王俊 劉文清
【主持人語】近年來,隨著對(duì)生態(tài)文明建設(shè)的日益重視,積極推廣減施增效技術(shù),實(shí)現(xiàn)糧食綠色化生產(chǎn),保護(hù)生態(tài)環(huán)境,已成為當(dāng)前我國(guó)農(nóng)業(yè)生產(chǎn)的重大戰(zhàn)略需求,同時(shí)也是實(shí)施黃河流域生態(tài)保護(hù)以及高質(zhì)量發(fā)展這一國(guó)家戰(zhàn)略中亟待解決的科學(xué)命題之一。缺水低肥是我國(guó)西北旱作農(nóng)業(yè)區(qū)的兩大主要限制因素,本專欄分別從耕作栽培管理和抗旱品種選育兩個(gè)角度,討論了旱地農(nóng)業(yè)持續(xù)發(fā)展的實(shí)施路徑,具有一定的理論和現(xiàn)實(shí)意義。其中《旱作農(nóng)田綠肥填閑種植系統(tǒng)中的生態(tài)權(quán)衡問題》綜述了填閑種植系統(tǒng)中,存在的水分競(jìng)爭(zhēng)利用、氮供應(yīng)與氮固持、農(nóng)田生態(tài)系統(tǒng)碳收支3種關(guān)鍵生態(tài)權(quán)衡的形成過程、作用機(jī)理與調(diào)控途徑,提出未來研究應(yīng)集中在填閑種植系統(tǒng)生產(chǎn)力和環(huán)境效益的形成機(jī)理及其在不同氣候情景下的演變規(guī)律,填閑種植系統(tǒng)生態(tài)系統(tǒng)服務(wù)綜合評(píng)估等領(lǐng)域,對(duì)綠肥填閑種植在我國(guó)西北旱作農(nóng)業(yè)區(qū)的恢復(fù)與推廣具有較好的理論指導(dǎo)價(jià)值?!恫煌采w措施下旱作玉米田土壤呼吸對(duì)氮添加的響應(yīng)》結(jié)合田間定位試驗(yàn)和室內(nèi)培養(yǎng)方法,模擬研究了秸稈和地膜覆蓋措施下,農(nóng)田土壤碳排放過程對(duì)氮肥施用的響應(yīng)規(guī)律,理論上進(jìn)一步深化了對(duì)復(fù)合田間管理措施下,旱作農(nóng)田土壤碳循環(huán)過程的理解?!秲蓚€(gè)玉米品種在萌芽期和苗期的干旱耐性比較分析》則基于控制試驗(yàn)方法,分析了不同玉米品種對(duì)干旱脅迫的耐受性差異,為抗旱玉米品種選育提供了理論依據(jù)。
本專欄的3篇論文主要針對(duì)旱地農(nóng)業(yè)領(lǐng)域的部分問題開展研究,既有對(duì)農(nóng)業(yè)種植模式的理論探討,也有對(duì)農(nóng)田管理措施和品種選育的試驗(yàn)性分析,相關(guān)結(jié)果可為我國(guó)西北旱作農(nóng)業(yè)區(qū)綠色化生產(chǎn)實(shí)踐及相關(guān)研究提供參考。
【主持人】王俊,西北大學(xué)城市與環(huán)境學(xué)院教授,博士生導(dǎo)師,中國(guó)科學(xué)院“西部引進(jìn)人才”。
摘要:綠肥填閑種植作為旱作農(nóng)業(yè)區(qū)一種優(yōu)良的傳統(tǒng)輪作模式,如何在保證產(chǎn)量穩(wěn)定提高的基礎(chǔ)上,充分發(fā)揮其減施增益功能是個(gè)值得深入探討的學(xué)術(shù)命題。該文從生態(tài)權(quán)衡視角出發(fā),分析了該系統(tǒng)中存在的填閑作物與糧食作物水分競(jìng)爭(zhēng)利用、填閑作物氮供應(yīng)-氮固持、農(nóng)田生態(tài)系統(tǒng)碳收支,三種關(guān)鍵權(quán)衡的生態(tài)學(xué)形成過程與生物學(xué)控制機(jī)理,并進(jìn)一步探討了基于“減施、穩(wěn)產(chǎn)、增益”目標(biāo)的權(quán)衡正向調(diào)控途徑,提出未來研究應(yīng)集中在明晰填閑作物生物量-作物生產(chǎn)力、填閑作物質(zhì)量(碳氮比)-系統(tǒng)碳收支-生態(tài)環(huán)境效益之間的定量關(guān)系,揭示填閑種植系統(tǒng)生產(chǎn)力與環(huán)境效益在不同氣候變化情景下的演變規(guī)律,以及開展填閑種植系統(tǒng)生態(tài)系統(tǒng)服務(wù)價(jià)值綜合評(píng)估等領(lǐng)域,為綠肥填閑種植在我國(guó)西北旱作農(nóng)業(yè)區(qū)的恢復(fù)與推廣提供科學(xué)依據(jù)。
