚴(yán)重影響區(qū)域水資源分配[23]。在元謀干熱河谷區(qū),平溝建園工程顯著增加了當(dāng)?shù)馗孛娣e,且年內(nèi)多季節(jié)果蔬種植,所需水資源量巨大。據(jù)調(diào)查,該區(qū)種植葡萄年灌溉量約9 000 m3/hm2,種植番茄年灌溉量約8 250 m3/hm2,整體灌溉量較大。元謀干熱河谷年平均降水量?jī)H為615 mm,如此巨大的灌溉用水主要通過(guò)抽取龍川江河水、水庫(kù)儲(chǔ)水和深層地下水來(lái)滿足。目前元謀縣有中小型水庫(kù)69座,總庫(kù)容10 873萬(wàn)m3,水利工程供水量11 905萬(wàn)m3。盡管儲(chǔ)水量較為充足,但平溝建園工程的大面積實(shí)施,對(duì)水資源需求強(qiáng)烈,如若不重視水資源供需平衡,不合理利用水資源,必然會(huì)成為平溝建園工程順利開(kāi)展的巨大瓶頸。此外,長(zhǎng)期采用深層地下水來(lái)滿足灌溉需求,也會(huì)給該區(qū)帶來(lái)地下水位不斷下降、龍川江旱季斷流等潛在生態(tài)風(fēng)險(xiǎn)。

土地利用變化是影響土壤水分變異的重要原因[24],平溝建園工程實(shí)施后土壤水分平衡問(wèn)題也值得關(guān)注。原荒溝荒坡地稀樹(shù)灌草植被類型轉(zhuǎn)變?yōu)樗卟说冉?jīng)濟(jì)作物,植物及其土壤水分之間的關(guān)系也發(fā)生了變化。新造臺(tái)地土體擾動(dòng)大、結(jié)構(gòu)松散、孔隙度大,大量灌溉水可能通過(guò)土體間的大孔隙以深層滲透形式而流失。此外,元謀干熱河谷區(qū)年蒸發(fā)量高達(dá)3 911.2 mm,約為年降水量的6.4倍[25]。強(qiáng)烈太陽(yáng)輻射會(huì)使得新造臺(tái)地大量灌溉水以蒸散發(fā)形式損失。目前有學(xué)者研究了沖溝發(fā)育區(qū)荒溝荒坡的土壤水分狀況[26-27],但鮮有學(xué)者對(duì)工程實(shí)施后新造土地的土壤水分平衡變化進(jìn)行定量研究。

3.3 農(nóng)藥化肥大量施用,威脅水體安全

元謀干熱河谷區(qū)地帶性土壤燥紅土,容重偏高、土壤結(jié)構(gòu)性差、有機(jī)質(zhì)含量極低(表3)[28]。由于沖溝侵蝕劇烈,進(jìn)一步導(dǎo)致土壤養(yǎng)分貧瘠化問(wèn)題突出,土壤肥力、養(yǎng)分和質(zhì)量整體較低[29-30]。特別是平溝建園工程以沖溝發(fā)育區(qū)的荒溝荒坡為建園對(duì)象,該區(qū)域土地退化程度高。何毓蓉等[31]研究結(jié)果顯示,該區(qū)域由于土壤侵蝕強(qiáng)烈,使得土壤有機(jī)質(zhì)貧化比率達(dá)93.1%。袁勇等[32]研究也表明沖溝侵蝕造成了沖溝發(fā)育區(qū)有機(jī)質(zhì)顯著下降,加劇了土壤有效性氮素和磷素?fù)p失。此外,在平溝建園工程實(shí)施過(guò)程中,大型機(jī)械會(huì)破壞土壤結(jié)構(gòu)和養(yǎng)分,破壞表土熟化層,將大量結(jié)構(gòu)差、養(yǎng)分貧瘠的深層土體翻挖到臺(tái)地表層。整體而言,該區(qū)域平溝建園后土地貧瘠,土壤質(zhì)量普遍低下。

