于惠林,賈芳,全宗華,崔海蘭,李香菊
施用草甘膦對(duì)轉(zhuǎn)基因抗除草劑大豆田雜草防除、大豆安全性及雜草發(fā)生的影響
于惠林,賈芳,全宗華,崔海蘭,李香菊
(中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所,北京 100193)
【目的】轉(zhuǎn)和雙價(jià)基因抗草甘膦大豆‘GE-J16’是我國(guó)具有自主知識(shí)產(chǎn)權(quán)的抗除草劑材料,噴施草甘膦后,評(píng)價(jià)草甘膦對(duì)雜草防除、大豆安全和雜草發(fā)生的影響,為其將來(lái)商業(yè)化種植后的安全監(jiān)測(cè)與雜草治理提供數(shù)據(jù)支持?!痉椒ā砍菪Ч好啃^(qū)以對(duì)角線5點(diǎn)取樣法取5個(gè)0.25 m2樣點(diǎn)并標(biāo)記,施藥后28 d調(diào)查禾本科和闊葉雜草株數(shù),并剪取地上部分稱取鮮重, 計(jì)算株防效和鮮重防效。對(duì)大豆安全性:每小區(qū)以對(duì)角線5點(diǎn)取樣法,每點(diǎn)隨機(jī)取4株大豆并標(biāo)記,在噴藥當(dāng)天、藥后7、14、21及28 d調(diào)查大豆株高和復(fù)葉數(shù),觀察藥害,收獲前每小區(qū)取50株大豆調(diào)查結(jié)莢數(shù)及產(chǎn)量。雜草發(fā)生情況:每小區(qū)以對(duì)角線5點(diǎn)取樣法取5個(gè)0.25 m2樣點(diǎn)并標(biāo)記(避開(kāi)除草效果取樣點(diǎn)),調(diào)查并記錄每種雜草種類(lèi)、株數(shù),計(jì)算每種雜草相對(duì)多度?!窘Y(jié)果】轉(zhuǎn)基因大豆噴施900、1 800和3 600 g a.i./hm2草甘膦對(duì)禾本科雜草株防效2016年分別為84.30%、95.22%和83.62%,闊葉雜草株防效分別為49.80%、64.52%和61.93%,禾本科和闊葉雜草鮮重防效分別在95.36%和82.05%以上,2017年對(duì)禾本科和闊葉草株防效分別達(dá)94.93%和85.09%以上,對(duì)禾本科和闊葉雜草鮮重防效分別達(dá)98.00%和96.57%以上。轉(zhuǎn)基因大豆噴施草甘膦對(duì)大豆生長(zhǎng)沒(méi)有不良影響,產(chǎn)量高于人工除草處理。兩年研究結(jié)果表明轉(zhuǎn)基因抗除草劑大豆噴施草甘膦后雜草群落發(fā)生改變,轉(zhuǎn)基因抗除草劑大豆田不除草處理小區(qū)主要優(yōu)勢(shì)闊葉雜草為反枝莧()、打碗花()、馬齒莧(),禾本科雜草為狗尾草()、馬唐()和牛筋草(),共6種,噴施草甘膦900—3 600 g a.i./hm2后轉(zhuǎn)基因大豆田5種主要優(yōu)勢(shì)雜草為打碗花、夏至草()、馬齒莧、牛筋草和狗尾草?!窘Y(jié)論】轉(zhuǎn)基因抗草甘膦大豆‘GE-J16’噴施草甘膦900—3 600 g a.i./hm2對(duì)雜草有很好的防除效果, 對(duì)大豆安全。因此,轉(zhuǎn)基因抗草甘膦大豆‘GE-J16’將在我國(guó)有很好的商業(yè)化應(yīng)用前景,噴施草甘膦影響雜草種群的發(fā)生,如今后商業(yè)化種植需長(zhǎng)期密切監(jiān)測(cè)種群變化。
轉(zhuǎn)基因大豆;草甘膦;雜草防除;作物安全
【研究意義】轉(zhuǎn)基因抗除草劑大豆()在商業(yè)化種植前,研究目標(biāo)除草劑的除草效果、對(duì)作物安全性及雜草發(fā)生的影響是轉(zhuǎn)基因抗除草劑作物環(huán)境安全性評(píng)價(jià)的重要內(nèi)容,其研究也可為轉(zhuǎn)基因抗除草劑大豆商業(yè)化后的安全監(jiān)測(cè)與雜草治理提供數(shù)據(jù)支持?!厩叭搜芯窟M(jìn)展】大豆既是重要的糧食作物和油料作物,又是養(yǎng)殖業(yè)蛋白質(zhì)飼料的重要來(lái)源,在我國(guó)農(nóng)業(yè)生產(chǎn)以及社會(huì)經(jīng)濟(jì)生活中均占有相當(dāng)重要的地位。