關(guān)鍵詞:填閑作物;旱作農(nóng)田;生態(tài)權(quán)衡
中圖分類號(hào):S344
DOI:10.16152/j.cnki.xdxbzr.2020-05-001 開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Ecological trade-offs in dryland cover cropping systems
WANG Jun, LIU Wenqing
(College of Urban and Environmental Science, Shaanxi Key Laboratory of Earth Surface System and
Environmental Carrying Capacity, Northwest University, Xi′an 710127, China)
Abstract: Introducing cover crop into cash cropping systems has been adopted world widely in the last decades, due to its multifunctionalities of soil fertility improvements, erosion and weed control, leaching reduction, etc. However, three key ecological trade-offs, including soil water pre-emptive competition between cover crops and cash crops, N supply and N retention of cover crop, and C emission and sequestration at the agroecosystem level, have limited the crop production and ecological benefits in cover cropping system especially in dryland areas. In this study, the ecological processes, biological mechanisms and regulation measures of three key trade-offs in cover cropping systems were summarized systematically aiming to maintain crop yield and improve ecological benefits. The future researches should focus on the relationships between cover crop biomass and crop yield, and among cover crop residue quality (C:N ratio), C budget and ecological benefits. More concerns should also be given in the evolution crop production and ecological benefits under climate change scenarios, and the assessments of cover crop ecosystem services. These knowledges will promote the reconstruction and extension of cover cropping in the dryland agriculture especially in the Northwest China.
Key words: cover crop; dryland farming system; ecological trade-off