表3 燥紅土的基本性狀

為解決新造地土壤質(zhì)量低下問(wèn)題,達(dá)到早種植早產(chǎn)出的目的,種植基地在建成初期為快速培肥土壤而施用大量化肥,這可能會(huì)對(duì)地下水、下游水體等構(gòu)成安全威脅。以種植葡萄為例,其水肥年灌溉量約9 000 m3/hm2,有機(jī)肥約150~180 t/(hm2·a),化肥約375~450 kg/hm2,遠(yuǎn)大于全國(guó)平均水平[33]。相較于傳統(tǒng)的灌溉模式,水肥一體化的滴灌、微灌等節(jié)水灌溉技術(shù)更能促進(jìn)水肥的高效利用[34],從而被新建基地廣泛應(yīng)用,但由于當(dāng)?shù)卦锛t土保肥性較差[15]、新造地土體疏松等原因,土壤中的速效肥料易隨徑流和灌溉水淋失,水肥利用率不高。此外,干熱河谷區(qū)作物為多季節(jié)種植,農(nóng)藥化肥施用頻率顯著高于其他地區(qū)。長(zhǎng)遠(yuǎn)來(lái)看,農(nóng)藥化肥的長(zhǎng)期大量施用,如果沒(méi)有有效的防護(hù)措施,在一定程度上會(huì)威脅到該區(qū)地下水和地表水安全,進(jìn)而會(huì)威脅龍川江下游水安全,帶來(lái)巨大的生態(tài)風(fēng)險(xiǎn)。因此,在民營(yíng)企業(yè)僅考慮短期內(nèi)巨大經(jīng)濟(jì)效益回報(bào)的背景下,平溝建園工程可能產(chǎn)生的潛在深遠(yuǎn)水安全生態(tài)風(fēng)險(xiǎn)也值得政府和科學(xué)家關(guān)注。

4 科學(xué)規(guī)劃與研究建議

4.1 優(yōu)化施工技術(shù),完善防護(hù)設(shè)施

一是在造地技術(shù)的優(yōu)化、提升方面,雖可參考延安治溝造地工程的施工標(biāo)準(zhǔn)(施工過(guò)程中每25 cm對(duì)土體進(jìn)行壓實(shí),邊坡不得高于4 m,坡度不得大于53°),但鑒于元謀干熱河谷區(qū)地形、土壤類型與延安地區(qū)存在較大差異,需深入研究該區(qū)降水條件與臺(tái)地邊坡侵蝕發(fā)育的關(guān)系,探究元謀干熱河谷區(qū)平溝建園工程中最適碾壓土層厚度、不同邊坡高度對(duì)應(yīng)的最優(yōu)坡率等方面技術(shù)標(biāo)準(zhǔn),總結(jié)提出適合該區(qū)域的技術(shù)規(guī)范。二是對(duì)新造的裸露邊坡,及時(shí)采取適宜的植物護(hù)坡、工程護(hù)坡、擋墻等邊坡防護(hù)措施,防止邊坡溝蝕發(fā)育。三是針對(duì)臺(tái)地田面及邊坡,合理設(shè)計(jì)并布設(shè)截水溝、排水溝和管涵等配套設(shè)施,盡可能減少?gòu)搅鲗?duì)臺(tái)地邊坡的沖刷,保證邊坡的穩(wěn)定。