中國(guó)是全球大豆進(jìn)口大國(guó),每年大豆需求量為1.1億噸,國(guó)內(nèi)大豆產(chǎn)量為1 600萬(wàn)噸左右,無(wú)法滿足市場(chǎng)需求,80%依靠進(jìn)口,2018年我國(guó)進(jìn)口大豆約8 800萬(wàn)噸[1]。近幾年我國(guó)大豆種植面積在800萬(wàn)公頃左右[1],大豆田有一年生禾本科雜草牛筋草()、馬唐()、稗()、一年生闊葉草反枝莧()、馬齒莧()、苘麻()、打碗花()、酸模葉蓼()、鐵莧菜()和多年生雜草刺兒菜()、苣荬菜()、問(wèn)荊()等,草害是制約我國(guó)大豆產(chǎn)量和品質(zhì)的一個(gè)重要因素[2]。自1996年首例轉(zhuǎn)基因抗除草劑大豆在美國(guó)商業(yè)化后,轉(zhuǎn)基因抗除草劑作物的種植大大簡(jiǎn)化了除草方式并降低除草成本,備受種植者的青睞,近年來(lái)種植面積更是持續(xù)迅猛增長(zhǎng)。至2017年轉(zhuǎn)基因抗除草劑(包括抗除草劑/抗蟲(chóng)復(fù)合性狀)大豆全球種植面積為0.94億公頃,種植國(guó)家為9個(gè),種植面積排名前三的國(guó)家為美國(guó)、巴西和阿根廷[3]。轉(zhuǎn)基因抗除草劑作物種植還帶來(lái)了可觀的、可持續(xù)的社會(huì)經(jīng)濟(jì)及環(huán)境效益,如顯著減少除草劑使用所造成的環(huán)境污染,節(jié)約礦物燃料,少耕或不耕作土地減少了溫室氣體排放及增加了農(nóng)民的收益[4-5]。2015年全球農(nóng)戶因種植轉(zhuǎn)基因抗除草劑大豆所獲得收益為38.2億美元,1996—2015年間累積收益為500.4億美元(47%是來(lái)源于種植第二茬作物提高產(chǎn)量所獲得的收益,53%來(lái)源于節(jié)約防除成本所獲得)[6]。轉(zhuǎn)基因抗除草劑大豆涉及的基因有11個(gè),分別為、、、、、、、、-2、-和-,涉及的除草劑種類(lèi)有草甘膦、草銨膦、異惡唑草酮、硝磺草酮、磺酰脲類(lèi)、麥草畏、2,4-D和咪唑啉酮類(lèi),目前抗除草劑大豆轉(zhuǎn)化事件有28個(gè)[3,7-8],抗草甘膦仍為第一大目標(biāo)性狀。大豆中有3個(gè)抗草甘膦基因,來(lái)源于根癌農(nóng)桿菌()菌株的和來(lái)源于玉米()的2,其作用原理均為在大豆植株體內(nèi)產(chǎn)生對(duì)草甘膦不親和的5-烯醇丙酮酸莽草酸-3-磷酸合酶,與草甘膦結(jié)合能力降低,從而賦予對(duì)草甘膦除草劑更高的耐受性;來(lái)源于地衣芽孢桿菌(),在植物體產(chǎn)生草甘膦N-乙酰轉(zhuǎn)移酶,催化草甘膦失活,賦予對(duì)草甘膦的耐受性[7-8]。然而隨著全球轉(zhuǎn)基因抗草甘膦大豆的廣泛種植,草甘膦頻繁大量使用,過(guò)度單一依賴草甘膦的雜草控制手段對(duì)雜草施加了巨大的選擇壓力,一直被普遍關(guān)注的雜草種群演替及雜草抗/耐藥性問(wèn)題也越來(lái)越突出[9-12]。在過(guò)去的20年間,相關(guān)研究被大量報(bào)道[10,13-14]。由于過(guò)度單一依賴草甘膦和少耕、免耕的耕作制度,在一些種植轉(zhuǎn)基因抗除草劑作物國(guó)家如美國(guó)等出現(xiàn)了雜草種群演替,并且優(yōu)勢(shì)雜草種群向草甘膦天然耐受性或抗性種類(lèi)的演替[9-10,13-14],這種雜草種群演替歸咎于雜草對(duì)作物生產(chǎn)中使用策略變化的“生態(tài)適應(yīng)”。至2019年全球抗草甘膦雜草已達(dá)43種[14],在種植抗草甘膦大豆的阿根廷和巴西,抗草甘膦雜草主要發(fā)生在抗草甘膦大豆田中[15]。在轉(zhuǎn)基因抗草甘膦作物田中這種雜草種群演替和抗/耐性雜草的出現(xiàn)勢(shì)必增加了雜草防除的成本及難度,也會(huì)危及抗草甘膦轉(zhuǎn)基因大豆的應(yīng)用?!颈狙芯壳腥朦c(diǎn)】雖然我國(guó)還未批準(zhǔn)轉(zhuǎn)基因抗除草劑大豆商業(yè)化種植,但也在積極研發(fā)具有自主知識(shí)產(chǎn)權(quán)的轉(zhuǎn)基因抗除草劑大豆[16-18]。