如何尋求一種可持續(xù)的管理措施,以實(shí)現(xiàn)系統(tǒng)生產(chǎn)力的穩(wěn)定提高,并兼顧生態(tài)環(huán)境效益,是當(dāng)前農(nóng)田生態(tài)研究的主要目標(biāo)之一。在小麥、玉米等主要糧食作物種植的休閑期間,引種一些豆科或非豆科作物,一方面能作為覆蓋作物(cover crop),增加地表覆蓋保持水土[1],并通過吸收土壤殘留礦質(zhì)養(yǎng)分降低淋溶風(fēng)險(xiǎn)[2]。另一方面在其生長(zhǎng)一定時(shí)間后,可以翻耕入土以補(bǔ)充土壤養(yǎng)分供應(yīng),起到綠肥效果(green manure)[3]。已有研究表明,這種填閑種植方式具有改良土壤結(jié)構(gòu)、促進(jìn)養(yǎng)分循環(huán)、提高土壤肥力和微生物活性、控制土壤侵蝕以及抑制雜草生長(zhǎng)和病蟲害等多種生態(tài)功能,近年來已在北美平原、歐洲、南美等世界多個(gè)地區(qū)得到了大面積推廣應(yīng)用[1,4]。然而對(duì)后續(xù)糧食作物而言,引種填閑作物會(huì)導(dǎo)致對(duì)土壤水分養(yǎng)分的競(jìng)爭(zhēng)性利用,而填閑種植導(dǎo)致的額外有機(jī)物質(zhì)的輸入也會(huì)刺激更多的土壤溫室氣體排放。這種關(guān)于水分利用競(jìng)爭(zhēng)[5]、氮吸收-氮供應(yīng)[2]、碳固定-碳排放[6]的生態(tài)權(quán)衡或矛盾(trade-offs)會(huì)直接影響填閑種植系統(tǒng)多功能性(multifunctionality)[7]和后續(xù)糧食作物的生產(chǎn)過程[8]。如何實(shí)現(xiàn)兼顧作物生產(chǎn)和生態(tài)效益的雙重目標(biāo),需要從理論上闡明填閑種植系統(tǒng)水、氮、碳權(quán)衡的生態(tài)學(xué)形成過程及其生物學(xué)控制機(jī)理。
我國(guó)黃土高原地區(qū),受水熱條件限制,糧食作物種植多為一年一熟。傳統(tǒng)農(nóng)業(yè)中,藉由夏秋休閑期間種植豆科綠肥作物以及實(shí)施草田輪作等措施維持土壤肥力平衡,以實(shí)現(xiàn)區(qū)域農(nóng)田生態(tài)系統(tǒng)穩(wěn)定發(fā)展[9]。然而隨著生產(chǎn)條件的變化,近幾十年來,所謂養(yǎng)地豆科作物在生產(chǎn)實(shí)踐中幾近消失,農(nóng)田生產(chǎn)力的維持和提高越來越依賴于化肥的持續(xù)投入,相應(yīng)地引起了溫室氣體排放增加、淋溶污染等系列環(huán)境問題。近年來隨著對(duì)生態(tài)文明建設(shè)的日益重視,積極推廣減施增效技術(shù),實(shí)現(xiàn)糧食生產(chǎn)綠色化,保護(hù)生態(tài)環(huán)境已成為當(dāng)前我國(guó)農(nóng)業(yè)生產(chǎn)的重大戰(zhàn)略需求。黃土高原地處黃河流域關(guān)鍵地帶,如何實(shí)現(xiàn)區(qū)域生態(tài)化農(nóng)業(yè)生產(chǎn)并兼顧環(huán)境保護(hù),是實(shí)施黃河流域生態(tài)保護(hù)和高質(zhì)量發(fā)展國(guó)家戰(zhàn)略中亟待解決的科學(xué)命題之一。該文從生態(tài)權(quán)衡視角出發(fā),系統(tǒng)分析了填閑作物與糧食作物間水氮競(jìng)爭(zhēng)利用、生態(tài)系統(tǒng)碳收支兩種權(quán)衡的形成過程與調(diào)控機(jī)理,并以“減施、穩(wěn)產(chǎn)、增益”為目標(biāo),探討兼顧生產(chǎn)力和環(huán)境經(jīng)濟(jì)效益的權(quán)衡正向調(diào)控途徑,旨在從理論上豐富完善新時(shí)期的填閑種植系統(tǒng)理論體系,實(shí)踐上為其在黃土高原旱作農(nóng)業(yè)區(qū)的恢復(fù)與推廣提供科學(xué)依據(jù),服務(wù)國(guó)家綠色農(nóng)業(yè)生產(chǎn)的重大需求。
1 填閑種植系統(tǒng)水碳氮權(quán)衡過程
1.1 水權(quán)衡:填閑作物與糧食作物對(duì)土壤水分的競(jìng)爭(zhēng)性利用
