李洪雪 李世武 孫文財(cái) 楊志發(fā)
摘? ?要:為了探究懸架性能和鞍座結(jié)構(gòu)參數(shù)對(duì)鉸接車(chē)輛操縱穩(wěn)定性的影響,提出了一種在半掛車(chē)單軸懸架上應(yīng)用的抗側(cè)傾液壓互聯(lián)系統(tǒng). 首先建立了半掛車(chē)單軸抗側(cè)傾液壓互聯(lián)懸架頻域模型并通過(guò)側(cè)傾位移傳遞函數(shù)驗(yàn)證了該模型的有效性,同時(shí)依據(jù)復(fù)模態(tài)振動(dòng)理論獲得懸架的等效剛度和等效阻尼. 在此基礎(chǔ)上,建立了包含鞍座特性的鉸接車(chē)輛耦合液壓互聯(lián)懸架模型實(shí)現(xiàn)仿真模擬. 結(jié)果表明,鞍座剛度參數(shù)均不考慮時(shí),該液壓互聯(lián)懸架系統(tǒng)只能單一地提升半掛車(chē)的側(cè)傾穩(wěn)定性;考慮鞍座側(cè)傾剛度參數(shù)時(shí),該系統(tǒng)下的牽引車(chē)和半掛車(chē)的側(cè)傾、橫擺穩(wěn)定性以及整車(chē)的協(xié)調(diào)穩(wěn)定性均得到提升,且增大鞍座橫擺剛度和減小鞍座牽引點(diǎn)至半掛車(chē)距離,提升效果愈顯著. 所得結(jié)果為安裝液壓互聯(lián)懸架鉸接車(chē)輛的優(yōu)化設(shè)計(jì)提供理論依據(jù).
關(guān)鍵詞:液壓互聯(lián)懸架(HIS);鉸接車(chē)輛;鞍座特性;操縱穩(wěn)定性;優(yōu)化設(shè)計(jì)
中圖分類(lèi)號(hào):U469.5? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A
Abstract:In order to explore the influence of suspension performance and saddle structure parameters on the handling stability of articulated vehicles,an anti-roll hydraulically interconnected system was proposed for single-axle semi-trailer suspension. Firstly,the frequency domain model of single-axle hydraulically interconnected suspension was established and verified by the roll displacement transfer function. At the same time,effective stiffness and damping were obtained according to the theory of complex mode vibration. On this basis,an articulated vehicle coupling Hydraulically Interconnected Suspension(HIS) model with saddle characteristics was presented to conduct the simulation. The results show that the hydraulically interconnected suspension system can only enhance the roll stability of the semi-trailer when the saddle stiffness parameters are not taken into account. When the roll stiffness parameters of the saddle are considered,the roll stability,yaw stability and coordination stability of the tractor and semi-trailer under the HIS system are improved,and the improvement effect is more significant when the yaw stiffness of the saddle is increased or the distance between the saddle and mass center of the semi-trailer is reduced. The results provide a theoretical basis for the design optimization of the articulated vehicle fitted with hydraulically interconnected suspension.
