朱熀秋 程一峰
摘 要:無軸承永磁同步電機是一種正弦波驅(qū)動的電機,氣隙磁場的正弦性影響著電機的性能,為了獲得較小的轉(zhuǎn)矩脈動和懸浮力脈動,提出了永磁體采用組合磁極的特殊結(jié)構(gòu)。首先闡述了該結(jié)構(gòu)對改善氣隙磁場正弦性的作用,推導出了新的數(shù)學模型。其次,基于有限元分析,利用田口法正交試驗,以電機的電磁轉(zhuǎn)矩脈動與轉(zhuǎn)矩平均值的比值和懸浮力脈動與懸浮力平均值作為評價標準,優(yōu)化設計了磁極參數(shù)。最后將優(yōu)化后的組合磁極式BPMSM與傳統(tǒng)的單一磁極的BPMSM對比分析,結(jié)果顯示,優(yōu)化后的電機空載氣隙磁密波形得到了明顯改善,在保證轉(zhuǎn)矩和懸浮力大小的基礎上,轉(zhuǎn)矩脈動和懸浮力脈動顯著減小。
關鍵詞:無軸承永磁同步電機;組合磁極;田口法;轉(zhuǎn)矩脈動;懸浮力脈動
DOI:10.15938/j.emc.2020.03.015
中圖分類號:TM 303文獻標志碼:A文章編號:1007-449X(2020)03-0123-08
Abstract:The bearingless permanent magnet synchronous motor(BPMSM)is driven by sinusoidal wave, so the performance of motor is affected by sinusoidal shape of the airgap magnetic flux distribution. To reduce the torque ripples and suspension force ripples, a special structure called modular permanent magnet poles is proposed. Firstly, the effect of the structure to improve sinusoidal shape of the airgap magnetic flux distribution was described. Then, a mathematical model is deduced. Secondly, taguchi method was employed to optimize magnetic pole parameters where the ratio of torque ripples to average torque and the ratio of suspension force ripples to average suspension force were chosen as an objective function. Finally, conventional BPMSM with common pole and the BPMSM with modular pole were compared. The results show that the optimized noload airgap flux density waveform is significantly improved and lower torque ripples and suspension force ripples are produced based on almost the same average torque and suspension force.
Keywords:bearingless permanent magnet synchronous motor; modular poles; taguchi method; torque ripples; suspension force ripples
0 引 言
無軸承永磁同步電機(bearingless permanent magnet synchronous motor,BPMSM)繼承了磁懸浮軸承沒有機械磨損、噪聲小和壽命長等優(yōu)點,于此同時具有永磁同步電機的優(yōu)良運行特性,受到了人們越來越多的關注。BPMSM在定子中同時嵌入極對數(shù)相差為1的轉(zhuǎn)矩繞組和懸浮力繞組,轉(zhuǎn)矩繞組和永磁體產(chǎn)生的氣隙磁鏈作用生成轉(zhuǎn)矩,轉(zhuǎn)矩繞組與永磁體產(chǎn)生的合成氣隙磁鏈與懸浮繞組產(chǎn)生的氣隙磁鏈作用生成懸浮力。對于正弦波驅(qū)動的無軸承永磁同步電機,永磁體的氣隙磁密分布影響著BPMSM的性能,當氣隙磁密分布為正弦波時性能最佳,永磁體磁密分布的形狀主要取決于永磁體的材料和磁極參數(shù)。
目前出現(xiàn)了許多永磁體磁極的設計方法,文獻[1]中提出正弦磁極調(diào)制式的永磁電機,小磁塊陣列構(gòu)成轉(zhuǎn)子的永磁體磁極,調(diào)整陣列中磁塊的寬度、高度和磁塊間的間隔,使其產(chǎn)生的氣隙磁場波形更加接近于正弦波,提升電機的輸出性能,但是增加了電機加工的復雜度。文獻[2]也提出使用永磁體陣列的方法,每個永磁體和相鄰陣列的磁化方向相差90o,這種方法需要不同尺寸的永磁體塊,同樣增加了永磁電機制造的復雜度和成本。文獻[3]針對開關磁阻永磁電機提出使用釹鐵硼和鐵氧體材料的組合磁極方案,從整體來看,電機的制造成本被減少了,但是采用這樣的組合磁極方案,因為兩種磁極材料之間性能相差較大,結(jié)合起來形成組合磁極不僅加工困難,而且造成的轉(zhuǎn)矩波動較大,同時如果需要保證和只使用高性能磁極材料相同的輸出能力,就需要增加電機的軸向長度。
針對以上的問題,本文提出采用組合磁極改善氣隙磁密正弦性的方法,其中組合磁極所用的材料為不同型號的釹鐵硼。通過將這些磁極材料作為永磁體段的方式進行組合,形成厚度相同,寬度不同的組合磁極,可以改善氣隙磁密的波形,進而提高電機的性能。本文分析了組合磁極改善氣隙磁密的原理,推出了采用組合磁極的表貼式無軸承永磁同步電機的數(shù)學模型,基于有限元分析,采用Taguchi方法進行正交試驗,以轉(zhuǎn)矩脈動和懸浮力脈動為評價標準,優(yōu)化設計了該電機轉(zhuǎn)子磁極的結(jié)構(gòu)參數(shù)。
1 組合磁極的磁密分布
組合磁極由兩種磁極材料組成,每塊永磁體的剩余磁通密度如圖1所示,兩種材料的永磁體剩余磁通密度通過線性疊加后的剩余磁通密度提高了正弦度。因此,在永磁體厚度一定的條件下,可以通過合理配置兩種磁極材料的寬度比獲得正弦度較高的氣隙磁密分布。
組合磁極中的磁極材料都是采用徑向充磁的方式,其中中間部分的磁極材料性能優(yōu)于兩邊的磁極材料,磁極兩邊的磁極材料相同。為了便于后面數(shù)學建模的建立與轉(zhuǎn)子磁極的優(yōu)化設計,將組合磁極在氣隙中產(chǎn)生的磁密當作三塊材料單一的磁極在氣隙中產(chǎn)生磁密的線性疊加,通過分別計算每塊磁極材料的氣隙磁密可以獲得組合磁極的氣隙磁密。
4 結(jié) 論
本文對組合磁極的磁密分布進行了分析,建立了采用組合磁極的無軸承永磁同步電機的數(shù)學模型,基于有限元分析,以轉(zhuǎn)矩脈動和懸浮力脈動為評價標準,采用Taguchi方法優(yōu)化設計了采用組合磁極的無軸承永磁同步電機的磁極參數(shù),有效提高了氣隙磁密的正弦度,有效減少了電機的轉(zhuǎn)矩脈動和懸浮力脈動,提升了電機的運行性能。
參 考 文 獻:
[1] 安躍軍, 溫宏亮, 安輝, 等. 正弦極寬調(diào)制式永磁電機的磁場分析與實驗[J]. 電機與控制學報, 2011, 15(11):61.
