劉成,韓冉,汪曉璐,宮文萍,程敦公,曹新有,劉愛峰,李豪圣,劉建軍
小麥遠緣雜交現(xiàn)狀、抗病基因轉(zhuǎn)移及利用研究進展
劉成,韓冉,汪曉璐,宮文萍,程敦公,曹新有,劉愛峰,李豪圣,劉建軍
(山東省農(nóng)業(yè)科學院作物研究所/農(nóng)業(yè)部黃淮北部小麥生物學與遺傳育種重點實驗室/小麥玉米國家工程實驗室,濟南 250100)
小麥近緣植物中含有豐富的抗病、抗逆和抗蟲等基因,是小麥育種的優(yōu)異基因源。通過遠緣雜交可以將近緣植物優(yōu)異基因轉(zhuǎn)移給小麥,創(chuàng)制包括雙二倍體或部分雙二倍體、附加系、代換系和易位系等在內(nèi)的小麥-近緣植物異染色體系。這些含小麥近緣植物血緣的異染色體系是研究物種染色體行為與進化、基因定位與作圖的重要素材,也是拓寬小麥的遺傳基礎(chǔ)、抵御小麥重要病蟲害、增加小麥產(chǎn)量和提升小麥品質(zhì)的重要物質(zhì)基礎(chǔ)。為了更加清晰地了解小麥遠緣雜交概況及小麥近緣植物抗病基因向小麥的轉(zhuǎn)移,也為今后小麥遠緣雜交研究和種質(zhì)資源的開發(fā)利用提供參考,文中對小麥族物種分類、小麥遠緣雜交的定義與意義、小麥族山羊草屬、黑麥屬、偃麥草屬、簇毛麥屬、冰草屬、大麥屬、披堿草屬、賴草屬、新麥草屬以及旱麥草屬物種與小麥遠緣雜交現(xiàn)狀和異染色體系創(chuàng)制情況進行了概括,并對來源于小麥近緣植物被正式命名的17個抗條銹病基因、35個抗葉銹病基因、30個抗稈銹病基因、41個抗白粉病基因、3個抗赤霉病基因、1個抗麥瘟病基因、1個抗葉枯病基因、1個抗穎枯病基因、4個抗褐斑病基因、2個抗眼斑病基因、1個抗梭條花葉病基因、2個抗線條花葉病基因和2個抗禾谷類黃矮病基因向小麥的轉(zhuǎn)移情況及其所在染色體的位置信息進行了歸納。小麥-黑麥1RS·1BL易位系、1RS·1AL易位系和小麥-偏凸山羊草2NS/2AS易位系等抗病優(yōu)良種質(zhì)的育成與利用在世界小麥育種史上做出了突出貢獻,然而,這僅僅得益于對少數(shù)抗病基因的利用。與目前已經(jīng)被命名的基因數(shù)量相比,被利用到小麥育種中的抗病基因相對較少。文中分析了當前已命名抗病基因利用情況比例偏低的原因,并對今后如何利用這些抗病基因提出了建議。同時,還列舉了已克隆的源自小麥近緣植物的抗病基因,并對克隆這些基因的方法以及今后可能的研究熱點進行了分析,認為加強無遺傳累贅的小麥-近緣植物易位系的創(chuàng)制與應用仍可能是今后小麥育種材料創(chuàng)新與新品種培育的一個重要發(fā)力點。
小麥;遠緣雜交;異染色體系;抗病基因;衍生品種
小麥族()有300多個物種,包含小麥屬()、山羊草屬()、黑麥屬()、偃麥草屬()、簇毛麥屬()、冰草屬()、大麥屬()、披堿草屬()、賴草屬()、新麥草屬()、旱麥草屬()、類大麥屬()、無芒草屬()、異形花屬()、棱軸草屬()、鵝觀草屬()、擬鵝觀草屬()和澳麥草屬()等,基本染色體組包含A—W和2個尚未確定的染色體組X和Y,表現(xiàn)出遺傳變異的多樣性[1-2]。小麥的近緣植物具有抗病[3-5]、抗蟲[4-5]、抗旱[6]、抗寒[7-8]、耐鹽[6,9-10]等優(yōu)良性狀,是小麥遺傳改良的寶貴基因資源庫[1-3]。
遠緣雜交是親緣關(guān)系較遠的(包括生物學規(guī)定的不同“種”間、“屬”間)以及親緣關(guān)系更遠的物種間雜交的統(tǒng)稱[11-12]。小麥族中,小麥與黑麥、小麥與偃麥草、小麥與山羊草以及不同小麥種間的雜交均屬遠緣雜交,而生物學上規(guī)定的“種”以內(nèi)的不同變種或品種間的雜交則統(tǒng)稱為近緣雜交[11]。將近緣植物與小麥雜交,不僅可以將其優(yōu)異基因?qū)胄←溸M行遺傳改良[12-15],還可以用于基因及染色體作圖[16-17]、染色體行為及進化[18-19]等研究。自18世紀,科學家們就零星開始了小麥遠緣研究[20]。19世紀以來,國內(nèi)外科學家們在小麥遠緣雜交方面做了大量工作,不同小麥種間[21-22]、小麥與山羊草屬[2,23-26]、黑麥屬[2,20,26-29]、偃麥草屬[2,11,26,30-32]、簇毛麥屬[2,26,33-36]、冰草屬[26,37-39]、大麥屬[40-42]、披堿草屬[43-45]、賴草屬[26,46-48]、新麥草屬[49-51]、旱麥草屬[52-53]等屬物種遠緣雜交成功的結(jié)果陸續(xù)被報道出來。目前,除類大麥屬、擬鵝觀草屬、無芒草屬、異形花屬、棱軸草屬、澳麥草屬物種外,其余小麥族各屬物種均已有與小麥雜交成功的報道。
包括小麥-近緣植物雙二倍體或部分雙二倍體、附加系、代換系和易位系等在內(nèi)的異染色體系,是向小麥轉(zhuǎn)移近緣植物優(yōu)異基因的橋梁和物質(zhì)基礎(chǔ)[5,54-55]。目前,小麥種間[21-22]、小麥與山羊草屬[2,55-57]、黑麥屬[2,58-60]、偃麥草屬[2,26,31,61-63]、簇毛麥屬[2,33-35,64]、冰草屬[2,65-67]、大麥屬[68-70]、披堿草屬[71-73]、賴草屬[2,74-76]、新麥草屬[2,77-80]等屬物種異染色體系創(chuàng)制成功的結(jié)果如雨后春筍般被報道。目前,雖然已有大量的小麥-近緣植物異染色體系被創(chuàng)制出來,然而,被直接用于小麥育種的小麥-近緣植物染色體易位系的比例還比較低。
迄今為止,小麥與近緣植物雜交成功的報道已有數(shù)百個[5,11,19,26,31,81],其中大部分與小麥五大主要病害抗病基因轉(zhuǎn)移有關(guān)[5,82]。目前,被國際小麥新基因命名委員會正式命名的抗小麥條銹病、葉銹病、稈銹病、白粉病和赤霉病的基因個數(shù)分別為82、79、60、65和7個,其中,來源于小麥近緣植物的基因個數(shù)分別有17(表1)、35(表2)、30(表3)、41(表4)和3個(表5),分別占被正式命名基因的20.7%、44.3%、50.0%、63.1%和42.9%。
此外,被正式命名的抗麥瘟病、葉枯病、穎枯病、褐斑病、眼斑病、梭條花葉病、線條花葉病和禾谷類黃矮病基因分別為8、18、3、7、3、1、3和3個,其中,來源于小麥近緣植物的基因個數(shù)分別有1、1、1、4、2、1、2和2個(表6),分別占被正式命名基因的12.5%、5.5%、33.3%、57.1%、66.7%、100%、66.7%和66.7%。
來源于小麥近緣植物的抗條銹病基因有17個(表1),包括來自頂芒山羊草的、偏凸山羊草的、擬斯卑爾脫山羊草的、粗山羊草的、粘果山羊草的、沙融山羊草的、卵穗山羊草的、三芒山羊草的、小傘山羊草的、栽培黑麥的、中間偃麥草的、硬粒小麥的、和以及野生二粒小麥的、和。
表1 小麥近緣植物抗條銹病基因向小麥轉(zhuǎn)移情況
來源于小麥近緣植物的抗葉銹病基因有35個(表2),包括來自小傘山羊草的和、粗山羊草的、、、、和、擬斯卑爾脫山羊草的、、、、和、偏凸山羊草的、粘果山羊草的、沙融山羊草的、卵穗山羊草的、鉤刺山羊草的、柱穗山羊草的、短穗山羊草的、栽培黑麥的、和、長穗偃麥草的和、彭提卡偃麥草的、中間偃麥草的、粗穗披堿草的、栽培二粒小麥的、野生二粒小麥的和、硬粒小麥的、一粒小麥的和提莫非維小麥的。
來源于小麥近緣植物的抗稈銹病基因有30個(表3),包括來自頂芒山羊草的、偏凸山羊草的、擬斯卑爾脫山羊草的、和、希爾斯山羊草的、卵穗山羊草的、栽培黑麥的、、和、簇毛麥的、彭提卡偃麥草和、長穗偃麥草的和、中間偃麥草的、野生二粒小麥的、、、、和、一粒小麥的、、和、硬粒小麥的以及提莫非維小麥的和。
表2 小麥近緣植物抗葉銹病基因向小麥轉(zhuǎn)移情況
表3 小麥近緣植物抗桿銹病基因向小麥轉(zhuǎn)移情況
來源于小麥近緣植物的抗白粉病基因有41個(表4),包括來自擬斯卑爾脫山羊草的和、粗山羊草的、、和、高大山羊草的、希爾斯山羊草的卵穗山羊草的、栽培黑麥的、、、和、簇毛麥的、和、中間偃麥草的和、彭提卡偃麥草的、一粒小麥的和、野生一粒小麥的、波斯小麥的、栽培二粒小麥的、、和、野生二粒小麥的、、、、、和、硬粒小麥的、烏拉爾圖小麥的以及提莫非維小麥的、和。
表4 小麥近緣植物抗白粉病基因向小麥轉(zhuǎn)移情況
來源于小麥近緣植物的抗赤霉病基因有3個(表5),包括來自大賴草的、柯孟披堿草(也有科學家稱其為鵝觀草)的和來自彭提卡偃麥草的。
來源于小麥近緣植物的五大主要病害之外的抗病基因有14個(表6),包括來自栽培二粒小麥的抗麥瘟病基因、粗山羊草的抗葉枯病基因、抗穎枯病基因和抗褐斑病基因、野生二粒小麥的抗褐斑病基因和、圓錐小麥的抗褐斑病基因、偏凸山羊草的抗眼斑病基因、簇毛麥的抗眼斑病基因和抗梭條花葉病毒基因、中間偃麥草的抗線條花葉病基因、以及抗禾谷類黃矮病基因和。
表5 小麥近緣植物抗赤霉病基因向小麥轉(zhuǎn)移情況
表6 小麥近緣植物抗麥瘟病等基因向小麥轉(zhuǎn)移情況
—表示基因已命名但無文獻發(fā)表(McIntosh R A與Worland A K,私人通訊)
—indicates that the gene has been designated but no reference published (MCINTOSH R A and WORLAND A K, private communication)
在小麥遠緣雜交種質(zhì)應用方面,對世界小麥育種做出突出貢獻的當屬小麥-黑麥1RS·1BL易位系。1RS染色體上由于含和等基因,受到了廣大育種工作者的普遍青睞[14,203-206],國外育種家們利用該易位系及其衍生系作親本,育成了山前麥、高加索、無芒一號和洛夫林13等高產(chǎn)抗病小麥,被全世界幾十個國家作為骨干親本應用,育成了一大批優(yōu)異小麥新品種[207-210],在推動小麥品種的更新?lián)Q代中發(fā)揮了重要作用[203,211-212]。除了1RS·1BL易位系,國外育種家們還培育出了含1RS·1AL易位系的Amigo等品種,并以此為骨干親本,培育出了含該易位系的Zhytnytsa、Nota和Duma[203]、Columbia、Etude和Rastavitsa[213]、TAM107、TAM303、TAM305、AG Robust、Fannin、N96L9970[214-216]和Helami-105等小麥新品種/系[217],在美國、墨西哥和歐洲等國家推廣應用。近年來,國際玉米小麥改良中心(CYMMYT)以該易位系為親本育成了CM409和CM451等一批小麥新品種/系(劉彩云,私人通訊)。
據(jù)報道,19世紀后期中國約70%小麥品種含1RS·1BL易位系[204-205],其中,為中國小麥育種做出突出貢獻的矮孟牛(Ⅱ型、Ⅳ—Ⅶ型)、周麥22、周8425B和石4185等骨干親本材料均含有1RS染色體。近年來,由于新的致病生理小種的產(chǎn)生與流行,使得和等基因的抗性迅速喪失[177,218-219],加上育種家們在育種過程中注意雜交親本的遺傳多樣性,因此,該易位系在中國小麥中的比例明顯下降[220]。雖然等基因的抗性已經(jīng)喪失[177,218-219],但近期的研究發(fā)現(xiàn),不同黑麥來源的1RS·1BL易位系可能含有不同的抗病等位基因[14,221],即表明不同黑麥來源的該易位系仍能在小麥育種中發(fā)揮重要作用。尤其是近年來,不含黑麥堿但仍具有良好抗病性的1RS·1BL易位系的創(chuàng)制[222-224],為小麥育種提供了新的育種資源。
除含1RS染色質(zhì)的育種材料外,含、和的小麥-偏凸山羊草2NS/2AS易位系對世界小麥育種也做出了突出貢獻。以該易位系為抗源育成的Mace(還含和)[225-226]、Jagger、Madsen、Overley、SY Gold、Trident、EGA Eaglehawk和Espada等小麥品種在美國、澳大利亞和歐洲等國家推廣應用[225-229]。研究發(fā)現(xiàn),源自中國10余個省份69個小麥品種中的49%含該易位系[230]。此外,據(jù)報道,川育18、川麥25和川麥39等[231]、新麥19、濟麥20、濟麥21和師欒02-1[232]、蘭考906、西農(nóng)739、陜872和小偃216等品種/系[233]含有該易位系。近期研究發(fā)現(xiàn),濟麥20和濟麥21中不含但中麥175中含有等基因,然而已對中國當前葉銹生理小種表現(xiàn)為感病[234]。此外,在澳大利亞、歐洲和中國的條銹抗性已經(jīng)完全或部分喪失[228,235-236]。因此,今后在育種中應減少對該易位系的利用。