Key words:Hydraulically Interconnected Suspension(HIS);articulated vehicle;saddle characteristics;handling stability;design optimization
相對(duì)于單體貨物運(yùn)輸車(chē)輛而言,鉸接式牽引-半掛車(chē)具有質(zhì)心高、承載重量大及鞍座參數(shù)復(fù)雜的特點(diǎn),使得其在高速變道工況下行駛極容易發(fā)生折疊、側(cè)翻的車(chē)身失穩(wěn)現(xiàn)象[1]. 近十年來(lái)用于提高車(chē)輛穩(wěn)定性的液壓互聯(lián)懸架(HIS)先后在越野車(chē)上和乘用車(chē)上被國(guó)內(nèi)外學(xué)者[2-4]深度研究. 文獻(xiàn)[5]中采用非線性有限元方法,實(shí)現(xiàn)了耦合的機(jī)械液壓互聯(lián)懸架系統(tǒng)的頻域模型推導(dǎo).文獻(xiàn)[6]的研究表明,配備HIS系統(tǒng)的SUV操縱性能與原車(chē)相比有了顯著提高,其系統(tǒng)提供的可變剛度和阻尼有利于為車(chē)輛提供側(cè)翻阻力. 周敏等[7]設(shè)計(jì)液壓互聯(lián)懸架取代傳統(tǒng)橫向穩(wěn)定桿的越野樣車(chē). 隨之,郭耀華等[8]針對(duì)某客車(chē)開(kāi)發(fā)了替代原車(chē)減振器和橫向穩(wěn)定桿的安裝HIS樣車(chē),實(shí)車(chē)試驗(yàn)證明該系統(tǒng)不降低平順性的同時(shí),能顯著提高操縱穩(wěn)定性能. 章杰等[9]對(duì)礦山車(chē)輛的板簧懸架進(jìn)行HIS的樣車(chē)裝配,坑道制動(dòng)測(cè)試表明HIS可有效改善礦山車(chē)輛的舒適性和抗俯仰能力. 丁飛等[10-11]針對(duì)三軸直列卡車(chē)得出了HIS對(duì)提供的附加扭轉(zhuǎn)剛度和阻尼受到液壓元件參數(shù)約束的結(jié)論. 此外,HIS對(duì)雷克薩斯470、200系列豐田陸地巡洋艦等[12]車(chē)型的市場(chǎng)反應(yīng)良好. 從上述成果看出,關(guān)于HIS研究?jī)?nèi)容目前主要集中在越野車(chē)、乘用車(chē)、客車(chē)和三軸重型車(chē)的側(cè)傾、垂向、俯仰、扭轉(zhuǎn)運(yùn)動(dòng)方面的性能,但基本未涉及在包含鞍座的鉸接車(chē)輛領(lǐng)域的應(yīng)用研究.
因此,本文針對(duì)當(dāng)前HIS性能在鉸接車(chē)輛方面研究較少的缺陷,考慮鉸接車(chē)輛的復(fù)雜性和實(shí)際經(jīng)費(fèi)的要求,提出輔助鉸接車(chē)輛半掛車(chē)體懸架的抗側(cè)傾液壓互聯(lián)系統(tǒng). 通過(guò)傳遞矩陣方法建立了抗側(cè)傾液壓互聯(lián)懸架的頻域模型,并用側(cè)傾位移傳遞函數(shù)驗(yàn)證所建模型的正確性,同時(shí)根據(jù)復(fù)模態(tài)振動(dòng)理論獲得頻域方程的等效側(cè)傾剛度和阻尼,并以此為基礎(chǔ),建立了包含鞍座參數(shù)和耦合HIS的三軸鉸接車(chē)輛動(dòng)力學(xué)模型,在典型高速雙移線下仿真驗(yàn)證了HIS能夠提高鉸接車(chē)輛的操縱穩(wěn)定性,并通過(guò)改變鞍座的側(cè)傾、橫擺剛度和距離半掛車(chē)質(zhì)心的位置參數(shù)進(jìn)一步優(yōu)化HIS鉸接車(chē)輛的車(chē)身穩(wěn)定性,補(bǔ)充了HIS在鉸接車(chē)輛領(lǐng)域的理論研究.
1? ?建立半掛車(chē)的半車(chē)側(cè)傾模型
1.1? ?機(jī)械懸架系統(tǒng)建模
安裝抗側(cè)傾液壓互聯(lián)懸架的半掛車(chē)側(cè)傾模型如圖1所示,其中Om為懸架的側(cè)傾中心,O2為半掛車(chē)的質(zhì)心.
結(jié)? ?論
本文以三軸鉸接車(chē)輛的半掛車(chē)單體懸架為基礎(chǔ),通過(guò)流體系統(tǒng)傳遞阻抗法獲得與液壓互聯(lián)系統(tǒng)耦合的半車(chē)頻域模型,運(yùn)用模態(tài)理論法求解該微分方程側(cè)傾模態(tài)的固有頻率;進(jìn)一步將固有頻率轉(zhuǎn)化為懸架的等效側(cè)傾剛度和阻尼,運(yùn)用拉格朗日方程推導(dǎo)出三軸耦合HIS系統(tǒng)的牽引-半掛車(chē)動(dòng)力學(xué)模型,在MATLAB程序中仿真雙移線工況獲得車(chē)輛側(cè)傾角、橫擺角和鉸接角的響應(yīng).