4.2 合理利用水資源,科學(xué)灌溉新造地

在平溝建園過(guò)程中,要兼顧區(qū)域水資源的供需關(guān)系和資源平衡等問(wèn)題,合理利用水資源,科學(xué)灌溉新造地。一是在工程可行性研究和規(guī)劃設(shè)計(jì)時(shí),要充分分析水資源的時(shí)空分布狀況,根據(jù)需水要求,進(jìn)行水資源供需分析,科學(xué)布設(shè)蓄水池及機(jī)井設(shè)備,達(dá)到合理利用水資源的目的。二是要查明不同季節(jié)、不同農(nóng)作物種植結(jié)構(gòu)及種植方式下的用水需求及其蒸散發(fā)量,改進(jìn)農(nóng)業(yè)技術(shù)、合理調(diào)整產(chǎn)業(yè)結(jié)構(gòu),科學(xué)設(shè)計(jì)灌溉保證率。三是在平溝建園工程完工后,認(rèn)真貫徹高效節(jié)水灌溉農(nóng)業(yè)措施,通過(guò)地膜覆蓋、秸稈覆蓋等措施降低土地和作物的水分蒸發(fā)來(lái)提高水資源利用率,切實(shí)推動(dòng)農(nóng)業(yè)節(jié)水增效技術(shù)的綜合集成化、規(guī)模化和產(chǎn)業(yè)化發(fā)展。

4.3 科學(xué)培肥新造地土壤,合理施用農(nóng)藥施肥

一是充分了解平溝建園土地的土壤質(zhì)量狀況,在工程初期妥善選擇剝離與回填表土的方法,堅(jiān)持做到“熟土在上、生土在下”,增強(qiáng)農(nóng)田的生產(chǎn)作業(yè)能力[35]。二是在實(shí)踐中本著因地制宜的原則,采用客土、增加農(nóng)家肥、種植綠肥等方法,科學(xué)快速地培肥新造地土壤,提升土壤質(zhì)量,為工程后續(xù)經(jīng)營(yíng)提供較好的土地基礎(chǔ)。三是要將區(qū)域氣候特征和不同經(jīng)濟(jì)作物的生理需求相結(jié)合,科學(xué)確定施肥量,選擇的農(nóng)藥要高效低毒低殘留,并嚴(yán)格控制使用量,利用生物技術(shù)、生物農(nóng)藥等生物防治方法控制病蟲(chóng)害,減少農(nóng)藥使用。四是不斷提高果蔬的抵抗病蟲(chóng)害及自然災(zāi)害的能力,做到科學(xué)施肥、精準(zhǔn)施肥,合理施用農(nóng)藥,從根源上減輕化肥與農(nóng)藥對(duì)地表及地下水的污染。

5 結(jié) 論

元謀干熱河谷區(qū)平溝建園工程將地形破碎的沖溝侵蝕劣地改造為平坦、高“含金量”的果蔬基地,顯著增加了該區(qū)耕地面積,短期內(nèi)為民營(yíng)資本帶來(lái)巨大的效益產(chǎn)出,有效推動(dòng)了當(dāng)?shù)厣鐣?huì)經(jīng)濟(jì)發(fā)展,對(duì)遏制沖溝發(fā)育、增加地表覆蓋、抑制水土流失等方面也發(fā)揮了顯著的作用??傮w來(lái)看,這是一項(xiàng)非官方組織的民間致富工程,其經(jīng)營(yíng)模式也值得在西南其他干熱河谷地區(qū)推廣。但從長(zhǎng)遠(yuǎn)來(lái)看,該地區(qū)平溝建園工程對(duì)下墊面有較大擾動(dòng),且果蔬種植需要大量灌溉和施肥,會(huì)產(chǎn)生局部邊坡水土流失、水資源平衡、地下水安全等不容忽視的生態(tài)風(fēng)險(xiǎn)問(wèn)題。因此,針對(duì)具體的生態(tài)效益及存在的潛在生態(tài)風(fēng)險(xiǎn)問(wèn)題,今后需選擇一些典型工程,開(kāi)展長(zhǎng)期科學(xué)監(jiān)測(cè)、試驗(yàn)等研究,進(jìn)行定量分析與評(píng)價(jià),對(duì)控制以上生態(tài)風(fēng)險(xiǎn)問(wèn)題提出對(duì)策建議,為今后更科學(xué)、合理地實(shí)施平溝建園工程,更大程度地發(fā)揮工程效益、促進(jìn)該區(qū)土地資源保護(hù)與可持續(xù)利用、保障區(qū)域生態(tài)安全等提供依據(jù)。

[1] Dong Yifan, Xiong Donghong, Su Zheng'an, et al. The distribution of and factors influencing the vegetation in a gully in the Dry-hot Valley of southwest China[J]. Catena, 2014, 116: 60-67.