轉(zhuǎn)基因抗草甘膦大豆‘GE-J16’是由中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所研發(fā),采用根癌農(nóng)桿菌介導(dǎo)的大豆子葉節(jié)法將和雙價(jià)基因轉(zhuǎn)化到大豆優(yōu)良品種‘Jack’中獲得。和分別具有不同的抗除草劑機(jī)理,將雙價(jià)基因同時(shí)轉(zhuǎn)入大豆,培育抗除草劑大豆新品種,從而提高大豆生產(chǎn)中的田間除草效果?!緮M解決的關(guān)鍵問(wèn)題】在河北省進(jìn)行中間試驗(yàn),研究草甘膦噴施后除草效果、對(duì)大豆的安全性及對(duì)大豆田雜草發(fā)生的影響,為我國(guó)今后轉(zhuǎn)基因抗除草劑作物田雜草治理提供數(shù)據(jù)支持。
轉(zhuǎn)和抗除草劑大豆‘GE-J16’和受體大豆‘Jack’,均由中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所提供,目標(biāo)除草劑為草甘膦。供試材料于2016及2017年種植于中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所廊坊科研中試基地。試驗(yàn)中施用的草甘膦(商品名:農(nóng)達(dá),41%草甘膦異丙胺鹽水劑)由美國(guó)孟山都公司生產(chǎn)。
1.2.1 試驗(yàn)設(shè)計(jì) 采用不完全隨機(jī)區(qū)組設(shè)計(jì),轉(zhuǎn)基因與受體大豆設(shè)3個(gè)重復(fù),小區(qū)面積為20 m2(5 m×4 m),行距40 cm,株距8 cm,小區(qū)間設(shè)2 m間隔。大豆處理設(shè)定為7個(gè):(1)受體大豆人工除草;(2)轉(zhuǎn)基因大豆不除草;(3)轉(zhuǎn)基因大豆人工除草;(4)轉(zhuǎn)基因大豆噴草甘膦450 g a.i./hm2;(5)轉(zhuǎn)基因大豆噴草甘膦900 g a.i./hm2(田間推薦中劑量);(6)轉(zhuǎn)基因大豆噴草甘膦1 800 g a.i./hm2;(7)轉(zhuǎn)基因大豆噴草甘膦3 600 g a.i./hm2。出苗后按常規(guī)方式進(jìn)行田間管理。在大豆3片羽狀復(fù)葉期施藥。大豆人工除草處理,整個(gè)生長(zhǎng)季除草1次,除草時(shí)間與噴施草甘膦時(shí)間相同。
1.2.2 草甘膦除草效果 每小區(qū)以對(duì)角線5點(diǎn)取樣法取5個(gè)0.25 m2(0.5 m×0.5 m)樣點(diǎn)并標(biāo)記,施藥后28 d調(diào)查禾本科和闊葉雜草株數(shù),并剪取地上部分稱量鮮重,計(jì)算公式:株數(shù)(鮮重)防效=100%×[對(duì)照雜草株數(shù)(鮮重)-施藥處理雜草株數(shù)(鮮重)]/對(duì)照雜草株數(shù)(鮮重)。
1.2.3 大豆安全性 藥害觀察:施藥后每周目測(cè)草甘膦各劑量處理對(duì)大豆藥害情況;對(duì)大豆生長(zhǎng)影響:每小區(qū)以對(duì)角線5點(diǎn)取樣法,每點(diǎn)隨機(jī)取4株大豆并標(biāo)記,在噴藥當(dāng)天、藥后7、14、21及28 d調(diào)查大豆株高和復(fù)葉數(shù),收獲前每小區(qū)取50株大豆調(diào)查結(jié)莢數(shù)及產(chǎn)量。
1.2.4 雜草發(fā)生情況 每小區(qū)以對(duì)角線5點(diǎn)取樣法取5個(gè)0.25 m2(0.5 m×0.5 m)樣點(diǎn)并標(biāo)記,取樣點(diǎn)與除草效果取樣點(diǎn)不同,調(diào)查并記錄每種雜草種類(lèi)、株數(shù)。2016年,從施藥當(dāng)天到藥后56 d,每14 d調(diào)查一次,共調(diào)查5次;2017年從施藥當(dāng)天到藥后84 d,每14 d調(diào)查一次,共調(diào)查7次。根據(jù)每種雜草田間頻度()、田間密度()和田間均度()計(jì)算相對(duì)多度(),據(jù)此明確主要雜草種群在群落中的地位,然后比較在草甘膦各劑量處理下大豆田中雜草發(fā)生情況。