1)當(dāng)鞍座的側(cè)傾剛度和橫擺剛度均為0時(shí),抗側(cè)傾液壓互聯(lián)懸架只能單一地提高半掛車(chē)的側(cè)傾穩(wěn)定性;
2)當(dāng)鞍座的側(cè)傾剛度不為0時(shí),抗側(cè)傾液壓互聯(lián)懸架能同時(shí)提高牽引車(chē)和半掛車(chē)的側(cè)傾和橫擺穩(wěn)定性,并同時(shí)顯著提高整車(chē)的協(xié)調(diào)穩(wěn)定性.
3)傳統(tǒng)鉸接車(chē)輛在鞍座側(cè)傾剛度不為0和配置HIS系統(tǒng)后,變大鞍座橫擺剛度和減小鞍座牽引點(diǎn)至半掛車(chē)質(zhì)心距離能進(jìn)一步提升裝配HIS之后的整車(chē)操縱穩(wěn)定性.
參考文獻(xiàn)
[1]? ? YAO Z. Dynamic simulation for the rollover stability performances of articulated vehicles[J]. Journal of Automobile Engineering,2014,228(7):771—783.
[2]? ? ZHANG N,SMITH W A,JEYAKUMARAN J. Hydraulically interconnected vehicle suspension:background and modeling [J]. Vehicle System Dynamics,2010,48(1):17—40.
[3]? ? 周兵,黃曉婷,耿元. 基于 Morris 法分析的液壓參數(shù)對(duì)互聯(lián)懸架的影響[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,43(2):70—76.
ZHOU B,HUANG X T,GENG Y. Influence of hydraulic parameters on hydraulically interconnected suspension based on Morris[J]. Journal of Hunan University(Natural Sciences),2016,43(2):70—76. (In Chinese)
[4]? ? WANG L F,ZHANG N,DU H P. Experimental investigation of a hydraulically interconnected suspension in vehicle dynamics and stability control[J]. SAE International Journal of Passenger Cars-Mechanical Systems,2012,5(2):759—768.
[5]? ? WILDE J R. Experimental evaluation and ADAMS simulation of the Kinetic suspension system[D]. Ohio:College of Mechanical Engineering,Ohio State University,2005:128—159.
[6]? ? SMITH W A,ZHANG N,HU W. Hydraulically interconnected vehicle suspension:handling performance[J]. Vehicle System Dynamics,2011,49(1/2):87—106.
[7]? ? 周敏,章杰,鄭敏毅,等. 裝有液壓互聯(lián)懸架車(chē)輛的越野性能仿真與試驗(yàn)研究[J]. 汽車(chē)工程,2017,39(4):447—456.
ZHOU M,ZHANG J,ZHENG M Y,et al. Simulation and experimental study on the off-road performance of vehicle with hydraulically interconnected? suspension [J]. Automobile Engineering,2017,39(4):447—456. (In Chinese)
[8]? ? 郭耀華. 某客車(chē)液壓互聯(lián)懸架剛度參數(shù)設(shè)計(jì)研究[J]. 軍民兩用技術(shù)與產(chǎn)品,2016(18):71—73.
GUO Y H. Design and research on the stiffness parameters of bus equipped with hydraulically interconnected suspension [J]. Dual-use Technology and Products,2016(18):71—73. (In Chinese)
[9]? ? 章杰,周敏,張邦基,等. 裝有液壓互聯(lián)懸架的礦山車(chē)輛動(dòng)力學(xué)分析與實(shí)驗(yàn)研究[J]. 汽車(chē)工程,2016,38(6):716—724.
ZHANG J,ZHOU M,ZHANG B J,et al. Dynamics analysis and experimental study on a mining vehicle fitted with hydraulically interconnected suspension [J]. Automobile Engineering,2016,38(6):716—724. (In Chinese)
[10]? 丁飛,張農(nóng),韓旭. 抗俯仰液壓互聯(lián)懸架三軸重型貨車(chē)動(dòng)態(tài)特性[J]. 汽車(chē)工程學(xué)報(bào),2011,1(4):415—423.