[2] 陳安強(qiáng),張丹,范建容,等. 元謀干熱河谷區(qū)溝蝕發(fā)育階段與崩塌類型的關(guān)系[J]. 中國(guó)水土保持科學(xué),2011,9(4):1-6. Chen Anqiang, Zhang Dan, Fan Jianrong, et al. Relationship between gullying development stage and collapse type in Yuanmou Dry-Hot Valley area[J]. Science of Soil and Water Conservation, 2011, 9(4): 1-6. (in Chinese with English abstract)

[3] Yang Dan, Xiong Donghong, Zhang Baojun, et al. Effect of grass basal diameter on hydraulic properties and sediment yield processes in gully beds in the Dry-hot Valley Region of Southwest China[J]. Catena, 2017, 152: 299-310.

[4] 張寶軍,熊東紅,張光輝,等. 基于力矩法的元謀干熱河谷沖溝溝頭土體穩(wěn)定性模擬與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):133-140. Zhang Baojun, Xiong Donghong, Zhang Guanghui, et al. Simulation and verification of overhanging soil layers stability of gully heads in Yuanmou Dry-hot Valley based on moment method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 133-140. (in Chinese with English abstract)

[5] 校亮,熊東紅,張寶軍,等. 干熱河谷沖溝侵蝕劣地坡積區(qū)土體性質(zhì)與裂縫形態(tài)發(fā)育特征[J]. 灌溉排水學(xué)報(bào),2017,36(6):81-86. Xiao Liang, Xiong Donghong, Zhang Baojun, et al. Soil property and morphology of soil cracks in sediment trap of gully badlands in Dry-hot Valley[J]. Journal of Irrigation and Drainage, 2017, 36(6): 81-86. (in Chinese with English abstract)

[6] Zhang Baojun, Xiong Donghong, Zhang Guanghui, et al. Impacts of headcut height on flow energy, sediment yield and surface landform during bank gully erosion processes in the Yuanmou Dry-hot Valley region, southwest China[J]. Earth Surface Process and Landforms, 2018, 43(10): 2271-2282.

[7] 張寶軍,熊東紅,郭敏,等. 干熱河谷沖溝侵蝕劣地不同坡位草被生長(zhǎng)和土壤水分關(guān)系研究[J]. 草業(yè)科學(xué),2015,32(5):686-693. Zhang Baojun, Xiong Donghong, Guo Min, et al. The correlation on between soil moisture and grass growth in different slope positions of gully badlands in Dry-hot Valley[J]. Pratacultural Science, 2015, 32(5): 686-693. (in Chinese with English abstract)

[8] 柴宗新,范建容,劉淑珍. 金沙江下游元謀盆地沖溝發(fā)育特征和過(guò)程分析[J]. 地理科學(xué),2001(4):339-343. Chai Zongxin, Fan Jianrong, Liu Shuzhen. Analysis on development characteristics and process of gully in Yuanmon basin on lower reaches of Jinsha River[J]. Scientia Geographica Sinica, 2001(4): 339-343. (in Chinese with English abstract)

[9] 楊丹,熊東紅,翟娟,等. 元謀干熱河谷沖溝形態(tài)特征及其成因[J]. 中國(guó)水土保持科學(xué),2012,10(1):38-45. Yang Dan, Xiong Donghong, Zhai Juan, et al. Morphological characteristics and causes of gullies in Yuanmou Dry-hot Valley Region[J]. Science of Soil and Water Conservation, 2012, 10(1): 38-45. (in Chinese with English abstract)

[10] 楊丹,熊東紅,張寶軍,等. 溝床草被對(duì)干熱河谷沖溝產(chǎn)沙特性影響的野外模擬試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(15):124-132. Yang Dan, Xiong Donghong, Zhang Baojun, et al. Field experiment on impacts of grass belt length on characteristics of sediment yields and transport rates for gullies in Jinsha dry-hot valley region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 124-132. (in Chinese with English abstract)