以上公式中,n為調(diào)查小區(qū)數(shù),為某種雜草在田塊出現(xiàn)與否,為1或0;為某種雜草在田塊中的平均密度(株/m2),為某種雜草在田塊中出現(xiàn)的樣方次數(shù),5為在各小區(qū)調(diào)查的樣方數(shù)。
=100%×(某種雜草的田間頻度/各種雜草的田間頻度和);=100%×(某種雜草的田間均度/各種雜草的田間均度和);=100%×(某種雜草的田間密度/各種雜草的田間密度和);雜草相對(duì)多度()=相對(duì)頻度()+相對(duì)均度()+相對(duì)密度()。、、、、、和參數(shù)計(jì)算詳見(jiàn)張朝賢等[19]。
轉(zhuǎn)基因大豆在噴施900、1 800和3 600 g a.i./hm2草甘膦后,對(duì)禾本科株防效在2016年為84.30%、95.22%和83.62%,闊葉草株防效為49.80%、64.52%和61.93%,禾本科和闊葉草鮮重防效分別在95.36%和82.05%以上,2017年對(duì)禾本科和闊葉草株防效分別在94.93%和85.09%以上,鮮重防效分別達(dá)98.00%和96.57%以上。噴施900 g a.i./hm2草甘膦除草效果好于人工除草處理(表1)。
表1 轉(zhuǎn)基因大豆施用草甘膦藥后28 d除草效果
數(shù)據(jù)表示為平均數(shù)±標(biāo)準(zhǔn)誤,同列后不同小寫(xiě)字母表示差異顯著(<0.05)?!?* ”表示草甘膦的推薦中劑量。表2—表4同Data are shown as mean±SE with the different lowercase letters in the same column represent significant differences (<0.05). “*” indicated recommended dosage of glyphosate applied. The same as table 2-Table 4
2016年轉(zhuǎn)基因大豆噴施草甘膦450、900、1 800和3 600 g a.i./hm2在施藥當(dāng)天、藥后7、14、21和28 d與轉(zhuǎn)基因大豆人工除草和不除草處理比較,株高和復(fù)葉無(wú)顯著差異(表2)。2017年轉(zhuǎn)基因大豆噴施草甘膦450、900、1 800和3 600 g a.i./hm2在施藥當(dāng)天、藥后7、14、21和28 d與轉(zhuǎn)基因大豆人工除草和不除草處理比較,株高無(wú)顯著差異。2017年由于轉(zhuǎn)基因大豆不除草處理小區(qū)雜草的競(jìng)爭(zhēng),轉(zhuǎn)基因大豆在噴施草甘膦藥后21和28 d,不除草處理大豆復(fù)葉數(shù)顯著低于轉(zhuǎn)基因大豆噴施草甘膦900、1 800和3 600 g a.i./hm2的處理(表3)。轉(zhuǎn)基因大豆噴施900、1 800和3 600 g a.i./hm2的草甘膦處理單株結(jié)莢數(shù)和產(chǎn)量高于轉(zhuǎn)基因大豆人工除草處理,并顯著高于不除草處理,轉(zhuǎn)基因大豆噴施900 g a.i./hm2草甘膦處理單株結(jié)莢數(shù)和產(chǎn)量與受體大豆人工除草處理沒(méi)有顯著差異(表4)。兩年試驗(yàn)對(duì)轉(zhuǎn)基因大豆噴施草甘膦沒(méi)有觀察到藥害。
兩年雜草調(diào)查試驗(yàn)發(fā)現(xiàn)大豆田有15科29種雜草(表5—表11),分別為旋花科的打碗花、田旋花(Convolvulus arvensis)、牽牛(Pharbitis nil)、圓葉牽牛(Pharbitis purpurea),馬齒莧科的馬齒莧,莧科的反枝莧和籽粒莧(Amaranthus hypochondriacus),唇形科的夏至草(Lagopsis supina),菊科的刺兒菜、苣荬菜、苦荬菜(Ixeris polycephala)、泥胡菜(Hemistepta lyrata)和旋覆花(Inula japonica),大戟科的鐵莧菜、地錦(Euphorbia humifusa),藜科的藜(Chenopodium album),錦葵科的苘麻、野西瓜苗(Hibiscus trionum),茄科的龍葵(Solanum nigrum)和酸漿(Physalis alkekengi),蓼科的酸模葉蓼,玄參科的地黃(Rehmannia glutinosa),蘿藦科的蘿藦(Metaplexis japonica),??频娜劜荩℉umulus scandens),十字花科的獨(dú)行菜(Lepidium apetalum),禾本科的牛筋草、馬唐、狗尾草(Setaria viridis)和稗。