自19世紀以來,中國在小麥遠緣雜交領(lǐng)域研究一直處在世界前列。中國科學家先后將偃麥草[31,61-63,81,237-244]、黑麥[58-60,245-252]、簇毛麥[35,253]和冰草[254-255]等種質(zhì)轉(zhuǎn)移給了小麥,育成了一大批遠緣雜交新材料。在對這些小麥遠緣雜交種質(zhì)利用方面,取得了舉世矚目的研究成果,培育出的抗條銹病的小偃系列品種及其衍生品種[256-258]、普冰系列及其衍生品種(張錦鵬,私人通訊)和陜麥號及西農(nóng)號小麥[259-260]、抗黃矮病的張春號、臨抗號、晉麥號小麥[261-262]和黑小麥品種[263-264]、抗白粉病的南農(nóng)號小麥及其衍生品種[265-267]、抗條銹和白粉等病害的川農(nóng)系列小麥及其衍生品種[268-269]和遠豐號小麥[270]等在中國大面積推廣應用。上述品種抗病性來源主要為、、、、、和尚未被證明命名的少數(shù)幾個基因。
除此之外,值得一提的是,中國科學家分別將來自彭提卡偃麥草抗赤霉病基因[189,271]和長穗偃麥草的尚未被命名的赤霉病基因[272-273]分別轉(zhuǎn)移到小麥,創(chuàng)制了一批小麥-偃麥草染色體易位系,并將其導入中國主栽小麥,培育出了一批赤霉抗性達到中抗水平正在參加區(qū)域試驗的小麥新品系,有望對小麥抗赤霉病育種發(fā)揮重要作用。
目前,眾多個有明顯育種價值的小麥-近緣植物染色體易位系/漸滲系被成功創(chuàng)制出來[4-5],并且有近140個抗病新基因被正式命名(表1—表6),但就基因利用狀況來看,被利用到小麥抗病育種上的基因的比例還比較低。其原因可能是:(1)部分基因的抗性已經(jīng)/正在喪失,例如、和等[274],、和等[234],、和等[275],、和等[276];(2)部分易位染色體具有遺傳累贅,例如[277]、[278]、和[179]等基因所在近緣植物染色體臂。因此,在今后的研究中,應該做到:(1)加強二倍體和四倍體小麥抗病基因向栽培小麥的導入與利用;(2)加強對有遺傳累贅效應易位系的染色體工程誘導。通過抗病基因轉(zhuǎn)育,創(chuàng)制出更多的抗病種質(zhì)資源并對其進行育種學評價。目前,已有多個研究團隊在開展這項工作[267,279];(3)加強對無遺傳累贅且具優(yōu)異抗性易位系[267,279-280]的利用工作。
克隆抗病基因是研究其抗病機理的基礎(chǔ)。目前,從小麥近緣植物中克隆出的抗病基因主要包括[281]、[282]、[283]、[284]、[285]、[286]、[287]、[288]、[289-290]等。其中,除和[85,162]外,其他幾個基因均源自二倍體或四倍體小麥[96,98,100,141,143-145]。由于缺乏參考基因組信息,目前,從小麥-近緣植物(這里指非小麥屬物種)染色體易位系中克隆抗病基因還有一定困難。當前,克隆這些基因可以利用不同居群的抗病性不同的同一小麥近緣種進行雜交(或利用誘變技術(shù)創(chuàng)制突變體),配置抗感分離群體進行基因定位與克隆,例如[282]和[289]的克??;還可以創(chuàng)制更多的小麥-近緣植物染色體結(jié)構(gòu)變異體,將抗病基因定位到近緣植物某一染色體小片段上,進而利用已克隆的模式植物抗病基因所在染色體區(qū)間與上述小片段區(qū)間進行基因共線性分析與確證,同源克隆近緣植物的抗病基因。近期筆者及其合作者們利用該方法克隆了(待發(fā)表)。
從理論研究上講,隨著小麥族物種基因組測序工作的陸續(xù)開展與完成,能夠用于抗病基因克隆的參考基因組信息越來越多,今后克隆小麥近緣植物抗病基因?qū)兊迷絹碓饺菀祝虼?,這些基因的抗病調(diào)控機制以及不同物種共線性抗病基因的進化可能將成為新的研究熱點。從應用研究上講,小麥-黑麥1RS·1BL易位系、1RS·1AL易位系和小麥-偏凸山羊草2NS/2AS易位系等抗病優(yōu)良種質(zhì)的育成與利用在世界小麥育種史上做出了突出貢獻,然而,這僅僅得益于對少數(shù)抗病基因的利用。雖然目前被利用到小麥育種中的抗病基因相對較少,但加強無遺傳累贅的小麥-近緣植物易位系的創(chuàng)制與應用仍可能是今后小麥育種材料創(chuàng)新與新品種培育的一個重要發(fā)力點。
致謝:堪薩斯州立大學Friebe B教授、德克薩斯農(nóng)工生命研究和推廣中心Liu SY教授、北達科他州立大學Cai XW教授、悉尼大學Zhang P博士和李建波博士、阿德萊德大學Dundas I博士、John Innes Centre的Griffiths S研究員、CYMMYT劉彩云博士后、烏克蘭國家種子與品種調(diào)查中心Motsnyi I研究員、電子科技大學楊足君教授、中國農(nóng)業(yè)科學院張錦鵬研究員、西北農(nóng)林科技大學王長有教授、魯東大學崔法教授、山東農(nóng)業(yè)大學鮑印廣教授在不同國家小麥品種所含外源染色質(zhì)信息搜集中給予的大力幫助,在此表示感謝。
[1] 董玉琛, 劉旭. 中國作物及其野生近緣植物. 北京: 中國農(nóng)業(yè)出版社, 2006.
DONG Y C, LIU X.. Beijing: China Agriculture Press, 2006. (in Chinese)
[2] 董玉琛, 鄭殿升. 中國小麥遺傳資源. 北京: 中國農(nóng)業(yè)出版社, 2000.
DONG Y C, ZHENG D S.. Beijing: China Agriculture Press, 2000. (in Chinese)
[3] 董玉琛. 小麥的基因源. 麥類作物學報, 2000, 20(3): 78-81.
DONG Y C. Genepool of common wheat., 2000, 20(3): 78-81. (in Chinese)
[4] JIANG J M, FRIEBE B, GILL B S. Recent advances in alien gene transfer in wheat., 1993, 73(3): 199-212.
[5] FRIEBE B, BADAEVA E D, GILL B S, TULEEN N A. Cytogenetic identification ofchromosomes added to common wheat., 1996, 39(2): 272-276.
[6] NEVO E, CHEN G. Drought and salt tolerances in wild relatives for wheat and barley improvement., 2010, 33(4): 670-685.
[7] IRIKI N, KAWAKAMI A, TAKATA K, KUWABARA T, BAN T. Screening relatives of wheat for snow mold resistance and freeing tolerance., 2001, 122(2): 335-341.
[8] GALIBA G, STOCKINGER E J, FRANCIA E, MILC J, KOCSY G, PECCHIONI N. Freezing tolerance in the Triticeae //, Volume 2. Manhattan, USA: John Wiley & Sons Ltd, 2013.
[9] FAROOQ S, NIAZI MLK, IQBAL N, SHAH T M. Salt tolerance potential of wild resources of the tribe Triticeae., 1989, 119(2): 255-260.
[10] COLMER D T. Use of wild relatives to improve salt tolerance in wheat., 2006, 57(5): 1059-1078.
[11] 李振聲, 容珊, 鐘冠昌, 陳漱陽, 穆素梅. 小麥遠緣雜交. 北京: 科學出版社, 1985.
LI Z S, RONG S, ZHONG G C, CHEN S Y, MU S M.. Beijing: Science Press, 1985. (in Chinese)
[12] SHARMA H C, GILL B S. Current status of wide hybridization in wheat., 1983, 32(1): 17-31.
[13] FRIEBE B, JIANG J, GILL B S, DYCK P L. Radiation-induced nonhomoeologous wheat-chromosomal translocations conferring resistance to leaf rust., 1993, 86(2/3): 141-149.
[14] REN T H, YANG Z J, YAN B J, ZHANG H Q, FU S L, REN Z L. Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat., 2009, 169(2): 207-213.
[15] LI Q, LU Y, PAN C, YAO M, ZHANG J, YANG X, LIU W, LI X, XI Y, LI L. Chromosomal localization of genes conferring desirable agronomic traits from wheat-disomic addition line 5113., 2016, 11(11): e0165957.
[16] ZELLER F J, HSAM S L K. Broadening the genetic variability of cultivated wheat by utilizing rye chromatin//Sakamoto S. ed.. Kyoto, Japan: Plant Germ-Plasm Institute, Faculty of Agriculture, Kyoto University, 1983: l61-173.
[17] GONG W P, HAN R, LI H S,SONG J M, YAN H F, LI G Y, LIU A F, CAO X Y, GUO J, ZHAI S N, CHENG D G, ZHAO Z D, LIU C, LIU J J. Agronomic traits and molecular marker identification of wheat-addition lines., 2017, 8: 1743.
[18] LIU C, YANG Z J, JIA J Q, LI G R, ZHOU J P, REN Z L. Genomic distribution of a long terminal repeat (LTR)-like retrotransposon inspecies., 2009, 37(3): 363-372.
[19] 劉成, 李光蓉, 楊足君. 簇毛麥與小麥染色體工程育種. 北京: 中國農(nóng)業(yè)科學技術(shù)出版社, 2013.
LIU C, LI G R, YANG Z J.. Beijing: China Agriculture Science and Technology Press, 2013. (in Chinese)
[20] 鄭有良. 小麥特異種質(zhì)資源研究. 成都: 四川科學技術(shù)出版社, 1999.
ZHENG Y L.. Chengdu: Sichuan Agriculture Science and Technology Press, 1999. (in Chinese)
[21] JOPPA L R, WILLIAMS N D. Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat., 1988, 30(2): 222-228.