[11] 王小丹,鐘祥浩,范建容,等. 金沙江干熱河谷元謀盆地沖溝溝頭形態(tài)學(xué)特征研究[J]. 地理科學(xué),2005(1):63-67. Wang Xiaodan, Zhong Xianghao, Fan Jianrong, et al. Study on the morphological characteristics of the gully heads in Yuanmou basin, Arid River Valley of Jinsha River, China[J]. Scientia Geographica Sinica, 2005(1): 63-67. (in Chinese with English abstract)

[12] Deng Qingchun, Qin Fachao, Zhang Bin, et al. Characterizing the morphology of gully cross-sections based on PCA: A case of Yuanmou Dry-hot Valley[J]. Geommorphology, 2015, 228: 703-713.

[13] 張明忠,何光熊,方海東,等. 元謀干熱河谷優(yōu)勢(shì)鄉(xiāng)土草群落水土保持效益研究[J]. 水土保持研究,2017,24(2):101-104. Zhang Mingzhong, He Guangxiong, Fang Haidong, et al. Effects of dominant native grasses constructed communities on soil and water conservation in Dry-hot Valley of Yuanmou[J]. Research of Soil and Water Conservation, 2017, 24(2): 101-104. (in Chinese with English abstract)

[14] 張信寶,金釗. 延安治溝造地是黃土高原淤地壩建設(shè)的繼承與發(fā)展[J]. 地球環(huán)境學(xué)報(bào),2015,6(4):261-264. Zhang Xinbao, Jin Zhao. Gully land consolidation project in Yan'an is inheritance and development of wrap land dam project on the Loess Plateau[J]. Journal of Earth Environment, 2015, 6(4): 261-264. (in Chinese with English abstract)

[15] 劉彥隨,李裕瑞. 黃土丘陵溝壑區(qū)溝道土地整治工程原理與設(shè)計(jì)技術(shù)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(10):1-9. Liu Yansui, Li Yurui. Engineering philosophy and design scheme of gully land consolidation in Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(10): 1-9. (in Chinese with English abstract)

[16] 賀春雄. 延安治溝造地工程的現(xiàn)狀、特點(diǎn)及作用[J]. 地球環(huán)境學(xué)報(bào),2015,6(4):255-260. He Chunxiong. The situation, characteristics and effect of the Gully Reclamation Project in Yan'an[J]. Journal of Earth Environment, 2015, 6(4): 255-260. (in Chinese with English abstract)

[17] 李艷梅,王克勤,劉芝芹,等. 云南干熱河谷不同坡面整地方式對(duì)土壤水分環(huán)境的影響[J]. 水土保持學(xué)報(bào),2006(1):15-19. Li Yanmei, Wang Keqin, Liu Zhiqin, et al. Effect of measure of engineering preparation to soil water in Yunnan Dry-Hot River Valley[J]. Journal of Soil and Water Conservation, 2006(1): 15-19. (in Chinese with English abstract)

[18] 李艷梅,王克勤,劉芝芹,等. 云南干熱河谷不同坡面整地方式強(qiáng)化降雨入滲的效益[J]. 中國(guó)水土保持,2008(11):25-29. Li Yanmei, Wang Keqin, Liu Zhiqin, et al. Benefits of enforced rainfall infiltration through different ways of sloped land preparation of Dry-hot Valley in Yuanmou[J]. Soil and Water Conservation in China, 2008(11): 25-29. (in Chinese with English abstract)

[19] 拜得珍,紀(jì)中華,廖承飛,等. 淺析干熱河谷水土保持型生態(tài)農(nóng)業(yè)土壤工程技術(shù):以云南元謀為例[J]. 西南農(nóng)業(yè)學(xué)報(bào),2004(S1):272-275. Bai Dezhen, Ji Zhonghua, Liao Chengfei, et al. The preliminary study on the soil management technology of eco-agriculture to conserve water and soil in dry-hot valley[J]. Southwest China Journal of Agricultural Sciences, 2004(S1): 272-275. (in Chinese with English abstract)