表2 2016年轉(zhuǎn)基因大豆施用草甘膦后株高及復(fù)葉數(shù)
數(shù)據(jù)分析前進(jìn)行l(wèi)g (x+1)轉(zhuǎn)化,先進(jìn)行單因素方差分析,然后Tukey’s HSD 檢驗(yàn)。表3—表4同
Prior to analysis, the data were transformed by lg (x+1). The one-way ANOVA was conducted, followed by Tukey’s HSD tests. The same as table 3-Table 4
表3 2017年轉(zhuǎn)基因大豆施用草甘膦后株高及復(fù)葉數(shù)
表4 轉(zhuǎn)基因大豆施用草甘膦后豆莢數(shù)及產(chǎn)量
表5 受體大豆人工除草處理小區(qū)雜草密度、均度、頻度及相對(duì)多度
表6 轉(zhuǎn)基因大豆不除草處理小區(qū)雜草密度、均度、頻度及相對(duì)多度
表7 轉(zhuǎn)基因大豆人工除草處理小區(qū)雜草密度、均度、頻度及相對(duì)多度
表8 轉(zhuǎn)基因大豆施用450 g a.i./hm2草甘膦處理雜草密度、均度、頻度及相對(duì)多度
表9 轉(zhuǎn)基因大豆施用900 g a.i./hm2草甘膦處理雜草密度、均度、頻度及相對(duì)多度
根據(jù)各處理大豆小區(qū)取樣點(diǎn)雜草密度、均度及頻度,計(jì)算得出各雜草種類(lèi)相對(duì)多度,相對(duì)多度≥25%認(rèn)為是優(yōu)勢(shì)雜草,因這些雜草種類(lèi)相對(duì)多度之和在各大豆處理小區(qū)雜草群落中占總相對(duì)多度的70%以上。轉(zhuǎn)基因大豆田不除草處理小區(qū)主要優(yōu)勢(shì)雜草有6種,分別為反枝莧、打碗花、狗尾草、馬唐、馬齒莧和牛筋草(表6)。轉(zhuǎn)基因抗除草劑大豆田人工除草處理和受體大豆田人工除草處理主要優(yōu)勢(shì)雜草為打碗花、反枝莧、牛筋草、馬齒莧、馬唐和狗尾草,共6種(表5、表7)。轉(zhuǎn)基因大豆田噴450 g a.i./hm2草甘膦小區(qū)主要優(yōu)勢(shì)雜草為打碗花、牛筋草、馬齒莧、馬唐、狗尾草和夏至草(表8)。噴施草甘膦900、1 800和3 600 g a.i./hm2轉(zhuǎn)基因大豆田主要優(yōu)勢(shì)雜草有5種,分別為打碗花、夏至草、馬齒莧、牛筋草和狗尾草,而在不除草處理小區(qū)中的優(yōu)勢(shì)雜草馬唐和反枝莧不再是優(yōu)勢(shì)雜草(表9—表11)。
兩年試驗(yàn)數(shù)據(jù)表明轉(zhuǎn)基因抗草甘膦大豆GE-J16噴施草甘膦900—3 600 g a.i./hm2對(duì)禾本科、闊葉雜草都有很好的防除效果,僅2016年對(duì)闊葉草株防除效果稍差,可能因2016年大豆生長(zhǎng)后期雨水較多,小粒闊葉雜草如馬齒莧、夏至草等不斷萌發(fā)所致,但已經(jīng)不會(huì)對(duì)大豆產(chǎn)量造成顯著影響。從對(duì)大豆的安全性來(lái)看,噴施草甘膦推薦中劑量的4倍量3 600 g a.i./hm2對(duì)大豆沒(méi)有產(chǎn)生不良影響,因此轉(zhuǎn)基因抗草甘膦大豆GE-J16將來(lái)在我國(guó)有很好的商業(yè)應(yīng)用前景。
表10 轉(zhuǎn)基因大豆施用1 800 g a.i./hm2草甘膦處理雜草密度、均度、頻度及相對(duì)多度
表11 轉(zhuǎn)基因大豆施用3 600 g a.i./hm2草甘膦處理雜草密度、均度、頻度及相對(duì)多度