[22] BROWN-GUEDIRA G L, BADAEVA E D, GILL B S, COX T S. Chromosome substitutions ofin common wheat and some observations on the evolution of polyploid wheat species., 1996, 93(8): 1291-1298.
[23] LEIGHTY C, SANDO W, TAYLOR J. Intergeneric hybrids in,and., 1926, 33: 101-141.
[24] KIHARA H, LILIENFELD F. Genomanalyse beiund., 1934, 6(1): 87-122.
[25] RILEY R, CHAPMAN V, JOHNSON R. Introduction of yellow rust resistance ofinto wheat by genetically induced homoeologous recombination., 1968, 217(5126): 383-384.
[26] 李集臨, 曲敏, 張延明. 小麥染色體工程. 北京: 科學出版社, 2011.
LI J L, QU M, ZHANG Y M.. Beijing: Science Press, 2011. (in Chinese)
[27] BACKHOUSE W, BACKHOUSE W. Note on the inheritance of “crossability”., 1916, 6(2): 91-94.
[28] 鮑文奎. 八倍體小黑麥育種與栽培. 貴陽: 貴州人民出版社, 1977.
BAO W K.. Guiyang: Guizhou People’s Press, 1977. (in Chinese)
[29] REN T H, CHEN F, YAN B J, ZHANG H Q, REN Z L. Genetic diversity of wheat-rye 1BL.1RS translocation lines derived from different wheat and rye sources., 2012, 183(2): 133-146.
[30] DVO?AK J. Meiotic pairing between single chromosomes of diploidand decaploidin., 1975, 17(3): 329-336.
[31] 李振聲. 植物遠緣雜交概說. 西安: 陜西科學出版社, 1980.
LI Z S.. Xi’an: Shanxi Science Press, 1980. (in Chinese)
[32] 暢志堅, 趙懷生, 李生海. 小麥與天藍偃麥草遠緣雜交中結(jié)實性的研究. 山西農(nóng)業(yè)科學, 1992, 2: 7-10.
CHANG Z J, ZHAO H S, LI S H, Study on fruitfulness of distant hybridization betweenand., 1992, 2: 7-10. (in Chinese)
[33] HYDE B B. Addition of individualchromosomes to hexaploid wheat., 1953, 40: 174-182.
[34] SEARS E. Addition of the genome ofto., 1953: 168-174.
[35] LIU D J, CHEN P D, PEI G Z. Transfer ofchromosomes into//Miller T E, Koebner R M D. ed.. Cambridge UK: Institute of Plant Science Research, Cambridge Laboratory, 1988: 355-361.
[36] VON BOTHMER R, CLAESSON L. Production and meiotic pairing of intergeneric hybrids of×species., 1990, 51: 109-117.
[37] LIMIN A E, FOWLER D B. An interspecific hybrid and amphiploid produced fromcrosses withand., 1990, 33(4): 581-584.
[38] 李立會, 董玉琛. 普通小麥與沙生冰草屬間雜種的產(chǎn)生及細胞遺傳學研究. 中國科學: 化學生命科學地學, 1990, 1(5): 492-497.
LI L H, DONG Y C. Generation and cytogenetics of intergeneric hybrids betweenand., 1990, 1(5): 492-497. (in Chinese)
[39] JAUHAR P. Chromosome pairing in hybrids between hexaploid bread wheat and tetraploid crested wheatgrass ()., 1992, 116(1/2): 107-109.
[40] KRUSE A.×hybrids., 1973, 73(1): 157-161.
[41] SHEPHERD K, ISLAM A.. Cambridge: Cambridge University Press, 1981.
[42] 蔣繼明, 劉大鈞. 普通小麥與野生大麥的屬間雜交. 作物學報, 1990, 16(4): 324-328.
JIANG J M, LIU D J. Intergeneric hybridization between common wheat and wild barley., 1990, 16(4): 324-328. (in Chinese)
[43] MUJEEB-KAZI A, BERNARD M. Somatic chromosome variations in backcross I progenies from intergeneric hybrids involving some Triticeae., 1982, 10(1/2): 41-45.
[44] LU B R, VON BOTHMER R. Production and cytogenetic analysis of the intergeneric hybrids between ninespecies and common wheat (L.)., 1991, 58(1): 81-95.
[45] 孫其信, 高建偉. 普通小麥與無融合生殖披堿草屬間雜種F1的產(chǎn)生及其分子鑒定. 農(nóng)業(yè)生物技術(shù)學報, 1997, 5(4): 313-317.
SUN Q X, GAO J W. Production of intergeneric hybrid between wheat and apomicticand its molecular identification., 1997, 5(4): 313-317. (in Chinese)
[46] 陳孝, 張文祥, 黃惠宇. 普通小麥與新疆大賴草雜種幼胚離體培養(yǎng)技術(shù)的研究. 農(nóng)業(yè)新技術(shù), 1989(2): 4-7.
CHEN X, ZHANG W X, HUANG H Y. Study on in vitro culture of immature embryos of hybrids between common wheat and Xinjiang., 1989(2): 4-7. (in Chinese)
[47] 張學勇, 董玉琛, 楊欣明, 李翠釵. 普通小麥()和毛穗賴草()的雜交, 雜種細胞無性系的建立及植株再生. 作物學報, 1992, 18(4): 258-265, 321-322.
ZHANG X Y, DONG Y C, YANG X M, LI C C. Hybridization ofwiththe establishment of somatic callus clones of the hybrid embryos and plant regeneration., 1992, 18(4): 258-265, 321-322. (in Chinese)
[48] 陳佩度, 孫文獻, 劉文軒, 袁建華, 劉朝暉, 馮以高, 王蘇玲, 周波, 劉大鈞. 將大賴草抗赤霉病基因?qū)肫胀ㄐ←溂翱钩嗝共』虻娜旧w定位. 遺傳, 1998, 20(增刊): 126.
CHENG P D, SUN W X, LIU W X, YUAN J H, LIU Z H, FENG Y G, WANG S L, ZHOU B, LIU D J. Introduction of scab resistance gene fromintoand chromosome location of scab resistance gene., 1998, 20(S1): 126. (in Chinese)
[49] 陳勤, 周榮華, 李立會, 李秀全, 楊欣明, 董玉琛. 第一個小麥與新麥草屬間雜種. 科學通報, 1988, 33(1): 64-67.
CHEN Q, ZHOU R H, LI L H, LI X Q, YANG X M, DONG Y C. The first intergeneric hybrid between wheat and., 1988, 33(1): 64-67. (in Chinese)
[50] 陳漱陽, 侯文勝, 張安靜, 傅杰, 楊群慧. 普通小麥-華山新麥草異附加系的選育及細胞遺傳學研究. 遺傳學報, 1996, 23(6): 447-452, 488.
CHEN S Y, HOU W S, ZHANG A J, FU J, YANG Q H. Breeding and cytogenetic study ofalien addition lines., 1996, 23(6): 447-452, 488. (in Chinese)
[51] KANG H Y, ZHANG Z J, XU L L, QI W L, TANG Y, WANG H, ZHU W, LI D Y, ZENG J, WANG Y. Characterization of wheat-small segment translocation line with enhanced kernels per spike and stripe rust resistance., 2016, 59(4): 1.
[52] 劉建文, 董玉琛. 普通小麥×東方旱麥草屬間雜種的產(chǎn)生及無性系的建立. 遺傳學報, 1995, 22(2): 116-121.
LIU J W, DONG Y C. Establishment of somaclones and regeneration of plant from×hybrid., 1995, 22(2): 116-121. (in Chinese)
[53] 張桂芳, 劉建文, 黃遠樟, 丁敏, 唐順學, 賈旭. 普通小麥與東方旱麥草雜交世代的細胞遺傳學研究. 植物學報, 1999, 41(11): 1150-1154.
ZHANG G F, LIU J W, HUANG Y Z, DING M, TANG S X, JIA X. Cytogenetic studies on the cross-generations betweenand., 1999, 41(11): 1150-1154. (in Chinese)
[54] LIU C, QI L, LIU W, ZHAO W, GILL B S. Development of a set of compensatingrobertsonian translocation lines., 2011, 54(10): 836-844.
[55] LIU C, GONG W, HAN R, GUO J, LI G, LI H, SONG J, LIU A, CAO X, ZHAI S. Characterization, identification and evaluation of a set of wheat-chromosome lines., 2019, 9(1): 4773.
[56] 翁躍進, 董玉琛. 普通小麥-頂芒山羊草異源附加系的創(chuàng)建和鑒定: I. 小麥花藥培養(yǎng)對創(chuàng)建普通小麥-頂芒山羊草異源附加系的作用. 作物學報, 1995, 21(1): 39-44.
WENG Y J, DONG Y C. Development ofaddition lines in common wheat (L.): I. Effection of wheat anther culture to development ofaddition lines in common wheat., 1995, 21(1): 39-44. (in Chinese)
[57] 王洪剛, 劉樹兵, 高居榮, 孔凡晶. 小麥與鉤刺山羊草雜種的育性、抗病性和細胞遺傳學研究. 麥類作物學報, 2000, 20(3): 1-5.
WANG H G, LIU S B, GAO J R, KONG F J. Study on fertility, disease resitance and cytogentics of hybrid betweenand., 2000, 20(3): 1-5. (in Chinese)
[58] REN Z, ZHANG H. Induction of small-segment-translocation between wheat and rye chromosomes., 1997, 40(3): 323.
[59] 李愛霞. 普通小麥輝縣紅-荊州黑麥異染色體系的選育及其梭條花葉病和白粉病抗性鑒定[D]: 南京: 南京農(nóng)業(yè)大學, 2006.
LI A X. Development of wheat landrace Huixianhong alian chromosome lines derived from Chinese rye cultivar Jingzhouheimai and its WSSMV and powdery mildew resistance identification[D]. Nanjing: Nanjing Agricultural University, 2006. (in Chinese)
[60] LEI M P, LI G R, LIU C, YANG Z J. Characterization of wheat-introgression lines reveals evolutionary aspects of chromosome 1R in rye., 2012, 55(10): 765-774.
[61] 孫善澄. 小偃麥新品種與中間類型的選育途徑、程序和方法. 作物學報, 1981, 7(1): 51-58.
SUN S D. The approach and methods of breeding new varieties and new species from agrotriticum hybrids., 1981, 7(1): 51-58. (in Chinese)
[62] 張學勇, 李振聲. “缺體回交法”選育普通小麥異代換系方法的研究. 遺傳學報, 1989: (6): 420-429.
ZHANg X Y, LI Z S. Studies on the nullisomic backcrossing procedures for producing alien substitution lines of common wheat., 1989, 16(6): 420-429. (in Chinese)
[63] 暢志堅. 幾個小麥-偃麥草新種質(zhì)的創(chuàng)制及分子細胞遺傳學分析[D]. 雅安: 四川農(nóng)業(yè)大學, 1999.
CHANG Z J. Creation and molecular cytogenetic analysis of several new germplasms of[D]. Ya'an: Sichuan Agricultural University, 1999. (in Chinese)
[64] 傅杰, 周榮華, 趙繼新, 陳漱陽, 楊群慧. 不同小麥背景小簇麥雙二倍體的品質(zhì)、抗病性及分子細胞遺傳學研究. 西北植物學報, 2001, 21(6): 1103-1109.
Fu J, ZHOU R H, ZHAO J X, CHEN S Y, YANG Q H. Research on quality, disease resistance and molecular cytogenetics ofamphidiploids with different wheat genetic background., 2001, 21(6): 1103-1109. (in Chinese)
[65] ZHANG J, ZHANG J, LIU W H, HAN H, LU Y, YANG X, LI L. Introgression of6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length., 2015, 128(9): 1827-1837.
[66] LU M, LU Y, LI H, PAN C, GUO Y, ZHANG J, YANG X, LI X, LIU W, LI L. Transferring desirable genes from7P chromosome into common wheat., 2016, 11(7): e0159577.
[67] SONG L, LU Y, ZHANG J, PAN C, YANG X, LI X, LIU W, LI L. Cytological and molecular analysis of wheat-translocation lines with 6P chromosome fragments conferring superior agronomic traits in common wheat., 2016, 59(10): 840-850.
[68] ISLAM A K M R, SHEPHERD K W, SPARROW D H B. Isolation and characterization of euplasmic wheat-barley chromosome addition lines., 1981, 46(2): 161-174.