與裸地休閑相比,填閑作物生長(zhǎng)耗水會(huì)降低后續(xù)糧食作物播種時(shí)的土壤水分含量,從而在填閑作物和后續(xù)糧食作物之間產(chǎn)生對(duì)土壤水分的先入式競(jìng)爭(zhēng)(pre-emptive competition)[5, 10-11]??紤]到降水匱乏是旱作農(nóng)田生態(tài)系統(tǒng)生產(chǎn)力形成的首要限制因素,那么水權(quán)衡將是決定填閑種植系統(tǒng)在旱作農(nóng)田能否成功的首要因素。然而已有研究顯示,填閑種植是否會(huì)過度消耗土壤水分,進(jìn)而影響后續(xù)糧食作物利用,結(jié)果并不一致。例如李小涵等(2008)[12]、李婧等(2012)[13]以及張祺等[14]的觀測(cè)結(jié)果均表明,黃土高原地區(qū)夏閑期種植豆科綠肥會(huì)顯著增加對(duì)土壤水分的消耗。Mitchell等(2015)[5]在美國(guó)加州地區(qū)分析了冬季填閑種植系統(tǒng)長(zhǎng)達(dá)多年水分平衡狀況,發(fā)現(xiàn)填閑種植具有的部分環(huán)境效益是以土壤水分消耗為代價(jià)的。然而,張樹蘭等(2005)[15]在黃土高原地區(qū),Ward等(2012)[11]在澳大利亞西南部,Restovich等(2012)[16]在南美潘帕斯地區(qū)進(jìn)行的試驗(yàn)研究以及Whish等(2009)[10]的模型模擬結(jié)果均顯示,種植填閑作物對(duì)旱作農(nóng)田土壤水分平衡以及后續(xù)作物水分利用并沒有產(chǎn)生很大影響。不僅如此,Daigh等(2014)[17]和Basche等(2016)[18]在美國(guó)大平原地區(qū)均發(fā)現(xiàn),在玉米-大豆輪作系統(tǒng)中引入冬季填閑作物,能夠顯著提高表層土壤水分含量和田間持水量。
1.2 氮權(quán)衡:填閑作物氮吸收與氮供應(yīng)的矛盾
填閑作物與糧食作物的先入式競(jìng)爭(zhēng)也同樣體現(xiàn)在養(yǎng)分利用(尤其是氮素)上[2]。填閑作物生長(zhǎng)期間能夠吸收土壤養(yǎng)分,這一方面能夠降低土壤中無機(jī)養(yǎng)分含量,減少土壤淋溶風(fēng)險(xiǎn)[19],另一方面也可能會(huì)形成后續(xù)糧食作物養(yǎng)分不足的問題[2, 20]。例如Wells等(2013)[20]研究發(fā)現(xiàn),非豆科的填閑作物生長(zhǎng)6周后就會(huì)導(dǎo)致土壤出現(xiàn)一個(gè)極端低氮環(huán)境,不利于后續(xù)糧食作物生長(zhǎng)。但是如果將填閑作物翻壓入土進(jìn)行腐解,又可以通過養(yǎng)分再循環(huán)產(chǎn)生顯著的“氮肥效應(yīng)”,提供“可更新的氮源”[21]。而豆科作物還可以通過生物固氮作用增加土壤供氮能力[2, 22]。根據(jù)Ovalle等(2010)[22]的研究,豆科填閑作物每年約有10%的生物量氮返回了土壤,相當(dāng)于27%~30%的化肥回收率。
1.3 碳權(quán)衡:填閑種植系統(tǒng)中的碳固定與碳排放矛盾
與裸地休閑相比,種植填閑作物翻耕入土后增加了額外的碳輸入,有助于增加土壤碳庫存儲(chǔ)[23]。根據(jù)Poeplau和Don(2015)[23]進(jìn)行的文獻(xiàn)分析結(jié)果,填閑種植在全球尺度上固碳潛力可達(dá)到0.12 Pg C yr-1。國(guó)內(nèi)學(xué)者進(jìn)行的綠肥種植試驗(yàn)也都表明,土壤有機(jī)碳含量在綠肥翻壓入土后能夠得到顯著提高[24-26]。然而,填閑作物額外的有機(jī)物輸入必然會(huì)導(dǎo)致更多的溫室氣體排放[27-28]。例如San-Cobena等(2014)[27]針對(duì)灌溉玉米填閑種植系統(tǒng)的研究發(fā)現(xiàn),填閑作物生長(zhǎng)期間導(dǎo)致CO2排放平均較裸地休閑增加了47%,而翻耕入土后由于其殘余分解土壤呼吸量增加了21%~28%。戈小榮等(2018)[29]在黃土高原地區(qū)進(jìn)行的研究也表明,夏閑期種植黑麥草或長(zhǎng)武懷豆導(dǎo)致冬小麥填閑系統(tǒng)土壤CO2日均排放提高約2.4倍。在全球尺度上,Muhammad等(2019)[28]研究表明,填閑種植顯著增加了土壤CO2排放,但對(duì)N2O排放的影響隨填閑作物種類、殘余管理方式、氣候以及土壤質(zhì)地存在較大變異。因此,填閑種植系統(tǒng)的固碳減排效益取決于填閑作物增加的碳輸入能否足夠補(bǔ)償額外的溫室氣體排放(尤其是N2O),這需要從農(nóng)田生態(tài)系統(tǒng)尺度對(duì)系統(tǒng)的碳固定(土壤有機(jī)碳積累、作物生長(zhǎng)固碳)、碳排放(溫室氣體通量和管理過程排放)過程加以綜合評(píng)估。