美國(guó)Georgia州農(nóng)戶和相關(guān)機(jī)構(gòu)的調(diào)查表明,2000—2005年和2006—2010年期間,在棉田雜草種群發(fā)生了演替,2000—2005年間,發(fā)生最為嚴(yán)重的雜草為牽牛,而在2006—2010年間,長(zhǎng)芒莧()被列為了發(fā)生最嚴(yán)重的雜草種類(lèi),農(nóng)戶表示約78%的作物面積受到抗草甘膦長(zhǎng)芒莧的侵?jǐn)_[20]。目前在美國(guó)27個(gè)州的抗草甘膦長(zhǎng)芒莧是轉(zhuǎn)基因抗草甘膦棉花、玉米和大豆田中的惡性雜草[15]。小飛蓬()、抗性糙果莧()及另外對(duì)草甘膦具有天然耐受的牽?;▽偌傍嗸挪輰伲ǎ┑入s草種類(lèi)也逐漸成為美國(guó)轉(zhuǎn)基因抗草甘膦大豆田的優(yōu)勢(shì)雜草[13-15,21]。筆者兩年短期的研究結(jié)果表明轉(zhuǎn)基因抗除草劑大豆田噴施草甘膦后雜草種群發(fā)生了改變,轉(zhuǎn)基因抗除草劑大豆田不除草處理小區(qū)主要優(yōu)勢(shì)雜草為反枝莧、打碗花、狗尾草、馬唐、馬齒莧和牛筋草共6種,而噴施草甘膦900—3 600 g a.i./hm2后轉(zhuǎn)基因大豆田主要優(yōu)勢(shì)雜草為打碗花、夏至草、馬齒莧、牛筋草和狗尾草共5種,在不除草處理小區(qū)中優(yōu)勢(shì)雜草馬唐和反枝莧不再是優(yōu)勢(shì)雜草,不是優(yōu)勢(shì)雜草的夏至草成為優(yōu)勢(shì)雜草。如將在中國(guó)商業(yè)化種植轉(zhuǎn)基因抗除草劑大豆,這種雜草種群發(fā)生也需長(zhǎng)期監(jiān)測(cè)與關(guān)注。尤其是牛筋草需要密切關(guān)注,因在馬來(lái)西亞、巴西、美國(guó)等國(guó)家都發(fā)現(xiàn)了多個(gè)抗草甘膦的牛筋草種群[14,22],在中國(guó)果園也報(bào)道了抗草甘膦的牛筋草種群[23]。劉延室內(nèi)生物測(cè)定發(fā)現(xiàn)打碗花對(duì)草甘膦有一定的耐受性,因此打碗花也需密切關(guān)注[24]。下一步將利用室內(nèi)整株測(cè)定、莽草酸含量積累、種子培養(yǎng)皿等方法測(cè)定這5種雜草對(duì)草甘膦的敏感基線,確定是否對(duì)草甘膦有耐受性。
國(guó)外有多年種植轉(zhuǎn)基因抗除草劑作物的經(jīng)驗(yàn)可供借鑒,如在美國(guó)推薦一系列雜草管理措施來(lái)減緩或避免雜草種群的演替,在轉(zhuǎn)基因抗除草劑作物田中不同作用方式化學(xué)除草劑進(jìn)行輪換使用或與草甘膦混用,或引入抗草銨膦、麥草畏和磺酰脲類(lèi)等除草劑基因,開(kāi)發(fā)抗多種除草劑的轉(zhuǎn)基因作物種類(lèi),機(jī)械、物理(水、光、熱等物理因子)、農(nóng)業(yè)(耕作、栽培技術(shù)和田間管理)除草和生物防治等技術(shù)相結(jié)合進(jìn)行雜草的綜合治理[25-28]。
轉(zhuǎn)基因抗草甘膦大豆‘GE-J16’噴施草甘膦900—3 600 g a.i./hm2對(duì)雜草有很好的防除效果,噴施草甘膦對(duì)大豆安全,不影響產(chǎn)量,因此‘GE-J16’將來(lái)在我國(guó)有很好的商業(yè)化應(yīng)用前景。兩年短期的研究結(jié)果表明,轉(zhuǎn)基因抗除草劑大豆噴施草甘膦后優(yōu)勢(shì)雜草種群發(fā)生了改變,如今后在我國(guó)商業(yè)化種植該轉(zhuǎn)基因抗除草劑大豆需長(zhǎng)期密切監(jiān)測(cè)施用草甘膦后對(duì)大豆田雜草發(fā)生的影響。
致謝:內(nèi)蒙古集寧師范榮梓玉、趙星龍、孫昭鵬同學(xué)在2017年幫助雜草調(diào)查,廊坊中試基地耿亭等對(duì)轉(zhuǎn)基因抗除草劑大豆進(jìn)行了田間管理。在此一并表示感謝!
[1] United States Department of Agriculture (USDA). World agricultural production, foreign agricultural service/USDA office of global analysis, May 2019. https://apps.fas.usda.gov/psdonline/circulars/production. pdf.
[2] 陶波. 雜草化學(xué)防除使用技術(shù). 2版. 北京: 化學(xué)工業(yè)出版社, 2013.