[20] 張素,熊東紅,鄭學(xué)用,等. 干熱河谷不同活躍程度沖溝溝床土體抗沖性差異[J]. 水土保持學(xué)報(bào),2015,29(3):13-17. Zhang Su, Xiong Donghong, Zheng Xueyong, et al. Soil anti-scourability on gully beds with different active degree in Dry-hot Valley Region[J]. Journal of Soil and Water Conservation, 2015, 29(3): 13-17. (in Chinese with English abstract)

[21] 張素,熊東紅,張寶軍,等. 干濕交替下干熱河谷沖溝不同土層的抗侵蝕性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(12):152-159,212. Zhang Su, Xiong Donghong, Zhang Baojun, et al. Soil erosion resistance under dry-wet alternation in different layers of Dry-hot Valley Region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 152-159,212. (in Chinese with English abstract)

[22] Bronstert A, Vollmer S, Ihringer J. A review of the impact of land consolidation on runoff production and flooding in Germany[J]. Physics & Chemistry of the Earth, 1995, 20(3): 321-329.

[23] 羅明,張惠遠(yuǎn). 土地整理及其生態(tài)環(huán)境影響綜述[J]. 資源科學(xué),2002,24(2):60-63. Luo Ming, Zhang Huiyuan. Land consolidation and its ecological and environmental impacts[J]. Resources Science, 2002, 24(2): 60-63. (in Chinese with English abstract)

[24] 韓姣姣,段旭,趙洋毅,等. 干熱河谷不同土地利用類型坡面土壤水分時(shí)空變異[J]. 水土保持學(xué)報(bào),2017,31(2):129-136. Han Jiaojiao, Duan Xu, Zhao Yangyi, et al. Spatial and temporal variability of soil moisture on sloping lands of different land use types in a dry-hot valley[J]. Journal of Soil and Water Conservation, 2017, 31(2): 129-136. (in Chinese with English abstract)

[25] 楊丹,熊東紅,劉守江,等. 土壤理化及力學(xué)性質(zhì)對(duì)干熱河谷臺(tái)地邊坡溝蝕發(fā)育的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):170-176. Yang Dan, Xiong Donghong, Liu Shoujiang, et al. Impacts of soil physical-chemical and mechanical properties on gully erosion development on terrace slopes in dry-hot valley region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 170-176. (in Chinese with English abstract)

[26] 吳漢,熊東紅,張寶軍,等. 金沙江干熱河谷沖溝發(fā)育區(qū)不同部位土壤水分的時(shí)空變化特征[J]. 西南農(nóng)業(yè)學(xué)報(bào),2018,31(2):384-392. Wu Han, Xiong Donghong, Zhang Baojun, et al. Spatial and temporal change of soil water in different sections of gully in Dry-hot Valley Region of Southwest China[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(2): 384-392. (in Chinese with English abstract)

[27] 冉紅,方海東,劉輝,等. 干熱河谷溝壑區(qū)表層土壤含水量的變化[J]. 西南農(nóng)業(yè)學(xué)報(bào),2017,30(9):2060-2064. Ran Hong, Fang Haidong, Liu Hui, et al. Dynamics of surface soil moisture in gully region of dry-hot valley[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(9): 2060-2064. (in Chinese with English abstract)

[28] 何毓蓉,黃成敏,張信寶. 我國(guó)燥紅土的水分狀況及節(jié)水農(nóng)業(yè)利用研究[J]. 水土保持研究,1996,3(3):63-69. He Yurong, Huang Chengmin, Zhang Xinbao. Study on soil water regime and untilization on water-saving agriculture in dry red soils[J]. Research of Soil and Water Conservation, 1996, 3(3): 63-69. (in Chinese with English abstract)