AN Yuejun, WEN Hongliang, AN Hui,et al. Magnetic field analysis and experiment of sinusoidal pole width modulation permanent magnet motor[J]. Electric Machines and Control, 2011, 15(11): 61.
[2] LEE M G, LEE S Q, GWEON D G. Analysis of halbach magnet array and its application to linear motor[J]. Mechatronics, 2004, 14(1): 115.
[3] AFINOWI I A A, ZHU Z Q, GUAN Y,et al. Performance analysis of switchedflux machines with hybrid NdFeB and ferrite magnets[C]//Proceedings of 2014 17th International Conference on Electrical Machines and Systems, October 22-25, 2014, Hangzhou, China. New York: Institute of Electrical and Electronics Engineers Inc. 2015: 3110-3116.
[4] ISFAHANI A H, VAEZZADEH S, RAHMAN M A. Performance improvement of permanent magnet machines by modular poles[J]. IET Electric Power Applications, 2009, 3(4): 343.
[5] 李慧. 無軸承永磁同步電機懸浮力模型及運行控制研究[D]. 鎮(zhèn)江:江蘇大學,2016.
[6] OOSHIMA M, CHIBA A, FUKAO T, et al. Design andanalysis of permanent magnettype bearingless Motor[J]. IEEE Transactions on Industrial Electronics, 1996, 43(2): 292.
[7] KASHA ANDREW E, SUDHOFF SCOTT D. Multiobjective design optimization of a surfacemounted modular permanentmagnet pole machine[C]//Proceedings of the 2016 IEEE Power and Energy Conference at Illinois, February 19-20, 2016, Urbana, IL, United states. New York: Institute of Electrical and Electronics Engineers Inc. 2016.
[8] ISFAHANI A H,VAEZZADEH S, RAHMAN M A. Using modular poles for shape optimization of flux density distribution in permanentmagnet machines[J]. IEEE Transactions on Magnetics, 2008, 44(8): 2009.
[9] 楊玉波,王秀和,朱長青. 組合磁極削弱永磁同步電動機轉(zhuǎn)矩脈動方法研究[J]. 電機與控制學報,2013,17(2):34.
YANG Yubo, WANG Xiuhe, ZHU Changqing. Research of modular pole on the reduction of torque ripple of permanent magnet synchronous motor[J]. Electric Machines and Control, 2013, 17(2):34.
[10] OMEKANDA A M. Robust torque and torqueperinertia optimization of a switched reluctance motor using the taguchi methods[J]. IEEE Transaction on Industry Applications, 2006, 42(2):473.
[11] 曹永娟,黃允凱,金龍,等. 磁極組合型軸向磁場無鐵心永磁電機的設計與分析[J]. 中國電機工程學報,2014,34(6):903.
CAO Yongjuan, HUANG Yunkai, JIN Long, et al.Design and analysis of a stator coreless axialflux permanent magnet machine with module poles[J]. Proceedings of the CSEE, 2014,34(6):903.
[12] 王明杰,程志平,焦留成. 組合磁極無槽PMLSM正弦磁場分析[J]. 電機與控制學報,2015,19(4):34.
WANG Mingjie, CHENG Zhiping, JIAO Liucheng.Analysis on the sinusoidal magnetic field of slotless PMLSM using modular poles[J]. Electric Machines and Control,2015,19(4):34.
[13] LI Guangjun ZHU Ziqiang. Demagnetization of modular surface mounted permanent magnet machines[C]// Proceedings of the 2016 22nd International Conference on Electrical Machines, September 4-7,2016, Lausanne, Switzerland. New York: Institute of Electrical and Electronics Engineers Inc. 2016: 702-708.
[14] 林展汐. 基于組合磁極的一字型內(nèi)置式永磁同步電機的研究[D]. 哈爾濱:哈爾濱工業(yè)大學,2015.
(編輯:賈志超)