水、氮權(quán)衡涉及了填閑作物和糧食作物對(duì)土壤水和氮的競(jìng)爭(zhēng)性利用,并最終反映在糧食作物產(chǎn)量變化上[4]。而碳、氮權(quán)衡則與填閑作物生長(zhǎng)和翻耕入土后的殘余分解過程有關(guān)[30],而農(nóng)田生態(tài)系統(tǒng)層次上的碳權(quán)衡還必須要考慮填閑種植導(dǎo)致的額外土壤N2O排放問題[28]。因此上述3個(gè)關(guān)鍵權(quán)衡,尤其是氮、碳權(quán)衡,實(shí)質(zhì)上是藕聯(lián)在一起的,他們共同決定了填閑種植系統(tǒng)生產(chǎn)力形成和多種生態(tài)效益的實(shí)現(xiàn),直接影響到農(nóng)田生態(tài)系統(tǒng)的可持續(xù)性。而如何研究上述權(quán)衡,一方面需要深入研究水、氮、碳權(quán)衡的生物學(xué)控制機(jī)理,另一方面更需要結(jié)合權(quán)衡形成的主要影響因素,探討可能的調(diào)控途徑。
2 填閑種植系統(tǒng)水碳氮權(quán)衡機(jī)理
如前所述,水權(quán)衡主要涉及填閑作物生長(zhǎng)期間的水分利用、填閑作物翻埋或覆蓋期間的水分恢復(fù)以及后續(xù)糧食作物的利用等過程。與裸地休閑相比,填閑作物增加了休閑期間的土壤水分消耗,但另一方面地表覆蓋面積的增加能降低無效蒸發(fā)[18],而且長(zhǎng)期填閑種植也能顯著改善土壤水分相關(guān)物理特性(包括容重、持水能力、入滲能力等)[31-32],提高土壤保水能力。因此,休閑期降水儲(chǔ)存效率和后續(xù)作物播前含水量變化是反映填閑種植系統(tǒng)水權(quán)衡的關(guān)鍵指標(biāo)。在旱作農(nóng)業(yè)區(qū),填閑種植究竟能在多大程度上改善土壤水分相關(guān)物理特性是需要重點(diǎn)關(guān)注的科學(xué)問題。
氮、碳權(quán)衡則共同涉及填閑作物生長(zhǎng)階段生物量積累過程中的碳氮固定、翻壓入土后殘余分解過程中的碳氮釋放以及后續(xù)糧食作物對(duì)氮的吸收利用等過程,其中填閑作物殘余分解過程是認(rèn)識(shí)氮、碳權(quán)衡的關(guān)鍵環(huán)節(jié)[2]。作物殘余分解釋放礦質(zhì)養(yǎng)分,決定著填閑種植系統(tǒng)的氮供應(yīng)能力或“氮肥效應(yīng)”大?。?1],因此,了解農(nóng)田生態(tài)系統(tǒng)水平的氮收支就需要對(duì)填閑作物氮吸收、土壤礦質(zhì)氮含量動(dòng)態(tài)和后續(xù)作物氮利用進(jìn)行動(dòng)態(tài)觀測(cè)。而從碳權(quán)衡角度分析,作物殘余中的有機(jī)碳進(jìn)入到土壤后會(huì)在微生物參與下,進(jìn)入土壤團(tuán)聚體固定下來,轉(zhuǎn)化為微生物或以溫室氣體形式釋放到大氣,但其各自的相對(duì)比例尚不清楚,因此,需要結(jié)合土壤碳氮分組測(cè)定研究碳氮元素在土壤中的固持機(jī)理[33-34]。例如,不少研究都表明填閑作物種植能在短期內(nèi)顯著提高土壤活性碳組分含量[25],但這是否會(huì)影響到長(zhǎng)期的碳收支尚待進(jìn)一步研究。利用穩(wěn)定同位素技術(shù),能夠示蹤填閑作物殘余輸入的有機(jī)碳氮在土壤中的轉(zhuǎn)化與賦存狀態(tài),更深入地揭示其在土壤與微生物之間的循環(huán)和周轉(zhuǎn)過程[35-37]。 例如, 最近Rosenzweig等(2017)[35],Austin等(2017)[36]利用13C穩(wěn)定同位素標(biāo)記技術(shù),研究了填閑作物輸入的有機(jī)碳分解與周轉(zhuǎn)過程,對(duì)填閑作物地上部分和根系碳的輸入差異以及填閑作物生物來源碳在土壤中的存留能力進(jìn)行了區(qū)分。 Mutegi等(2013)[37]研究表明, 蘿卜作為填閑作物, 其殘余輸入的碳可以達(dá)到4.9 t C ha-1,并存留長(zhǎng)達(dá)20年。