[29] 黃成敏,劉淑珍. 云南干熱河谷區(qū)土壤侵蝕對(duì)土壤肥力的影響[J]. 熱帶亞熱帶土壤科學(xué),1996,5(2):102-107. Huang Chengmin, Liu Shuzhen. Effects of soil erosion on soil fertility in Yuanmou dry and hot valley[J]. Tropical and Sbutropical Soil Science, 1996, 5(2): 102-107. (in Chinese with English abstract)

[30] 劉剛才,紀(jì)中華,方海東,等. 干熱河谷退化生態(tài)系統(tǒng)典型恢復(fù)模式的生態(tài)響應(yīng)與評(píng)價(jià)[M]. 北京:科學(xué)出版社,2011.

[31] 何毓蓉,周紅藝,張保華,等. 金沙江干熱河谷典型區(qū)土壤退化機(jī)理研究[J]. 水土保持學(xué)報(bào),2002,16(3):24-27. He Yurong, Zhou Hongyi, Zhang Baohua, et al. Mechanism of soil degradation in dry and hot valley of Jinshajiang River area-Effect of soil erosion on soil degradation[J]. Journal of Soil and Water Conservation, 2002, 16(3): 24-27. (in Chinese with English abstract)

[32] 袁勇,熊東紅,校亮,等. 元謀干熱河谷沖溝不同部位土壤質(zhì)量評(píng)價(jià)[J]. 西南農(nóng)業(yè)學(xué)報(bào),2018,31(10):2165-2172. Yuan Yong, Xiong Donghong, Xiao Liang, et al. Assessment on soil quality in different plots of gullies in Yuanmou Dry-hot valley region[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(10): 2165-2172. (in Chinese with English abstract)

[33] 李維,黃秀霞,席永士,等. 西藏青稞作物化肥農(nóng)藥使用現(xiàn)狀及對(duì)策建議[J]. 西藏科技,2019(3):3-5.

[34] 程載恒,李王成. 滴灌水肥一體化技術(shù)對(duì)果蔬綜合效益的影響[J]. 現(xiàn)代農(nóng)業(yè)科技,2017(16):92-93.

[35] 李強(qiáng),王夢(mèng)易. 基于生態(tài)文明建設(shè)理念的土地整理研究[J]. 中國(guó)集體經(jīng)濟(jì),2015(15):71-72.

Benefits and ecological risks of Gully Reclamation Project in Yuanmou Dry-hot Valley region

Liu Lin1,2,3, Xiong Donghong1,2,※, Zhang Wenduo1,2,3, Li Wanxin1,2,3, Yuan Yong1,2,3, Zhang Baojun1,2, Zhang Xinbao2

(1.,,610041,; 2.,,610041,; 3.,100049,)

The Yuanmou Dry-hot Valley of the Jinsha River is an ecologically fragile region with severe gully erosion in southwest China. Gullies, with the density of 3 to 5 km/km2, erode the farmland and form the erosion badlands, accounting for approximately 70% of the total area and inducing rapid land degradation. However, this valley features extremely hot weather, with annual average temperature of 21.9 °C and annual sunshine of 2 550-2 744 h. The abundant sunshine and heat resources make this valley being a large “natural greenhouse”, which is very favorable for developing off-season agriculture. The vegetable and fruit plantation in this valley have high output and quality. Since 2010, a new land management model to reuse the gully erosion badlands has been carried out in this area, namely the Gully Reclamation Project. This project has played an important role in increasing the cultivated land resources and economic returns, however, with the project implementation, the potential ecological risks cannot be ignored. In this study, visual interpretation methods were employed to identify the area of the Gully Reclamation Projects. Then, we conducted field surveys in 6 villages with the greater project distribution, Laocheng, Pingtian, Huangguayuan, Xinhua, Wumao, and Yuanma. And ultimately, we visited a number of farmer households, and 8 typical projects were selected to analyze the technology and operation modes, and output benefit of this land management project. The potential ecological risks during the project implementation were also discussed. The results showed that the Gully Reclamation Project with the main investors of enterprisers and local farmers significantly improved the land resource utilization efficiency in the area. From 2010 to 2018, the project completed new arable land a total area of more than 6 700 hm2, accounting for about 5% of the area of the dry-hot valley. Meanwhile, the project brought huge economic benefits for enterprisers and local farmers. The total land construction investment was 33 000-180 000 yuan/hm2, with an average of 106 500 yuan/hm2. Taking the mostly planted grapes and tomatoes as examples, the total annual output was 1.4 to 12.7 times and 1.3 to 6.3 times of the average land construction investment, respectively. However, with the implementation of the project, there are also several potential ecological risks, such as the rill erosion in terrace slopes, the imbalance of water resources utilization in new land, and the threat to water safety caused by the massive application of pesticides and fertilizers. In general, the Gully Reclamation Project is a non-governmental organized and successful land management. However, it is of great significance to strengthen the scientific monitoring and researching on the specific ecological benefits and potential ecological risks in the future. This can provide a theoretical basis for the scientific implementation of the project and the sustainable development of economic, ecological and social benefits.