[69] KONG F, WANG H, CAO A, QIN B, JI J, WANG S, WANG X E. Characterization ofchromosome addition lines DA2H and MA5H., 2008, 35(1): 673-678.
[70] FANG Y, YUAN J, WANG Z, WANG H, XIAO J, YANG Z, ZHANG R, QI Z, XU W, HU L. Development ofL.alien chromosome lines and assignment of homoeologous groups ofchromosomes., 2014, 41(8): 439-447.
[71] MORRIS K L, RAUPP W J, GILL B S. Isolation of Htgenome chromosome additions from polyploid(StStHtHt) into common wheat ()., 1990, 33(1): 16-22.
[72] 王長有, 李小忠, 吉萬全, 張改生, 王秋英, 薛秀莊. 普通小麥與衍生后代的細胞遺傳學和形態(tài)學研究. 麥類作物學報, 2003, 23(4): 5-9.
WANG C Y, LI X Z, JI W Q, ZHANG G S, WANG Q Y, XUE X Z. Cytogenetics and morphology of the derivatives from a cross betweenand apimictic., 2003, 23(4): 5-9. (in Chinese)
[73] DOU Q, LEI Y, MOTT I W, WANG R R. Characterization of alien chromosomes in backcross derivatives of×hybrids using molecular markers and sequential multi-color FISH/GISH., 2012, 55(5): 337-347.
[74] QI L L, WANG S L, CHEN P D, LIU D J, FRIEBE B, GILL B S. Molecular cytogenetic analysis ofchromosomes added to wheat., 1997, 95(7): 1084-1091.
[75] 劉文軒, 陳佩度, 劉大均. 利用熒光原位雜交技術(shù)檢測導入普通小麥的大賴草染色質(zhì). 遺傳學報, 1999, 26(5): 546-551.
LIU W X, CHEN P D, LIU D J. Detection ofchromatin in wheat by fluorescence in situ hybridization., 1999, 26(5): 546-551. (in Chinese)
[76] 王秀娥, 陳佩度, 周波, 袁建華, 劉文軒, GILL B S, 劉大鈞. 小麥-大賴草易位系的RFLP分析. 遺傳學報, 2001, 28(12):1142-1150.
WANG X E, CHEN P D, ZHOU B, YUAN J H, LIU W X, GILL B S, LIU D J. RFLP analysis of wheat-translocation lines., 2001, 28(12): 1142-1150. (in Chinese)
[77] 周榮華, 賈繼增, 董玉琛, SCHWARZACHER T, MILLER T E, READER S M, WU S B, GALE M D. 用基因組原位雜交技術(shù)檢測小麥-新麥草雜交后代. 中國科學(C輯), 1997, 27(6): 543-549.
ZHOU H R, JIA J Z, DONG Y C, SCHWARZACHER T, MILLER T E, READER S M, WU S B, GALE M D. Detection of hybrid progenies of wheat-by genome in situ hybridization.,1997, 27(6): 543-549. (in Chinese)
[78] 傅杰, 王美南, 趙繼新, 陳漱陽, 侯文勝, 楊群惠. 抗全蝕病小麥-華山新麥草中間材料H8911的細胞遺傳學研究與利用. 西北植物學報, 2003, 23(12): 2157-2162.
FU J, WANG M N, ZHAO J X, CHEN S Y, HOU W S , YANG Q H. Studies on cytogenetics and utilization of wheat-medium material H8911 with resistance to wheat take-all fungus., 2003, 23(12): 2157-2162. (in Chinese)
[79] 武軍, 趙繼新, 陳新宏, 劉淑會, 楊群慧, 劉文獻, 魏芳琴, 董劍, 朱建楚. 普通小麥-華山新麥草衍生后代的細胞學特點及GISH分析. 麥類作物學報, 2007, 27(5): 772-775.
WU J, ZHAO J X, CHEN X H, LIU S H, YANG Q H, LIU W X, WEI F Q, DONG J, ZHU J C. Cytology characteristic and GISH analysis on the progenies derived from common wheat (L.) ×., 2007, 27(5): 772-775. (in Chinese)
[80] KANG H, WANG Y, FEDAR G, CAO W, ZHANG H, FAND X, SHA L, XU L, ZHENG Y, ZHOU Y. Introgression of chromosome 3Ns frominto wheat specifying resistance to stripe rust., 2011, 6(7): e21802.
[81] SHARMA H C. How wide can a wide cross be?, 1995, 82(1): 43-64.
[82] 劉成, 閆紅飛, 宮文萍, 李光蓉, 劉大群, 楊足君. 小麥葉銹病新抗源篩選. 植物遺傳資源學報, 2013, 14(5): 936-944.
LIU C, YAN H F, GONG W P, LI G R, LIU D Q, YANG Z J. Screening of new resistance sources of wheat leaf rust., 2013, 14(5): 936-944. (in Chinese)
[83] BARIANA H S, MCINTOSH R A. Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A., 1993, 36(3): 476-482.
[84] Chen X M, Jones S S, Line R F. Chromosomal location of genes for stripe rust resistance in spring wheat cultivars Compair, Fielder, Lee and Lemhi and interactions of aneuploid wheats with races of., 1995, 85(3): 375-381.
[85] SINGH R P, NELSON J C, SORRELLS M E. Mappingand other genes for resistance to stripe rust in wheat., 2000, 40(4): 1148-1155.
[86] MARAIS G, MCCALLUM B, SNYMAN J, PRETORIUS Z, MARAIS A. Leaf rust and stripe rust resistance genesandtransferred to wheat from., 2005, 124(6): 538-541.
[87] MARAIS G F, MCCALLUM B, MARAIS A S. Leaf rust and stripe rust resistance genes derived from., 2006, 149(3): 373-380.
[88] KURAPARTHY V, CHHUNEJA P, DHALIWAL H S, KAUR S, BOWDEN R L, GILL B S. Characterization and mapping of cryptic alien introgression fromwith new leaf rust and stripe rust resistance genesandin wheat., 2007, 114(8): 1379-1389.
[89] MARAIS F, MARAIS A, MCCALLUM B, PRETORIUS Z. Transfer of leaf rust and stripe rust resistance genesandfromReq. ex Bertol. to common wheat., 2009, 49(3): 871-879.
[90] BANSAL M, KAUR S, DHALIWAL H S, BAINS N S, BARIANA HS, CHHUNEJA P, BANSAL U K. Mapping of-derived leaf rust and stripe loci in wheat., 2016, 66(1): 38-44.
[91] ZELLER F J. 1B/1R wheat-rye chromosome substitutions and translocations//Sears E R, Sears L M S (Eds).. Columbia, USA: University of Missouri Press, 1973: 209-222.
[92] LIU J, CHANG Z, ZHAN X, YANG Z, LI X, JIA J, ZHAN H, GUO H, WANG J. Putative-derived stripe rust resistance genemaps on wheat chromosome arm 4BL., 2013, 126(1): 265-274.
[93] MACER R C F. The forma and monosomic genetic analysis of stripe rust () resistance in wheat//Mackey J. ed.. Lund University, Lund, Sweden., 1963: 127-142.
[94] MCINTOSH R A, LAGUDAH E S. Cytogenetical studies in wheat. XVIII. Genefor resistance to stripe rust., 2000, 119(1): 81-93.
[95] XU L S, WANG M N, CHENG P, KANG Z S, HULBERT S H, CHEN X M. Molecular mapping of, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat., 2013, 126(2): 523-533.
[96] MCINTOSH R A, SILK J, THE T T. Cytogenetic studies in wheat XVII. Monosomic analysis and linkage relationships of gene, for resistance to stripe rust., 1996, 89(3): 395-399.
[97] MARAIS G F, PRETORIUS Z A, WELLINGS C R, MCCALLUM B, MARAIS A S. Leaf rust and stripe rust resistance genes transferred to common wheat from., 2005, 143(1/2): 115-123.
[98] CHICAIZA O, KHAN I A, ZHANG X, BREVIS C J, JACKSON L, CHEN X M, DUBCOVSKY J. Registration of five wheat isogenic lines for leaf rust and stripe rust resistance genes., 2006, 46: 485-487.
[99] SEARS E R. The transfer of leaf rust resistance fromto wheat//; Brookhaven National Laboratory: Upton, NY 1956.
[100] ROWLAND G G, KERBER E R. Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from., 1974, 16(1): 137-144.
[101] DYCK P L, KERBER E R. Inheritance in hexaploid wheat of adult plant leaf resistance derived from., 1970, 12(1): 175-180.
[102] KERBER E R. Resistance to leaf rust in hexaploid wheat:, a third gene derived from., 1987, 27(2): 204-206.
[103] RAUPP W J, SINGH S, BROWN-GUEDIRA G L, GILL B S. Cytogenetic and molecular mapping of the leaf rust resistance genein wheat., 2001, 102(2/3): 347-352.
[104] COX T S, RAUPP W J, GILL B S. Leaf rust-resistance genes,, andtransferred fromto common wheat., 1994, 34(2): 339-343.
[105] KERBER E R, DYCK P L. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of×, 1990, 33(4): 530-537.
[106] DVO? K J, KNOTT D R. Location of achromosome segment conferring resistance to leaf rust in, 1990, 33(6): 892-897.
[107] DUBCOVSKY J, LUKASZEWSKI A J, ECHAIDE M, ANTONELLI E F, PORTER D R. Molecular characterization of twointerstitial translocations carrying leaf rust and greenbug resistance genes., 1998, 38(6): 1655-1660.
[108]HELGUERA M, VANZETTI L, SORIA M, KHAN I A, KOLMER J, DUBCOVSKY J. PCR markers forleaf rust resistance geneand their use to develop isogenic hard red spring wheat lines., 2005, 45(2): 728-734.
[109] MARAIS G F, BEKKER T A, EKSTEEN A, MCCALLUM B, FETCH T, MARAIS A S. Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from., 2010, 171(1): 71-85.
[110] MCINTOSH R, YAMAZAKI Y, DEVOS K M,, DUBCOVSKY J, ROGERS W J, APPELS R. Catalogue of gene symbols//KOMUG- Integrated Wheat Science Database, 2003:http://shigen.lab.nig.ac.jp/ wheat/ komugi/top/top.jsp.
[111] KURAPARTHY V, SOOD S, CHHUNEJA P, DHALIWAL H S, KAUR S, BOWDEN R L, GILL B S. A cryptic wheat-translocation with leaf rust resistance gene, 2007, 47(5): 1995-2003.
[112] MARAIS G, MCCALLUM B, MARAIS A. Wheat leaf rust resistance genederived from., 2008, 127(4): 340-345.
[113] DRISCOLL C, ANDERSON L. Cytogenetic studies of Transec-a wheat-rye translocation line., 1967, 9(2): 375-380.
[114] SINGH N, SHEPHERD K, MCINTOSH R. Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ω-secalins on the short arm of rye chromosome 1R., 1990, 80(5): 609-616.
[115] MCINTOSH R A, FRIEBE B, JIANG J, THE D, GILL B S. Cytogenetical studies in wheat XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation line., 1995, 82(2): 141-147.
[116] SARMA D, KNOTT D. The transfer of leaf-rust resistance fromtoby irradiation., 1966, 8(1): 137-143.
[117] MCINTOSH R, DYCK P, GREEN G. Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha., 1977, 28(1): 48-49.
[118] FRIEBE B, JIANG J M, Gill B S, DYCK P L. Radiation-induced nonhomoelogous wheat-chromosomal translocations conferring resistance to leaf rust., 1993, 86: 141-149.
[119] SEARS E R.-wheat transfers induced by homoeologous pairing//Sears E R, Sears L M S. ed.. Columbia, USA: University of Missouri Press, 1973: 191-199.
[120] FRIEBE B, WILSON D, RAUPP W, GILL B, BROWN-GUEDIRA G. Notice of release of KS04WGRC45 leaf rust-resistant hard white winter wheat germplasm., 2005, 51: 188-189.
[121] DYCK P L, SAMBORSKI D J. The genetics of two alleles for leaf rust resistance at thelocus in wheat., 1970, 12(4): 689-694.
[122] KOLMER J A, BERNARDO A, BAI G, HAYDEN M J, ANDERSON J A. Thatcher wheat line RL6149 carries, and a second leaf rust resistance gene on chromosome 1DS., 2019, 132(10): 2809-2814.