TAO B.. Beijing: Chemical Industry Press, 2013. (in Chinese)
[3] International Service for the Acquisition of Agri-biotech Applications (ISAAA). Global status of commercialized biotech/GM crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA BriefNo.53. 2017, ISAAA: Ithaca, NY.
[4] Brookes G, Barfoot P. Environmental impacts of genetically modified (GM) crop use 1996-2015: Impacts on pesticide use and carbon emissions., 2017, 8(2): 117-147.
[5] Brookes G, Barfoot P. GM crops: global socio-economic and environmental impacts 1996-2015. PG Economics Ltd, UK. 2017. https://www.pgeconomics.co.uk/pdf/2017globalimpactstudy.pdf.
[6] Brookes G, Barfoot P. Farm income and production impacts of using GM crop technology 1996-2015., 2017, 8(3): 156-193.
[7] 王園園, 王敏, 相世剛, 劉琪, 強(qiáng)勝, 宋小玲. 全球抗除草劑轉(zhuǎn)基因作物轉(zhuǎn)化事件分析. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2018, 26(1): 167-175.
WANG Y Y, WANG M, XIANG S G, LIU Q, QIANG S, SONG X X. Analysis on the event of global herbicide tolerant transgenic crops., 2018, 26(1): 167-175. (in Chinese)
[8] PALLETT K. Engineered crop tolerance to glyphosate and its impact on the use of the herbicide., 2018, 29(6): 277-281.
[9] OWEN M D, ZELAYA I A. Herbicide-resistant crops and weed resistance to herbicides., 2005, 61(3): 301-311.
[10] OWEN M D. Weed species shifts in glyphosate-resistant crops.,2008, 64(4): 377-387.
[11] JOHNSON W G, DAVIS V M, KRUGER G R, WELLER S C. Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations., 2009, 31(3): 162-172.
[12] HEAP I, DUKE S O. Overview of glyphosate-resistant weeds worldwide., 2018, 74(5): 1040-1049.
[13] CULPEPPER A S. Glyphosate-induced weed shifts., 2006, 20(2): 277-281.
[14] HEAP I. International survey of herbicide-resistant weeds. http://www. weedscience.org.
[15] 張翼翾. 全球抗草甘膦雜草的概況. 世界農(nóng)藥, 2018, 40(3): 38-45.
ZHANG Y X. Overview of glyphosate-resistant weeds worldwide., 2018, 40(3): 38-45. (in Chinese)
[16] 韓強(qiáng). 抗蟲(chóng)及抗除草劑轉(zhuǎn)基因大豆新品種的培育與鑒定[D]. 杭州: 浙江大學(xué), 2015: 42-44.
HAN Q. Development and characterization of transgenic soybean with insect resistance and herbicide tolerance[D]. Hangzhou: Zhejiang University, 2015: 42-44. (in Chinese)
[17] 崔云云, 曹越平. 抗草甘膦轉(zhuǎn)基因大豆的獲得. 上海交通大學(xué)學(xué)報(bào)(農(nóng)業(yè)科學(xué)版), 2016, 34(1): 1-4.
CUI Y Y, CAO Y P. Obtaining of transgenic glyphosate-resistant soybean., 2016, 34(1): 1-4. (in Chinese)
[18] 邱麗娟, 郭兵福, 郭勇, 張麗娟, 洪慧龍, 金龍國(guó), 王爽, 楊慧. 一種抗草甘膦轉(zhuǎn)基因大豆及其制備方法與應(yīng)用: CN 105505981 A [P]. (2016-04-20) [2019-09-01].
QIU L J, GUO B F, GUO Y, ZHANG L J, HONG H L, JIN L G, WANG S, YANG H. A glyphosate resistant transgenic soybean and preparation method and application: CN 105505981 A [P]. (2016-04-20) [2019-09-01]. (in Chinese)
[19] 張朝賢, 胡祥恩, 錢(qián)益新, 朱文達(dá), 魏守輝, 葉貴標(biāo), 黎銀忠, 徐正明. 漢江平原麥田雜草調(diào)查. 植物保護(hù), 1998, 24(3): 14-16.
ZHANG C X, HU X E, QIAN Y X, ZHU W D, WEI S H, YE G B, LI Y Z, XU Z M. Weed survey in wheat fields in Jianghan Plain., 1998, 24(3):14-16. (in Chinese)
[20] SOSNOSKIE L M, CULPEPPER A S. Glyphosate-resistant Palmer amaranth () increases herbicide use, tillage and hand-weeding in Georgia cotton., 2014, 62(2): 393-402.
[21] WEBSTER T M. Weed survey- southern states., 2013, 66: 275-287.