了解填閑種植系統(tǒng)中土壤微生物群落結(jié)構(gòu)與功能變化特征,有助于從機(jī)理上揭示碳氮權(quán)衡的形成,也是近期國(guó)內(nèi)外研究的一個(gè)熱點(diǎn)領(lǐng)域[38-40]。引種填閑作物直接改變了土壤碳氮的輸入模式,這足以改變土壤微生物群落結(jié)構(gòu)、微生物功能和相關(guān)酶活性。已有研究表明,填閑作物在其生長(zhǎng)期間就能很快地影響到土壤微生物群落結(jié)構(gòu)和功能[39, 41]。填閑種植從總體上能夠提高土壤微生物生物量和多樣性,但是土壤微生物群落結(jié)構(gòu)(包括細(xì)菌真菌比、革蘭氏陽性與革蘭氏陰性菌相對(duì)比例、叢枝菌根所占比例等)、關(guān)鍵類群以及相關(guān)的土壤酶活性均會(huì)隨著填閑作物生物量、質(zhì)量以及水熱條件和管理措施而表現(xiàn)出很大的變異性[38]。例如Frasier等(2016)[41]提出高質(zhì)量(低碳氮比)的填閑作物殘余可以促進(jìn)土壤細(xì)菌生長(zhǎng)、而低質(zhì)量的殘余則有利于真菌富集。然而如何理解微生物群落結(jié)構(gòu)或多樣性,與填閑作物殘余分解和養(yǎng)分循環(huán)過程之間的關(guān)系仍存在挑戰(zhàn)。值得注意的是,近年來隨著土壤微生物宏基因組、高通量測(cè)序技術(shù)的應(yīng)用,使得人們開始能夠從種屬水平上認(rèn)識(shí)參與土壤碳氮循環(huán)的關(guān)鍵類群動(dòng)態(tài)。
3 填閑種植系統(tǒng)水氮碳權(quán)衡調(diào)控途徑
已有研究表明,填閑作物類型、生物量和質(zhì)量(碳氮比)、氣候和土壤條件是影響填閑種植系統(tǒng)生態(tài)權(quán)衡(效益)的主要因素[1, 4, 42-43]。旱作農(nóng)業(yè)系統(tǒng)中應(yīng)該優(yōu)先選擇一年生中低耗水的填閑作物品種[5],而針對(duì)特定的填閑作物,其生物量越高,對(duì)水分和養(yǎng)分(氮素)的先入式競(jìng)爭(zhēng)風(fēng)險(xiǎn)就越大。而另一方面,更高的生物量其地表覆蓋抑蒸保水作用也會(huì)越強(qiáng),而且更多的有機(jī)物輸入意味著更多的養(yǎng)分供應(yīng)、固碳效益以及土壤持水保水能力。已有研究表明,填閑作物生物量可以通過選擇合適的填閑作物品種、控制種植密度和生長(zhǎng)時(shí)長(zhǎng)來加以調(diào)節(jié)[43-44]。例如國(guó)外不少研究發(fā)現(xiàn),提前填閑作物終止時(shí)間能夠有效地解決填閑作物對(duì)土壤水分的過度利用問題[5, 11]??梢酝茰y(cè)的是,針對(duì)特定的氣候區(qū)域和土壤類型,應(yīng)該存在一個(gè)合適的填閑作物生物量閾值。一旦超過這個(gè)閾值,填閑作物將會(huì)消耗更多的土壤水分,從而對(duì)后續(xù)糧食作物水分生產(chǎn)過程產(chǎn)生影響,而填閑作物生物量閾值的高低又必然與填閑種植系統(tǒng)所能產(chǎn)生的其他生態(tài)效益(碳氮權(quán)衡決定的)密切相關(guān),直接影響到填閑作物的即時(shí)效應(yīng)和遺留效應(yīng)的大小,影響系統(tǒng)可持續(xù)性。
填閑作物碳氮比是影響填閑種植系統(tǒng)碳氮權(quán)衡和微生物代謝活動(dòng)的另外一個(gè)重要因子[2, 41-42, 45]。研究表明,非豆科作物通常具有更好的吸氮能力,而且殘余分解時(shí)由于其高碳氮比容易造成土壤氮的固定,降低土壤無機(jī)養(yǎng)分的有效性[34, 46],而豆科作物生長(zhǎng)期間能夠通過生物固氮作用增加氮供應(yīng),且其殘余分解速度更快,其生物量氮的釋放要更為快速有效[30, 46]。如前所述,填閑作物質(zhì)量差異也會(huì)影響到土壤微生物代謝活動(dòng),導(dǎo)致土壤微生物群落結(jié)構(gòu)和功能上的分異[38, 40]。國(guó)外研究發(fā)現(xiàn),將豆科與非豆科作物混播可以有效改善碳氮權(quán)衡問題,即兼顧碳氮固定和釋放的矛盾[2, 33-34]。例如Sainju等[33-34, 47]在北美平原進(jìn)行的系列研究發(fā)現(xiàn),黑麥草與野豌豆作為填閑作物混播要比各自單播具有更高的固碳能力,并能顯著提高土壤供氮水平。同樣可以推測(cè)的是,針對(duì)特定的氣候區(qū)域和土壤類型,也應(yīng)該存在一個(gè)合適的填閑作物碳氮比閾值,該閾值與填閑種植系統(tǒng)的碳氮權(quán)衡和微生物活動(dòng)密切相關(guān),且可以通過調(diào)整豆科非豆科填閑作物混播比例加以調(diào)控[45]。