[123] MCINTOSH R A, DYCK P L. Cytogenetical studies in wheat VII. Genefor reaction toin Gabo and related cultivars., 1975, 28(2): 201-212.
[124] KOLMER J A, ANDERSON J A, FLOR J M. Chromosome location, linkage with simple sequence repeat markers, and leaf rust resistance conditioned by gene, 2010, 50(50): 2392-2395.
[125] BROWNGUEDIRA G L, SINGH S, FRITZ A K. Performance and mapping of leaf rust resistance transferred to wheat fromsubsp.., 2003, 93(7): 784-789.
[126] MAGO R, VERLIN D, ZHANG P, BANSAL U, BARIANA H, JIN Y, ELLIS J, HOXHA S, DUNDAS I. Development of wheat-recombinants and simple PCR-based markers forand a new stem rust resistance gene on the 2S#1 chromosome., 2013, 126(12): 2943-2955.
[127] FARIS J D, XU S S, CAI X, FRIESEN T L, JIN Y. Molecular and cytogenetic characterization of a durum wheat-chromosome translocation conferring resistance to stem rust., 2008, 16(8): 1097-1105.
[128] LIU W X, JIN Y, ROUSE M, FRIEBE B, GILL B, PUMPHREY M O. Development and characterization of wheat-Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust., 2011, 122: 1537-1545.
[129] LIU W, ROUSE M, FRIEBE B, JIN Y, GILL B, PUMPHREY M O. Discovery and molecular mapping of a new gene conferring resistance to stem rust,, derived fromand characterization of spontaneous translocation stocks with reduced alien chromatin., 2011, 19(5): 669-682.
[130] SINGH S J, MCINTOSH R A. Allelism of two genes for stem rust resistance in triticale., 1988, 38(2): 185-189.
[131] MCINTOSH R A. Catalogue of gene symbols for wheat// Miller T E, Koebner R M D. ed.. Cambridge, UK: Institute of Plant Science Research, Cambridge Laboratory, 1988: 1225-1323.
[132] MAGO R, ZHANG P, VAUTRIN S. The wheatgene reveals rich diversity at a cereal disease resistance locus., 2015, 1(12): 15186.
[133] RAHMATOV M, ROUSE M N, NIRMALA J, DANILOVA T, FRIEBE B, STEFFENSON B J, JOHANSSON E. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance geneinto wheat., 2016, 129(7): 1383-1392.
[134] QI L, PUMPHREY M, FRIEBE B, ZHANG P, QIAN C, BOWDEN R, ROUSE M, JIN Y, GILL B. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene () effective against race Ug99 frominto bread wheat., 2011, 123(1): 159-167.
[135] KNOTT D. The inheritance of rust resistance. VI. The transfer of stem rust resistance fromto common wheat., 1961, 41(1): 109-123.
[136] KIBIRIGE-SEBUNYA I, KNOTT D R. Transfer of stem rust resistance to wheat from anchromosome having a gametocidal effect., 1983, 25(3): 215-221.
[137] LIU W, DANILOVA T V, ROUSE M N, BOWDEN R L, FRIEBE B, GILL B S, PUMPHREY M O. Development and characterization of a compensating wheat-Robertsonian translocation withresistance to stem rust (Ug99)., 2013, 126(5): 1167-1177.
[138] KNOTT D R. The inheritance of resistance to stem rust races 15B-1 and 56 in Fren., 1983, 25(3): 283-285.
[139] KNOTT D R. The inheritance of stem rust resistance in wheat// MacKey J. ed.. Lund University, Lund, Sweden 1963., 1966: 156-166.
[140] MCINTOSH R A, LUIG N H. Recombination between genes for reaction toat or near thelocus// Sears E R, Sears L M S. ed.. Columbia, USA: University of Missouri Press, 1973: 425-432.
[141] KNOTT D R The inheritance of rust resistance IX. The inheritance of resistance to races 15B and 56 of stem rust in the wheat variety Khapstein., 1962, 42: 415-419.
[142] MCINTOSH R A, LUIG N H, BAKER E P. Genetic and cytogenetic studies of stem rust, leaf rust, and powdery mildew resistances in hope and related wheat cultivars., 1967, 20(20): 1181-1192.
[143] THE T T. Chromosome location of genes conditioning stem rust resistance transferred from diploid to hexaploid wheat., 1973, 241(112): 256.
[144] MCINTOSH R A, DYCK P L, THE T T, CUSICK J E, MILNE D L. Cytogenetical studies in wheat XIII.-a third gene fromfor resistance to, 1984, 92: 1-14.
[145] CHEN S, GUO Y, BRIGGS J, DUBACH F, CHAO S M, ZHANG W J, ROUSE M N, DUBCOVSKY J. Mapping and characterization of wheat stem rust resistance genesandfrom, 2018, 131(11): 625-635.
[146] SHEEN S J, SNYDER L A. Studies on the inheritance of resistance to six stem rust cultures using chromosome substitution lines of a marquis wheat selection., 1964, 6(1): 74-82.
[147] MCINTOSH R A.as a source of resistance to wheat stem rust., 1971, 66: 240-248.
[148] JIA J, DEVOS K M, CHAO S, MILLER T E, READER S M, GALE M D. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of, a powdery mildew resistance gene transferred fromto wheat., 1996, 92(5): 559-565.
[149] HSAM S L K, LAPOCHKINA I F, ZELLER F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (L. em Thell.). 8. Genein a wheat-translocation line., 2003, 133(3): 367-370.
[150] PETERSEN S, LYERLY J H, WORTHINGTON M L, PARKS W R, COWGER C, MARSHALL D S, BROWN-GUEDIRA G, MURPHY J P. Mapping of powdery mildew resistance geneintrogressed frominto soft red winter wheat., 2015, 128(2): 303-312.
[151] LUTZ J, HSAM S L K, LIMPERT E, ZELLER F J. Chromosomal location of powdery mildew resistance genes inL. (common wheat). 2. GenesandfromL.., 1995, 74(2): 152-156.
[152] MIRANDA L M, MURPHY J P, MARSHALL D, LEATH S.: a new powdery mildew resistance gene transferred fromCoss. to common wheat (L.)., 2006, 113(8): 1497-1504.
[153] MIRANDA L M, MURPHY J P, MARSHALL D, COWGER C, LEATH S. Chromosomal location of, a novelderived powdery mildew resistance gene introgressed into common wheat (L.)., 2007, 114(8): 1451-1456.
[154] WIERSMA A T, PULMAN J A, BROWN L K, COWGER C, OLSON E L. Identification offrom., 2017, 130(6): 1-11.
[155] CEOLONI C, DEL S G, PASQUINI M, TESTA A, MILLER T E, Koebner R M D. Transfer of mildew resistance frominto wheat byinduced homoeologous recombination// Miller T E, Koebner R M D. ed.. Cambridge, UK: Institute of Plant Science Research, Cambridge Laboratory, 1988: 221-226.
[156] LIU W, KOO D H, XIA Q, LI C, BAI F, SONG Y, FRIEBE B, GILL B S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant genefrominto wheat., 2017, 130(4): 841-848.
[157] ZELLER F J, KONG L, HARTL L, MOHLER V, HSAM S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (L. em Thell.) 7. Gene, 2002, 123(2): 187-194.
[158] DRISCOLL C, JENSEN N. Release of a wheat-rye translocation stock involving leaf rust and powdery mildew resistances 1., 1965, 5(3): 279-280.
[159] HEUN M. Chromosomal location of the powdery mildew resistance gene of Amigo wheat., 1990, 80(10): 1129-1133.
[160] FRIEBE B, HEUN M, TULEEN N, ZELLER F J, GILL B S. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat., 1994, 34(3): 621-625.
[161] HAO M, LIU M, LUO J T, FAN C L, YI Y J, ZHANG L Q, YUAN Z W, NING S Z, ZHENG Y L, LIU D C. Introgression of powdery mildew resistance geneon rye chromosome arm 6RS into wheat., 2018, 9: 1040.
[162] CHEN P D, QI L L, ZHOU B, ZHANG S Z, LIU D J. Development and molecular cytogenetic analysis of wheat-6VS/6AL translocation lines specifying resistance to powdery mildew., 1995, 91(6/7): 1125-1128.
[163] ZHANG R, SUN B, CHEN J, CAO A, XING L, FENG Y, LAN C, CHEN P., a developmental-stage and tissue-specific powdery mildew resistance gene introgressed frominto common wheat., 2016, 129(10): 1975-1984.
[164] ZHANG R, FAN Y, KONG L, WANG Z, WU J, XING L, CAO A, FENG Y., an adult-plant powdery mildew resistance gene introgressed fromchromosome arm 2VL into wheat., 2018, 131(12): 2613-2620.
[165] LUO P G, LUO H Y, CHANG Z J, ZHANG HY, ZHANG M, REN ZL. Characterization and chromosomal location ofin common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium., 2009, 118(6): 1059-1064.
[166] HE R, CHANG Z, YANG Z, YUAN Z, ZHAN H, ZHANG X, LIU J. Inheritance and mapping of powdery mildew resistance geneintrogressed frominto wheat., 2009, 118(6): 1173-1180.
[167] ZHAN H, LI G, ZHANG X, LI X, GUO H, GONG W, JIA J, QIAO L, REN Y, YANG Z. Chromosomal location and comparative genomics analysis of powdery mildew resistance genein a putative wheat-introgression line., 2014, 9(11): e113455.
[168] HSAM S L K, HUANG X Q, ERNST F, HARTL L, ZELLER F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (L. em Thell). 5. Alleles at thelocus., 1998, 96: 1129-1134.
[169] SCHMOLKE M, MOHLER V, HARTL L, ZELLER F J, HSAM S L K. A new powdery mildew resistance allele at thewheat locus transferred from einkorn ()., 2012, 29(2): 449-456.
[170] SHI A N, LEATH S, MURPHY J P. A major gene for powdery mildew resistance transferred to common wheat from wild eikorn wheat., 1998, 88(2): 144-147.
[171] THE T T. MCINTOSH R A, BENNETT F G A. Cytogenetical studies in wheat. IX. Monosomic analysis, telocentric mapping and linkage relationship of gene,and., 1979, 32: 115-125.
[172] LAW C N, WOLFE M S. Location for genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat., 1966, 8: 462-470.
[173] PIARULLI L, GADALETA A, MANGINI G, SIGNORILE M A, PASQUINI M, BLANCO A, SIMEONE R. Molecular identification of a powdery mildew resistance gene on chromosome 2BS fromssp.., 2012, 196: 101-106.
[174] MOHLER V, BAUER C, SCHWEIZER G, KEMPF H, HART L.: a new powdery mildew resistance gene in common wheat derived from cultivated emmer., 2013, 54(3): 259-263.
[175] READER S M, MILLER T E. The introduction into breed wheat of a major gene for resistance to powdery mildew from wild emmer wheat., 1991, 53(1): 57-60.
[176] RONG J K, MILLET E, MANISTERSKI J, FELDMAN M. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping., 2000, 115: 121-126.
[177] LIU Z, SUN Q, NI Z, NEVO E, YANG T. Molecular characterization of a novel powdery mildew resistance genein wheat originating from wild emmer., 2002, 123(1): 21-29.
[178] BLANCO A, GADALETA A, CENCI A, CARLUCCIO A, ABDELBACKI A M M, SIMEONE R. Molecular mapping of the novel powdery mildew resistance geneintrogressed fromvar.in durum wheat., 2008, 117: 135-142.
[179] LI G, FANG T, ZHANG H, XIE C, LI H, YANG T, NEVO E, FAHIMA T, SUN Q, LIU Z. Molecular identification of a new powdery mildew resistance geneon chromosome 3BL derived from wild emmer (var.)., 2009, 119: 531-539.
[180] HUA W, LIU Z, ZHU J, XIE C, YANG T, ZHOU Y, DUAN X, SUN Q, LIU Z. Identification and genetic mapping of, a new recessive wheat powdery mildew resistance gene derived from wild emmer (var.)., 2009, 119: 223-230.
[181] ZHANG D Y, ZHU K Y, DONG L L, LIANG Y, LI G Q, FANG T L, GUO G H, WU Q H, XIE J Z, CHEN Y X, LU P, LI M M, ZHANG H Z, WANG ZX, Zhang Y, SUN Q X, LIU Z Y. Wheat powdery mildew resistance genederived from wild emmervar.) is tightly linked in repulsion with stripe rust resistance gene., 2019, 7: DOI: 10.1016/j. cj.2019.03.003.