[22] JALALUDIN A, YU Q, POWLES S B. Multiple resistance across glyfosinate, glyphosate, paraquat and ACCase-inhibiting herbicides in anpopulation., 2015, 55(1): 82-89.
[23] CHEN J C, HUANG H J, ZHANG C X, WEI S H, HUANG Z F, CHEN J Y, WANG X. Mutations and amplification ofgene confer resistance to glyphosate in goosegrass ()., 2015, 242: 859-868.
[24] 劉延. 田旋花和打碗花對(duì)草甘膦的耐藥性研究[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2008.
LIU Y. Investigating glyphosate tolerance in field bindweed (L.) and ivy glorybind (Wall.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese)
[25] BROOKES G. Weed control changes and genetically modified herbicide tolerant crops in the USA 1996-2002., 2014, 5(4): 321-332.
[26] GREEN J M. The rise and future of glyphosate and glyphosate- resistant crops., 2018, 74(5): 1035-1039.
[27] GREEN J M, Owen M D K. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management., 2011, 59(11): 5819-5829.
[28] Nandula V K. Herbicide resistance traits in maize and soybean: current status and future outlook., 2019, 8(9): 337.
Effects of glyphosate on weed control, soybean safety and weed occurrence in transgenic herbicide-resistant soybean
YU HuiLin, JIA Fang, QUAN ZongHua, CUI HaiLan, LI XiangJu
(Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193)
【Objective】Transgenic soybean ‘GE-J16’ that co-expressed withandconferring resistance to glyphosate, is a herbicide-resistant (HR) variety in China with independent intellectual property. The objective of this study is to evaluate the effect of glyphosate application on weed control, soybean safety, and weed occurrence in glyphosate-resistant (GR) soybean ‘GE-J16’, and to provide the basic data for HR crops’ safety monitoring after commercial planting and weed management strategies.【Method】For weed control, in each soybean plot, 5 sample points were chosen along a diagonaland 0.25 m2was tagged as one sample point, 28 days after glyphosate application (DAG), the numbers of grassy and broadleaf weeds were surveyed and the above-ground parts were cut to get fresh weight, then weed control efficacy was calculated by fresh weight and weed number. For soybean safety, in each soybean plot, 5 sample points were chosen along a diagonal and 4 soybean plants were tagged with random selection in one sample point. The plant height and compound leaf number were investigated on the day of spraying, 7, 14, 21, and 28 DAG, separately. At the same time, herbicide damage of plants was visually observed. Before harvest, 50 soybean plants were collected from each plot, pod number of each plant and yield of 50 plants were tested. For weed occurrence, in each soybean plot, 5 sampling points were chosen along a diagonal and 0.25 m2was tagged as one sample point. All selected sampling points were different from those sampling points of weed control. The number and type of each weed species were counted in each sampling point. For each species of weeds, relative abundance (RA) was calculated.【Result】In 2016, at the glyphosate application doses of 900, 1 800 and 3 600 g a.i./hm2, the plant control efficacy of grassy and broadleaf weeds was 84.30%, 95.22%, 83.62%, and 49.80%, 64.52%, 61.93%, respectively. The fresh weight control efficacy of grassy and broadleaf weeds was above 95.36% and 82.05%, respectively. In 2017, at the same glyphosate application doses, the plant control efficacy of grassy and broadleaf weeds was above 94.93% and 85.09%, respectively. The fresh weight control efficacy of grassy and broadleaf weeds was above 98.00% and 96.57%, respectively. Glyphosate did not affect plant growth after application and soybean yield of different glyphosate treatments was higher than that of hand weeding treatment. Two years of short-term experimental research showed that weed species shifted in transgenic GR soybean after glyphosate application. The weed flora was dominated by six species including broadleaf weeds,,, and grassy weeds,, andin GR soybean without weeding, while in GR soybean sprayed with glyphosate at 900 to 3 600 g a.i./hm2, the weed flora was dominated by,,,, and.【Conclusion】Glyphosate at 900-3 600 g a.i./hm2has a good weed control efficacy in transgenic GR soybean ‘GE-J16’, and it is safe for soybean ‘GE-J16’. Thus, transgenic soybean ‘GE-J16’ has great potential for application in China in the future. The weed species shift in GR soybean after glyphosate application, and it will be needed to monitor for a long time if transgenic soybean is permitted to plant in China.
transgenic soybean; glyphosate; weed control; crop safety
2019-09-01;
2019-09-16
轉(zhuǎn)基因新品種培育重大專(zhuān)項(xiàng)(2016ZX08012004)
于惠林,E-mail:hlyu@ippcaas.cn。通信作者李香菊,Tel:010-62813309;E-mail:xjli@ippcaas.cn
(責(zé)任編輯 岳梅)
中國(guó)農(nóng)業(yè)科學(xué)2020年6期