氣候因素尤其是降水狀況是決定填閑種植系統(tǒng)在旱作農(nóng)業(yè)區(qū)成功與否的另一個(gè)關(guān)鍵因素[6, 48-49]。例如Marinari等(2015)[49]研究發(fā)現(xiàn),夏季降水狀況會(huì)直接影響到填閑種植在地中海式氣候區(qū)的固碳效果。Alonso-Ayuso等(2017)[48]研究表明,填閑作物最佳的終止時(shí)間取決于每年的水熱狀況。而Kaye等(2017)[6]提出,填閑種植的相關(guān)生態(tài)效益均需要與氣候變化加以協(xié)同考慮??紤]到氣候變化因素,利用已有的APSIM,SWAT,RothC等模型開展模擬研究近年來也成為一種重要的方法,例如Basche等(2016)[50],Martinez-Feria等(2016)[51]利用APSIM模型對(duì)填閑種植系統(tǒng)的水分、養(yǎng)分和作物生產(chǎn)過程進(jìn)行了模擬研究,結(jié)果均顯示,種植填閑作物對(duì)旱作農(nóng)田土壤水分平衡,以及后續(xù)作物水分利用并沒有產(chǎn)生很大影響。
4 研究展望
綜合國(guó)內(nèi)外研究進(jìn)展來看,通過引種填閑作物來代替?zhèn)鹘y(tǒng)的裸地休閑方式,能夠?qū)崿F(xiàn)水土資源高效利用,產(chǎn)生多種生態(tài)效益,從國(guó)內(nèi)外研究進(jìn)展來看,學(xué)術(shù)界對(duì)填閑種植系統(tǒng)的水肥過程已有較多研究,而基于“穩(wěn)產(chǎn)、減施、增益”的管理實(shí)踐目標(biāo),以下幾個(gè)問題亟待加以深入探討。
1)填閑種植中的水、氮、碳權(quán)衡直接決定了系統(tǒng)生產(chǎn)力形成和相關(guān)生態(tài)效益的實(shí)現(xiàn),然而針對(duì)特定的研究區(qū)域及特定的填閑種植系統(tǒng),水、氮、碳權(quán)衡的形成過程及其生物學(xué)控制機(jī)理目前均尚不清晰。引種填閑作物對(duì)休閑期降水儲(chǔ)存效率形成的影響機(jī)制如何?填閑種植如何通過改變土壤微生物群落結(jié)構(gòu)與功能,影響土壤碳、氮權(quán)衡形成過程,并進(jìn)一步提高土壤肥力、促進(jìn)作物生產(chǎn)和增強(qiáng)固碳效益?這些問題的回答,對(duì)填閑種植系統(tǒng)以缺水低肥為特征的黃土高原旱作農(nóng)田生態(tài)系統(tǒng)而言具有重要的理論價(jià)值,亟待加以深入系統(tǒng)地研究。
2)填閑作物生物量和碳氮比,是影響填閑種植系統(tǒng)水、氮、碳權(quán)衡的兩個(gè)關(guān)鍵因素,也是填閑種植系統(tǒng)的重要調(diào)控途徑,但是針對(duì)旱作農(nóng)田生態(tài)系統(tǒng),水、氮、碳權(quán)衡與填閑作物生物量和碳氮比的定量關(guān)系目前尚不明確。如前所述,是否存在能夠兼顧水、氮、碳權(quán)衡的填閑作物生物量和碳氮比閾值?需要開展填閑作物生物量和碳氮比控制的系列田間試驗(yàn)加以觀測(cè)研究。
3)在旱作農(nóng)業(yè)區(qū),降水在年內(nèi)和年際均存在較大變異,可以推測(cè)填閑種植效果也會(huì)隨不同降水年型表現(xiàn)出較大差異,而且應(yīng)該存在一個(gè)能夠?qū)崿F(xiàn)填閑種植系統(tǒng)生產(chǎn)力提升,并兼顧環(huán)境效益正向的氣候要素閾值。要闡明這一點(diǎn),一方面需要結(jié)合不同填閑作物系統(tǒng)和管理措施,針對(duì)不同降水年型開展多年連續(xù)定位觀測(cè),另一方面需要田間定位觀測(cè)結(jié)果與模型模擬相結(jié)合,針對(duì)不同氣候變化情景提出有效的調(diào)控途徑和策略。
4)填閑種植系統(tǒng)增加了生產(chǎn)成本,也會(huì)帶來成本-效益核算問題,尤其是需要考慮填閑種植系統(tǒng)其他生態(tài)服務(wù)(肥力提升、侵蝕控制、雜草與病蟲害防治等)價(jià)值核算。
參考文獻(xiàn):