[182] ZELLER F J, HSAM S L K. Progress in breeding for resistance to powdery mildew in common wheat (L.) // Slinkard A E. ed.. Vol.1. Saskatoon, Canada: University Extension Press, 1998: 178-180.
[183] ZOU S, WANG H, LI Y, KONG Z TANG D. The NB-LRR geneconfers powdery mildew resistance in wheat., 2018, 218(1): 298-309.
[184] JORGENSEN J H. Genefor resistance to powdery mildew in wheat., 1973, 22: 43.
[185] JARVE K, PEUSHA H O, TSYMBALOVA J , TAMM S, DEVOS K M, ENNO T M. Chromosomal location of a- derived powdery mildew resistance gene transferred to common wheat., 2000, 43(2): 377-381.
[186] PERUGINI L D, MURPHY J P, MARSHALL D, BROWN- GUEDIRA G., a new broadly powdery mildew resistance gene from, 2008, 116: 417-425.
[187] QI L L, PUMPHREY M O, FRIEBE B, CHEN P D, GILL B S. Molecular cytogenetic characterization of alien introgressions with genefor resistance to Fusariumhead blight disease of wheat., 2008, 117(7): 1155-1166.
[188] CAINONG J C, BOCKUS W W, FENG Y, CHEN P, QI L, SEHGAL S K, DANILOVA T V, KOO D H, FRIEBE B, GILL B S. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease fromto wheat., 2015, 128(11): 1-9.
[189] GUO J, ZHANG X, HOU Y, CAI J, KONG L. High-density mapping of the major FHB resistance genederived fromand its pyramiding withby marker-assisted selection., 2015, 128(11): 2301-2316.
[190] TAGLE A G, CHUMA I, TOSA Y., a new gene for resistance toisolates ofidentified in tetraploid wheat., 2015, 105(4): 495-499.
[191] SIMON M R, KHLESTKINA E K, CASTILLO N S, BORNER A. Mapping quantitative resistance to septoria tritici blotch in spelt wheat., 2010, 128(3): 317-324.
[192] TADESSE W, HSAM S L K, WENZEL G, ZELLER F J. Chromosome location of a gene conferring resistance toin Ethiopian wheat cultivars., 2008, 162(3): 423-430.
[193] TADESSE W, SCHMOLKE M, MOHLER V, WENZEL G, Hsam S L K, ZELLER F J. Molecular mapping of resistance genes to tan spot (race 1) in synthetic wheat lines., 2007, 114: 855-862.
[194] SINGH P K, MERGOUM M, GONZALEZ-HERNANDZ J L, ALI S, ADHIKARI T B, KIANIAN S F, ELIAS E M, HUGHES G R. Genetics and molecular mapping of resistance to necrosis inducing race 5 ofin tetraploid wheat., 2008, 21(3): 293-304.
[195] MCINTOSH R A, DUBCOVSKY J, ROGERS W J, XIA X C, RAUPP W J. Catalogue of gene symbols for wheat: 2019 supplement//Raupp W J. ed.. Manhattan, USA, 2019, 65: 98-113.
[196] BURT C, NICHOLSON P. Exploiting co-linearity among grass species to map the-derivedeyespot resistance in wheat and establish its relationship to., 2011, 123(8): 1387-1400.
[197] MURRAY T D, DE LA PENA R C, YILDIRIM A, JONES S S. A new source of resistance to, cause of eyespot disease of wheat, located on chromosome 4V of, 1994, 113 (4): 281-286.
[198] ZHANG Q, LI Q, WANG X, WANG H, LANG S, WANG Y, WANG S, CHEN P, LIU D. Development and characterization of atranslocation line T4VS?4DL conferring resistance to wheat spindle streak mosaic virus., 2005, 145(3): 317-320.
[199] Friebe B, Qi L L, Wilson D L, CHANG Z J, SEIFERS D L, MARTIN T J, KRITZ A K, GILL B S. Wheat-recombinants resistant to wheat streak mosaic virusandmosaic virus., 2009, 49(4): 1221-1226.
[200] DANILOVA T V, ZHANG G, LIU W, FRIEBE B, GILL B S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus andmosaic virus resistance genefromto wheat., 2017, 130(3): 549-556.
[201] XIN Z, XU H, CHEN X, LIN Z, ZHOU G, QIAN Y, CHEN Z, LARKIN P J, BANKS P, APPELS R, GLARKE B, BRETTELL R I S. Development of common wheat germplasm resistant to barley yellow dwarf virus by biotecnology.(), 1991, 21(9): 36-42.
[202] AYALA-NAVARRETE L, THOMPSON N, OHM H, ANDERSON J. Molecular markers show a complex mosaic pattern of wheat-translocations carrying resistance to YDV., 2010, 121(5): 961-970.
[203] KOZUB N A, SOZINOV I A, KARELOV A V, BLUME YA B, SOZINOV A A. Diversity of Ukrainian winter common wheat varieties with respect to storage protein loci and molecular markers for disease resistance genes., 2017, 51(2): 117-129.
[204] 陳靜, 任正隆. 四川栽培小麥新品種(系)中的1RS/1BL染色體易位.四川大學學報(自然科學版), 1996, 33(增刊): 16-20.
CHEN J, REN Z L. 1RS/1BL Chromosome translocation in new cultivated wheat varieties (lines) in Sichuan Province.. 1996, 33(Suppl.): 16-20. (in Chinese)
[205] 楊足君, 傅體華, 任正隆. 外源抗白粉病基因向四川小麥的轉(zhuǎn)移與利用. 四川大學學報(自然科學版), 1998, 35: 46-49.
YANG Z J, FU T H, REN Z L. Transfer and utilization of exogenous powdery mildew resistance genes to Sichuan wheat., 1998, 35: 46-49. (in Chinese)
[206] HAO C Y, DONG Y, WANG L, YOU G, ZHANG H, GE H, JIA J, ZHANG X. Genetic diversity and construction of core collection in Chinese wheat genetic resources., 2008, 53(10): 1518-1526.
[207] TAHIR R, BUX H, KAZI A G, RASHEED A, NAPAR A A, AJMAL S U, MUJEEB-KAZI A. Evaluation of Pakistani wheat germplasm for T1BL.1RS chromosome translocation., 2014, 16: 421-432.
[208] LANDJEVA S, KORZUM V, GANEVA G. Evaluation of genetic diversity among Bulgarian winter wheat (L.) varieties during the period 1925-2003 using microsatellites., 2006, 53: 1605-1614.
[209] PURNHAUSER L, BONA L, LANG L. Occurrence of 1BL.1RS wheat-rye chromosome translocation and theresistance gene cluster in wheat cultivars registered in Hungary., 2011, 179: 287-295.
[210] SCHLEGEL R. Current list of wheats with rye and alien introgression. 2011, 5/8: 1-14. http://www.rye-gene-map.de/rye-introgression/index. html.
[211] LUKASZEWSKI A J, GUSTAFSON J P. Translocations and modifications of chromosomes in triticale×wheat hybrids., 1983, 64(3): 239.
[212] VILLAREAL R, RAJARAM S, MUJEEB‐KAZI A, DEL TORO E. The effect of chromosome 1B/1R translocation on the yield potential of certain spring wheats (L.)., 1991, 106(1): 77-81.
[213] MOSTNY I I, SUDARCHUK L V, CHEBOTAR S V. Molecular- genetic evidence of wheat-rye chromosome substitution and translocation in wheat cultivars and introgression stocks., 2015, 25(65): 50-60.
[214] GRAYBOSCH R, BAI G, AMAND P S, SARATH G. Persistence of rye (L.) chromosome arm 1RS in wheat (L.) breeding programs of the Great Plains of North America., 2019, 66: 941-950.
[215] KOZUB N O, SOZINOV I O, KOLIUCHY? V T, VLASENKO V A, SOZINOV O O. Identification of 1AL/1RS translocation in winter common wheat varieties of Ukrainian breeding., 2005, 39(4): 20-24.
[216] WENG Y, AZHAGUVEL P, DEVKOTA R N, RUDD J C. PCR-based markers for detection of different sources of 1AL.1RS and 1BL.1RS wheat-rye translocations in wheat background., 2010, 126(5): 482-486.
[217] HSAMSL K, CERMEO M C, FRIEBE B, ZELLER F J. Transfer of Amigo wheat powdery mildew resistance genefrom T1AL·1RS to the T1BL·1RS wheat-rye translocated chromosome., 1995, 74(5): 497-501.
[218] 向齊君, 盛寶欽, 段霞瑜, 周益林. 小麥白粉病抗源材料的有效抗病基因分析. 華北農(nóng)學報, 1996, 11(4): 43-47.
XIANG Q J, SHENG B Q, DUAN X Y, ZHOU Y L. Analysis of effective wheat powdery mildew resistance genes of wheat resistance lines., 1996, 11(4): 43-47. (in Chinese)
[219] YANG Z J, REN Z L. Chromosomal distribution and genetic expression of(Host) A. L?ve genes for adult plant resistance to stripe rust in wheat background., 2001, 48(2): 183-187.
[220] 韓德俊, 康振生. 中國小麥品種抗條銹病現(xiàn)狀及存在問題與對策. 植物保護, 2018, 44(5): 6-17.
HAN D J, KANG Z S. Current status and future strategy in breeding wheat for resistance to stripe rust in China., 2018, 44(5): 6-17. (in Chinese)
[221] QI W, TANG Y, ZHU W, LI D, DIAO C, XU L, ZENG J, WANG Y, FAN X, SHA L. Molecular cytogenetic characterization of a new wheat-rye 1BL/1RS translocation line expressing superior stripe rust resistance and enhanced grain yield., 2016, 244(2): 405-416.
[222] 晏本菊, 張懷瓊, 任正隆. 黑麥堿基因()表達缺失的1RS/ 1BL易位系的鑒定. 遺傳, 2005, 27(4): 513-517.
YAN B J, ZHANG H Q, REN Z L. Molecular cytogenetic identification of a new 1RS/1BL translocation line with secalin absence., 2005, 27(4): 513-517. (in Chinese)
[223] ANUGRAHWATI D R, SHEPHERD K W, VERLIN D C, ZHANG P, MIRZAGHADERI G, WALKER E, FRANCKI M G, DUNDAS I S. Isolation of wheat-rye 1RS recombinants that break the linkage between the stem rust resistance geneand secalin., 2008, 51(51): 341-349.
[224]錢鵬, 劉漢梅, 陳洋爾, 羅培高, 唐宗祥, 杜小剛, 任正隆, 張懷渝. 一個黑麥堿基因表達缺失的抗白粉病新材料的鑒定和抗源分析. 麥類作物學報, 2014, 34(7): 936-943.
QIAN P, LIU H M, CHEN Y E, LUO P G, TANG Z X, DU X G, REN Z L, ZHANG H Y. Molecular cytogenetic identification of novel powdery mildew resistance and 1BL/1RS translocation line with secalin absence., 2014, 34(7): 936-943. (in Chinese)
[225] GRAYBOSCH R, PETERSON C, BAENZIGER P, BALTENSPERGER D, NELSON L, JIN Y, KOLMER J, SEABOURN B, FRENCH R, HEI G, MARTIN T, BEECHER B, SCHWARZACHER T, HESLOP-HARRISON P. Registration of ‘Mace’ hard red winter wheat., 2009, 3: 51-56.
[226] CRUZ C D, PETERSON G L, BOCKUS W W, KANKANALA P, DUBCOVSKY J, JORDAN K W, AKHUNOV E, CHUMLEY F, BALDELOMAR F D, VALENT B. The 2NS translocation fromconfers resistance to thepathotype of, 2016, 56(3): 990-1000.
[227] MCINTOSH R, WEILLINGS C, PARK R.. Melbourne, Australia: CSIRO Press, 1995: 1-200.
[228] WELLINGS C, BARIANA H, BANSAL U, PARK R. Expected responses of Australian wheat and Triticale varieties to the cereal rust diseases in 2012., 2012, 101(1): 1-5.
[229] ROBERT O, ABELARD C, DEDRYVER F. Identification of molecular markers for the detection of the yellow rust resistance gene, 1999, 5(2): 167-175.