DING F,ZHANG N,HAN X. Dynamics analysis of pitch-resistant hydraulically interconnected suspensions for tri-axle straight trucks[J]. Chinese Journal of Automotive Engineering,2011,1(4):415—423. (In Chinese)
[11] DING F,ZHANG N,LIU J,et al. Dynamics analysis and design methodology of roll-resistant hydraulically interconnected suspensions for tri-axle straight trucks[J]. Journal of the Franklin Institute,2016,353(17):4620—4651.
[12]? WILDE J R,HEYDINGER G J,GUENTHER D A,et al. Experimental evaluation of fishhook maneuver performance of a kinetic suspension system [R]. Washington DC:SAE International,2005:387—396.
[13]? 陳盛釗,鐘義旭,張邦基,等. 液壓互聯(lián)懸架系統(tǒng)關(guān)鍵參數(shù)對(duì)車(chē)輛動(dòng)力學(xué)響應(yīng)影響及試驗(yàn)驗(yàn)證[J]. 機(jī)械工程學(xué)報(bào),2017,53(14):39—48.
CHEN S Z,ZHONG Y Y,ZHANG B J,et al. Influence of key parameters of hydraulically interconnected suspension on vehicle dynamics and experimental validation [J]. Journal of Mechanical Engineering,2017,53(14):39—48. (In Chinese)
[14]? 陳盛釗,張農(nóng),張邦基,等. 液壓互聯(lián)懸架關(guān)鍵參數(shù)對(duì)車(chē)輛頻響特性的影響[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,44(2):16—25.
CHEN S Z,ZHANG N,ZHANG B J,et al. Influence of key parameters of hydraulically interconnected suspension on frequency domain characteristics of vehicles[J]. Journal of Hunan University(Natural Sciences),2017,44(2):16—25. (In Chinese)
[15]? 彭鵬,張邦基,章杰,等. 裝有液壓互聯(lián)懸架的某型SUV車(chē)輛動(dòng)力學(xué)分析及路試驗(yàn)證[J]. 中國(guó)機(jī)械工程,2016,27(20):2813—2821.
PENG P,ZHANG B J,ZHANG J,et al. Vehicle dynamics analysis and road rest of a sports utility vehicle equipped with hydraulically interconnected suspension[J].China? Mechanical Engineering,2016,27(20):2813—2821. (In Chinese)
[16]? ZHAO H X,ZHANG B J,ZHANG N,et al. Modeling and control strategy for a height adjustable and anti-roll hydraulically interconnected suspension[J]. Journal of Vibration & Shock,2018,37(3):202—209.
[17]? ZHANG J,DENG Y W,ZHANG N,et al. Vibration performance analysis of a mining vehicle with bounce and pitch tuned hydraulically interconnected suspension[J]. Chinese Journal of Mechanical Engineering,2019,32(1):5—9.
[18]? 高紅博. 半掛汽車(chē)列車(chē)轉(zhuǎn)彎制動(dòng)方向穩(wěn)定性及控制策略研究[D]. 長(zhǎng)春:吉林大學(xué)交通學(xué)院,2014:59—213.
GAO H B. Research on directional stability and control strategy of tractor-semitrailer steering and braking[D]. Changchun:Transportation College of Jilin University,2014:59—213. (In Chinese)
[19]? 聶枝根,王萬(wàn)瓊,宗長(zhǎng)富,等. 基于線性變參數(shù)實(shí)時(shí)簡(jiǎn)化模型的重型半掛車(chē)穩(wěn)定性控制策略[J]. 中國(guó)公路學(xué)報(bào),2018,31(1):3—8.
NIE Z G,WANG W Q,ZONG C F,et al. Stability control strategy of heavy semi-trailer based on real-time simplified model of linear variable parameters [J]. Journal of China Highway,2018,31(1):3—8. (In Chinese)
[20]? XU X M,ZHANG L,JIANG Y P,et al. Active control on path following and lateral stability for truck-trailer combinations[J]. Arabian Journal for Science and Engineering,2019,44(2):1365—1377.
[21]? BAYAR K,UNLUSOY Y S. Steering strategies for multi-axle vehicles[J]. International Journal of Heavy Vehicle Systems,2008,15(2/3/4):1—31.