reclamation; consolidation; soil erosion; ecological risk; gully; the Dry-hot Valley region

劉 琳,熊東紅,張聞多,李琬欣,袁 勇,張寶軍,張信寶. 元謀干熱河谷平溝建園土地治理工程效益及生態(tài)風(fēng)險(xiǎn)[J].農(nóng)業(yè)工程學(xué)報(bào),2020,36(4):251-258. doi:10.11975/j.issn.1002-6819.2020.04.030 http://www.tcsae.org

Liu Lin, Xiong Donghong, Zhang Wenduo, Li Wanxin, Yuan Yong, Zhang Baojun, Zhang Xinbao. Benefits and ecological risks of Gully Reclamation Project in Yuanmou Dry-hot Valley region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 251-258. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.04.030 http://www.tcsae.org

2019-09-28

2019-12-10

國(guó)家自然科學(xué)基金項(xiàng)目(41571277);中國(guó)科學(xué)院“西部之光”西部青年學(xué)者B類項(xiàng)目(2019)

劉 琳,博士生,主要從事土壤侵蝕與水土保持研究。Email:liulin182@mails.ucas.ac.cn

熊東紅,博士,研究員,博士生導(dǎo)師,主要從事土壤侵蝕與水土保持、土壤生態(tài)與山地地理等研究。Email:dhxiong@imde.ac.cn

10.11975/j.issn.1002-6819.2020.04.030

S281

A

1002-6819(2020)-04-0251-08

猜你喜歡
元謀沖溝建園
神虛幻境——元謀新華土林
中老年保健(2022年7期)2022-09-20 01:19:00
藍(lán)莓建園技術(shù)
蘋(píng)果建園技術(shù)
桑樹(shù)快速豐產(chǎn)建園技術(shù)
風(fēng)機(jī)基礎(chǔ)設(shè)計(jì)在沖溝發(fā)育地區(qū)的應(yīng)用
元謀,尋根的地方
播期、密度、施氮量對(duì)元謀冬繁青稞白粉病發(fā)病的影響
山地柑桔建園初探
神奇美麗的元謀
沖溝不同部位土壤機(jī)械組成及抗沖性差異①
土壤(2016年6期)2016-02-08 07:53:18
定日县| 古浪县| 常山县| 信阳市| 太仓市| 彩票| 垦利县| 木里| 睢宁县| 开江县| 台湾省| 金寨县| 红原县| 永昌县| 苗栗县| 呼图壁县| 赣榆县| 广水市| 绥江县| 古浪县| 富民县| 青川县| 娄底市| 松阳县| 安溪县| 宁夏| 武威市| 蕉岭县| 滦平县| 宜兰市| 永泰县| 盐边县| 北川| 遂平县| 新平| 阿拉善盟| 萍乡市| 梁平县| 察雅县| 荣昌县| 孟津县|