[230] 佳瑞, 馬占鴻. 我國主栽小麥品種抗條銹病基因的分子檢測//中國植物病理學會2018年學術(shù)年會論文集. 2018.
JIA R, MA Z H. Molecular detection of stripe rust resistance gene in main wheat cultivars of China//. 2018. (in Chinese)
[231] 賈舉慶, 雷孟平, 劉成, 李光蓉, 楊足君. 小麥抗條銹基因的新SCAR標記的建立與應用. 麥類作物學報, 2010, 30(1): 11-16.
JIA J Q, LEI M P, LIU C, LI G R, YANG Z J. Exploitation and application of a new SCAR marker linked to stripe rust resistance gene, 2010, 30(1): 11-16. (in Chinese)
[232]薛文波, 許鑫, 穆京妹, 王琪琳, 吳建輝, 黃麗麗, 康振生, 韓德俊. 中國小麥主栽品種抗條銹性評價與基因分析. 麥類作物學報, 2014, 34(8): 1054-1060.
XUE W B, XU X, MU J M, WANG Q L, WU J H, HUANG L L, KANG Z S, HAN D J. Evaluation of stripe rust resistance and genes in Chinese elite wheat varieties., 2014, 34(8): 1054-1060. (in Chinese)
[233] 李峰奇, 韓德俊, 魏國榮, 曾慶東, 康振生. 黃淮麥區(qū)小麥品種基因簇的分子檢測. 西北農(nóng)林科技大學學報(自然科學版), 2009, 37(3):151-158.
LI F Q, HAN D J, WEI G Q, ZENG Q D, KANG Z S. Identification of, 2009, 37(3): 151-158. (in Chinese)
[234] 張林, 張夢雅, 高穎, 許換平, 劉成, 劉建軍, 閆紅飛, 劉大群. 山東省12個主栽小麥品種(系)抗葉銹性分析. 植物遺傳資源學報, 2017, 18(4): 676-684.
ZHANG L, ZHANG M Y, GAO Y, XU H P, LIU C, LIU J J, YAN H F, LIU D Q. Analysis of leaf rust resistance in 12 main wheat cultivars (lines) in Shandong., 2017, 18(4): 676-684. (in Chinese)
[235] 李振岐, 曾士邁. 中國小麥銹病. 北京: 中國農(nóng)業(yè)出版社, 2002.
LI Z Q, ZENG S M.. Beijing: China Agriculture Press, 2002. (in Chinese)
[236] BAYLES R A, FLATH K, HOVMOLLER M S, VALLAVIEILLE- POPE C. Breakdown of theresistance to yellow rust of wheat in northern Europe., 2000, 20(7): 805-811.
[237] 李振聲, 陳潄陽, 劉冠軍, 李容玲. 小麥與偃麥草遠緣雜交的研究. 科學通報, 1962, 7(4): 40-42.
LI Z S, CHEN S Y, LIU G J, LI R L. A study on the distant cross of wheat and agropyron., 1962, 7(4): 40-42. (in Chinese)
[238] 辛志勇, 徐惠君, 陳孝, 林志珊. 應用生物技術(shù)向小麥導入黃矮病抗性的研究. 中國科學, 1991, 1: 36-42.
XIN Z Y, XU H J, CHEN X, LIN Z S. Study on introducing resistance to yellow dwarf disease into wheat by biotechnology., 1991, 1: 36-42. (in Chinese)
[239] HAN F, LIU B, FEDAK G, LIU Z. Chromosomal variation, constitution of five partial amphiploids of wheat-detected by GISH, seed storage protein marker and multicolor GISH., 2004, 109: 1070-1076.
[240] 莊麗芳, 亓增軍, 陳佩度, 馮祎高, 劉大均. 普通小麥與百薩偃麥草染色體易位系的選育與鑒定. 中國農(nóng)業(yè)科學, 2003, 36(12): 1432-1436.
ZHUANG L F, QI Z J, CHEN P D, FENG W G, LIU D J. Development and identification ofL.-Love chromosome translocations., 2003, 36(12): 1432-1436. (in Chinese)
[241] 王長有, 吉萬全, 薛秀莊, 王秋英. 小麥-中間偃麥草異附加系條銹病抗性的研究. 西北植物學報, 1999, 19(6): 54-58.
WANG C Y, JI W Q, XUE X Z, WANG Q Y. Studies on yellow rust resistance of-alien disomic addition line., 1999, 19(6): 54-58. (in Chinese)
[242] 王洪剛, 朱軍, 劉樹兵. 利用細胞學和RAPD技術(shù)鑒定抗病小偃麥易位系. 作物學報, 2001, 27(6): 886-890.
WANG H G, ZHU J, LIU S B. Identification oftranslocation line with disease resistance by cytology and RAPD analysis., 2001, 27(6): 886-890. (in Chinese)
[243] YANG Z J, LI G R, CHANG Z J, ZHOU J P, REN Z L. Characterization of a partial amphiploid betweencv. Chinese Spring andssp.., 2006, 149(1/2): 11-17.
[244] ZHANG X, SHEN X, HAO Y, CAI J, OHM H W, KONG L. A genetic map ofchromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust., 2011, 122(2): 263-270.
[245] 任正隆. 黑麥種質(zhì)導入小麥及其在小麥育種中的利用方式. 中國農(nóng)業(yè)科學, 1991, 24(3): 18-25.
REN Z L. Introduction of rye chromatin into wheat and its breeding behavior., 1991, 24(3): 18-25. (in Chinese)
[246] 劉登才, 鄭有良, 魏育明, 蘭秀錦, 顏澤洪, 周永紅. 將秦嶺黑麥遺傳物質(zhì)導入普通小麥的研究. 四川農(nóng)業(yè)大學學報, 2002, 20(2): 75-77.
LIU D C, ZHENG Y L, WEI Y M, LAN X J, YAN Z H, ZHOU Y H. Transferring the genetic base of qinling rye into wheat., 2002, 20(2): 75-77. (in Chinese)
[247] AN D G, LI L H, LI J M, LI H J, ZHU Y G. Introgression of resistance to powdery mildew conferred by chromosome 2R by crossing wheat nullisomic 2D with rye., 2006, 48(7): 838-847.
[248] 李愛霞, 亓增軍, 裴自友, 莊麗芳, 馮祎高, 王秀娥. 普通小麥輝縣紅-荊州黑麥異染色體系的選育及其梭條花葉病抗性鑒定. 作物學報, 2007, 33(4): 639-645.
LI A X, QI Z J, PEI Z Y, ZHUANG L F, FENG W G, WANG X E. Development and WSSMV resistance identification of wheat landrace Huixianhong alien chromosome lines derived from rye cultivar Jingzhouheimai., 2007, 33(4): 639-645. (in Chinese)
[249] LIU C, YANG Z J, LI G R, ZENG Z X, ZHANG Y, ZHOU J P, LIU Z H, REN Z L. Isolation of a new repetitive DNA sequence fromenables targeting ofchromatin in wheat background., 2008, 159(1/2): 249-258.
[250] 唐宗祥, 符書蘭, 任正隆, 張懷瓊. 小麥-黑麥雙二倍體形成過程中微衛(wèi)星序列的變化. 麥類作物學報, 2008, 28(2): 197-201.
TANG Z X, FU S L, REN Z L, ZHANG H Q. Microsatellite sequence variation of wheat-rye amphiploids detected by SSR markers., 2008, 28(2): 197-201. (in Chinese)
[251] 吳金華, 王新茹, 王長有, 王秋英, 吉萬全. 含抗白粉病新基因普通小麥-黑麥1R二體異附加系的遺傳學鑒定. 農(nóng)業(yè)生物技術(shù)學報, 2009, 17(1): 153-158.
WU J H, WANG X R, WANG C Y, WANG Q Y, JI W Q. Genetic identification of wheat-rye 1R alien disomic additional line with novel resistant gene to powdery mildew., 2009, 17(1): 153-158. (in Chinese)
[252] FU S, CHEN L, WANG Y, LI M, YANG Z, QIU L, YAN B, REN Z, TANG Z. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes., 2015, 5: 10552.
[253] YANG Z J, LIU C, FENG J, LI G R, ZHOU J P, DENG K J, REN Z L. Studies on genome relationship and species‐specific PCR marker forin Triticeae., 2006, 143(2): 47-54.
[254] HAN H, BAI L, SU J, ZHANG J, SONG L, GAO A, YANG X, LI X, LIU W, LI L. Genetic rearrangements of six wheat-6P addition lines revealed by molecular markers., 2014, 9(3): e91066.
[255] YE X, LU Y, LIU W, CHEN G, HAN H, ZHANG J, YANG X, LI X, GAO A, LI L. The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-chromosome 5A/6P translocation lines., 2015, 128(5): 797-811.
[256] 李家洋. 李振聲論文選集, 北京: 科學出版社, 2007.
LI J Y.. Beijing: Science Press, 2007. (in Chinese)
[257] 王義芹, 譚偉, 楊興洪, 李濱, 童依平, 李振聲. 不同年代小麥品種旗葉的光合特性及抗氧化酶活性研究. 西北植物學報, 2007, 27(12): 2484-2490.
WANG Y Q, TAN W, YANG X H, LI B, TONG Y P, LI Z S. Photosynthetic characteristics and the activities of antioxidative enzymes in flag leaves of wheat cultivars released in different period., 2007, 27(12): 2484-2490. (in Chinese)
[258] 李萬隆, 李振聲. 小麥品種小偃6號染色體結(jié)構(gòu)變異的細胞學研究. 遺傳學報, 1990, 17(6): 430-437.
LI W L, LI Z S. A cytological study of chromosomal structure changes in a common wheat variety, Xiaoyan No. 6., 1990, 17(6): 430-437. (in Chinese)
[259] 任志龍, 吉萬全, 趙會賢, 薛秀莊. 面包專用粉小麥新品種陜麥150的選育與產(chǎn)業(yè)化開發(fā). 麥類作物學報, 2000, 20(1): 74-77.
REN Z L, JI W Q, ZHAO H X, XUE X Z. Development and industrial exploitation of a new bread wheat variety Shaanmai 150., 2000, 20(1): 74-77. (in Chinese)
[260] 劉新倫, 王超, 牛麗華, 劉志立, 張錄德, 陳春環(huán), 張榮琦, 張宏, 王長有, 王亞娟, 田增榮, 吉萬全. 普通小麥-十倍體長穗偃麥草衍生新品種抗赤霉病基因的分子鑒別. 中國農(nóng)業(yè)科學, 2017, 50(20): 3908-3922.
LIU X L, WANG C, NIU L H, LIU Z L, ZHANG L D, CHEN C H, ZHANG R Q, ZHANG H, WANG C Y, WANG Y J, TIAN Z R, JI W Q. Molecular identification of FHB resistance gene in varieties derived from common wheat-partial amphiploid., 2017, 50(20): 3908-3922. (in Chinese)
[261] 張增艷, 辛志勇. 抗黃矮病小麥生物技術(shù)育種研究進展. 作物雜志, 2005, 5: 4-7.
ZHANG Z Y, XIN Z Y. Advances in biotechnology breeding of wheat resistant to yellow dwarf disease., 2005, 5: 4-7. (in Chinese)
[262] 范紹強, 謝咸升, 鄭王義, 李峰. 小麥抗黃矮病遺傳育種研究進展. 中國生態(tài)農(nóng)業(yè)學報, 2008, 16(1): 241-244.
FAN S Q, XIE X S, ZHENG W Y, LI F. Advances in barley yellow dwarf virus resistance heredity in wheat breeding., 2008, 16(1): 241-244. (in Chinese)
[263] 孫善澄, 孫玉, 袁文業(yè), 閻文澤, 裴自友, 張美榮, 白云鳳. 優(yōu)質(zhì)黑粒小麥76的選育及品質(zhì)分析. 作物學報, 1999, 25(1): 50-54.
SUN S C, SUN Y, YUAN W Y, YAN W Z, PEI Z Y, ZHANG M R, BAI Y F. Breeding and qualitative analysis for black grain wheat 76 of superior quality., 1999, 25(1): 50-54. (in Chinese)
[264] 孫玉, 孫善澄, 劉少翔, 閆貴云, 郭慶. 高營養(yǎng)飼糧兼用全黑小麥的選育. 山西農(nóng)業(yè)科學, 2009, 37(12): 3-6.
SUN Y, SUN S D, LIU S X, YAN G Y, GUO Q. Selection of high nutritive feed-food dual-purposed all black wheat., 2009, 37(12): 3-6. (in Chinese)
[265] 齊莉莉, 陳佩度, 劉大鈞, 周波, 張守中, 盛寶欽, 向齊君, 段霞渝, 周益林. 小麥白粉病新抗源-基因. 作物學報, 1995, 21(3): 257-262.
QI L L, CHEN P D, LIU D J, ZHOU B, ZHANG S Z, SHENG B Q, XIANG Q J, DUAN X Y, ZHOU Y L. The gene-a new source for resistance to wheat powdery mildew., 1995, 21(3): 257-262. (in Chinese)
[266] 陳佩度, 張守忠, 王秀娥, 王蘇玲, 周波, 馮祎高, 劉大鈞. 抗白粉病高產(chǎn)小麥新品種南農(nóng)9918. 南京農(nóng)業(yè)大學學報, 2002, 25(4): 105-106.
CHEN P D, ZHANG S Z, WANG X E, WANG S L, ZHOU B, FENG W G, LIU D J. New wheat variety Nannong 9918 with high yield and powdery mildew resistance., 2002, 25(4): 105-106. (in Chinese)
[267] 李桂萍, 陳佩度, 張守忠, 趙和. 小麥-簇毛麥6VS/6AL易位染色體對小麥農(nóng)藝性狀的影響. 植物遺傳資源學報, 2011, 12(5): 744-749.
LI G P, CHEN P D, ZHANG S Z, ZHAO H. Effects of the 6VS/6AL translocation chromosome on agronomic characteristics of wheat., 2011, 12(5): 744-749. (in Chinese)
[268] 任天恒, 陳放, 張懷瓊, 晏本菊, 任正隆. 1RS.1BL易位在川農(nóng)號系列小麥新品種選育中的作用. 麥類作物學報, 2011, 31(3): 430-436.
REN T H, CHEN F, ZHANG H Q, YAN B J, REN Z L. Application of 1RS.1BL translocation in the breeding of “Chuannong” series wheat cultivars., 2011, 31(3): 430-436. (in Chinese)
[269] ZHANG P L, HAO Y L, YANG J, LUO Y, REN Z L. Analysis of the relationship between agronomic traits and disease resistance of wheat varieties-Chuannong., 2012, 3(1): 12-15.
[270] 吉萬全, 王秋英, 王長有, 任志龍, 張宏, 蔡東明, 王亞娟, 薛秀莊. 優(yōu)質(zhì)抗病豐產(chǎn)小麥新品種-遠豐175. 麥類作物學報, 2006, 26(4): 175.
JI W Q, WANG Q Y, WANG C Y, REN Z L, ZHANG H, CAI D M, WANG Y J, XUE X Z. High quality, disease resistant and high yielding wheat variety-Yuanfeng 175., 2006, 26(4): 175. (in Chinese)
[271] GUO J, HE F, CAI J J, WANG H W, LI A F, WANG H G, KONG L R. Molecular and cytological comparisons of chromosomes 7el1, 7el2, 7Ee, and 7Eiderived from., 2015, 145(1): 68-74.
[272] HAN F, LI J. Morphology and cytogenetics of intergeneric hybrids of crossingandwith tetraplloid., 1993, 20(5): 44-49.
[273] FU S, LV Z, QI B, GUO X, LI J, LIU B, HAN F. Molecular cytogenetic characterization of wheat-addition, substitution and translocation lines with a novel source of resistance to wheat fusarium head blight., 2012, 39(2): 103-110.
[274] WAN A, ZHAO Z, CHEN X, HE Z, JIN S, JIA Q, YAO G, WANG B, LI G, BI Y, YUAN Z. Wheat stripe rust epidemic and virulence off. sp.in China in 2002., 2004, 88(8): 896-904.
[275] 何中虎, 夏先春, 陳萬權(quán). 小麥對稈銹菌新小種Ug99的抗性研究進展. 麥類作物學報, 2008, 28(1): 170-173.
HE Z H, XIA X C, CHEN W Q. Breeding for resistance to new race Ug99 of stem rust pathogen., 2008, 28(1): 170-173. (in Chinese)
[276] ZHANG H, GUAN H, LI J, XIE C, DUAN X, ZHOU Y, YANG T, SUN Q, LIU Z. Genetic and comparative genomics mapping reveals that a powdery mildew resistance geneoriginating from wild emmer co-segregates with an NBS-LRR analog in common wheat (L.)., 2010, 121: 1613-1621.
[277] NASUDA S, FRIEBE B, BUSCH W, KYNAST R G , Gill B S. Structural rearrangement in chromosome 2M ofhas prevented the utilization of the Compair and related wheat-translocations in wheat improvement., 1998, 96(6/7):780-785.
[278] MARAIS G F, BADENHORST P E, EKSTEEN A, PRETORIUS Z A. Reduction ofchromatin associated with resistance genesand, 2010, 171(1): 15-22.
[279] 王海燕, 趙仁慧, 袁春霞, 張守忠, 肖進, 王秀娥. 小麥-簇毛麥T4DL·4VS易位染色體對小麥農(nóng)藝性狀的影響. 麥類作物學報, 2012, 32(6): 1032-1036.
WANG H Y, ZHAO R H, YUAN C X, ZHANG S Z, XIAO J, WANG X E. Effects of theT4DL·4VS translocation chromosome on the agronomic important traits in different backgrounds., 2012, 32(6): 1032-1036. (in Chinese)
[280] 郭軍, 李家前, 李豪圣, 王燦國, 劉愛峰, 程敦公, 曹新有, 劉建軍, 趙振東, 宋健民. 高大山羊草染色體片段對小麥農(nóng)藝和產(chǎn)量性狀的影響. 麥類作物學報, 2019, 34):13-18.
GUO J, LI J Q, LI H S, WANG C G, LIU A F, CHENG D G, CAO X Y, LIU J J, ZHAO Z D, SONG J M. Effect ofchromatin carryingon wheat agronomic and yield-related traits., 2019, 39(4): 13-18. (in Chinese).
[281] KLYMIUK V, YANIV E, HUANG L, RAATS D, FATIUKHA A, CHEN S, FENG L, FRENKEL Z, KRUGMAN T, LIDZBARSKY G, CHANG W, JAASKELAINEN M, SCHUDOMA C, PAULIN L, LAINE P, BARIANA H, SELA H, SALEEM K, SORENSEN C, HOVMOLLER M, DISTELFELD A, CHALHOUB B, DUBCOVSKY J, KOROL A, SCHULMAN A, FAHIMA T. Cloning of the wheatresistance gene sheds light on the plant tandem kinase- pseudokinase family., 2018, 9: 3735.
[282] ZHANG C, HANG L, ZHANG H, HAO Q, LYU B, WANG M, EPSTEIN L, LIU M, KOU C, QI J, CHENG F, LI M, GAO G, NI F, ZHANG L, HAO M, WANG J, CHEN X, LUO M, ZHENG Y, WU J, LIU D, FU D. An ancestral NB-LRR with duplicated 3’UTRs confers stripe rust resistance in wheat and barley., 2019, DOI:10.1038/s41467-019-11872-9.
[283] FU D, UAUY C, DISTELFELD A, BLECHL A, EPSTEIN L, CHEN X, SELA H, FAHIMA T, DUBCOVSKY J. A Kinase-START gene confers temperature-dependent resistance to wheat stripe rust., 2009, 323(5919): 1357-1360.
[284] HUANG L, BROOKS S A, LI W, FELLERS J, TRICK H, GILL B. Map-based cloning of leaf rust resistance genefrom the large and polyploid genome of bread wheat., 2003, 164(2): 655-664.
[285] ZHANG W, CHEN S, ABATE Z, NIRMALA J, ROUSE M, DUBCOVSKY J. Identification and characterization of, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group., 2017, 114(45): E9483-E9492.
[286] CHEN S, ZHANG W, BOLUS S, ROUSE M, DUBCOVSKY J. Identification and characterization of wheat stem rust resistance geneeffective against the Ug99 race group at high temperature., 2018, 14(4): e1007287.
[287] SALCEDO A, RUTTER W, WANG S, AKHUNOVA A, BOLUS S, CHAO S, ANDERSON N, DE SOTO M, ROUSE M, SZABO L, BOWDEN R, DUBCOVSKY J, AKHUNOV E. Variation in thegene determinesresistance against wheat stem rust race Ug99., 2017, 358(6370): 1604-1606.
[288] CHEN S, ROUSE M, ZHANG W, ZHANG X, GUO Y, BRIGGS J, DUBCOVSKY J. Wheat geneencodes a protein with two putative kinase domains that confers resistance to stem rust., 2019, DOI: 10.1111/nph.16169
[289] HE H, ZHU S, ZHAO R, JIANG Z, JI Y, JI J, QIU D, LI H, BIE T., encoding a typical CC-NBS-LRR protein, confers broad- spectrum resistance to wheat powdery mildew disease., 2018, 11(6): 879-882.
[290] XING L, HU P, LIU J, WITEK K, ZHOU S, XU J, ZHOU W, GAO L, HUANG Z, ZHANG R, WANG X, CHEN P, WANG H, JONES J, KARAFIATOVA M, VRANA J, BARTOS J, DOLEZEL J, TIAN Y, WU Y, CAO A.fromencodes a CC-NBS- LRR that confers powdery mildew resistance in wheat., 2018, 11(6): 874-878.
Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization
LIU Cheng, HAN Ran, WANG XiaoLu, GONG WenPing, CHENG DunGong, CAO XinYou, LIU AiFeng, LI HaoSheng, LIU JianJun
(Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Huang-Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan 250100)
Wheat alien species are vast reservoir of diversity for disease and pest resistance as well as stress tolerance, which are excellent gene sources for wheat breeding. Through wide hybridization, the genes of alien species could be transferred to wheat to create wheat-alien chromosome lines such as amphiploids or partial amphiploids, additions, substitutions and translocation lines. These genetic stocks could be utilized to study chromosome behavior and genome evolution, mapping genes, and diversifying the genetic basis of wheat for diseases and pest resistance, as well as yield and quality improvement. In order to understand the progress of wheat wide hybridization and useful gene transfer from alien species to wheat, in this paper, the classification of the tribe Triticeae, the definition and significance of wheat wide hybridization, alien transfers progress from species belonging to genera,,,,,,,,andto wheat have been summarized and discussed. To date, the official designated genes originated from wheat alien species include 17 stripe rust resistance genes, 35 leaf rust resistance gens, 30 stem rust resistance genes, 41 powdery mildew resistance genes, 3 Fusarium head blight-resistance genes, one wheat blast resistance gene, one Septoria tritici blotch resistance genes, one Septoria nodorum blotch resistance gene, 4 tan spot resistance genes, 2 eyespot resistance genes, one wheat spindle streak mosaic virus resistance gene, 2 wheat streak mosaic virus resistance genes and 2 cereal yellow dwarf resistance genes. Names and the chromosomal locations of these disease resistance genes were inducted. Moreover, the utilization of these genes in wheat breeding has also been reviewed and summarized. In the history of world wheat breeding, disease resistant germplasms such as wheat-rye 1RS·1BL translocation, 1RS·1AL translocation and wheat-2NS/2AS translocation have made outstanding contributions. However, this only benefited from the utilization of a few disease resistant genes. Compared to the number of the designated genes, relatively few disease-resistant genes have been used in wheat breeding. In this paper, the limiting factors for the underutilization are discussed. Suggestions on how to use these disease-resistant genes in the future are put forward. Meanwhile, the cloned disease-resistant genes from wheat alien species are listed. The methods of cloning these genes and the possible research hotspots in the future are also analyzed. It is believed that the development and application of wheat-wild species translocation lines without genetic drag may be an important driving force for material innovation and variety breeding in the future.
wheat; wild hybridization; chromosome line; disease resistance gene; derived varieties
10.3864/j.issn.0578-1752.2020.07.001
2019-07-31;
2019-11-14
泰山學者工程專項經(jīng)費(tsqn201812123)、山東省良種工程(2019LZGC016)、山東省自然科學基金(ZR2017MC004)
劉成,E-mail:lch6688407@163.com
(責任編輯 李莉)