[1] DARYANTO S, FU B J, WANG L X, et al.Quantitative synthesis on the ecosystem services of cover crops [J]. Earth-Science Reviews, 2018,185: 357-373.
[2] WHITE C M, DUPONT S T, HAUTAU M, et al.Managing the trade off between nitrogen supply and retention with cover crop mixtures[J]. Agriculture, Ecosystems & Environment, 2017, 237:121-133.
[3] WITTWER R A, DORN B, JOSSI W, et al. Cover crops support ecological intensification of arable cropping systems[J].Scientific Reports, 2017,7:41911.
[4] 王俊, 薄晶晶,付鑫.填閑種植及其在黃土高原旱作農(nóng)業(yè)區(qū)的可行性分析[J].生態(tài)學(xué)報(bào), 2018,38(14):5244-5254.
WANG J, BO J J, FU X. Research progress in cover cropping and its feasibility in the dryland farming systems on the Loess Plateau[J].Acta Ecologica Sinica, 2018, 38(14):5244-5254.
[5] MITCHELL J P, SHRESTHA A, IRMAK S. Trade-offs between winter cover crop production and soil water depletion in the San Joaquin Valley, California [J]. Journal of Soil and Water Conservation, 2015, 70(6): 430-440.
[6] KAYE J P, QUEMADA M. Using cover crops to mitigate and adapt to climate change. A review [J]. Agronomy for Sustainable Development, 2017,37(4):1-7.
[7] BLESH J.Functional traits in cover crop mixtures: Biological nitrogen fixation and multifunctionality [J]. Journal of Applied Ecology, 2018, 55(1): 38-48.
[8] TONITTO C, DAVID M B, DRINKWATER L E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics [J]. Agriculture, Ecosystems & Environment, 2006,112(1): 58-72.
[9] 李玉山.黃土高原土壤水分循環(huán)與農(nóng)田生產(chǎn)力[M].西安:陜西人民出版社, 2015.
[10]WHISH J P M, PRICE L, CASTOR P A. Do spring cover crops rob water and so reduce wheat yields in the northern grain zone of eastern Australia?[J].Crop & Pasture Science, 2009,60(6): 517-525.
[11]WARD P R, FLOWER K C, CORDINGLEY N, et al. Soil water balance with cover crops and conservation agriculture in a Mediterranean climate [J]. Field Crops Research, 2012,132:33-39.
[12]李小涵, 王朝輝, 郝明德, 等.黃土高原旱地種植體系對(duì)土壤水分及有機(jī)氮和礦質(zhì)氮的影響[J].中國(guó)農(nóng)業(yè)科學(xué), 2008,41(9): 2686-2692.
LI X H, WANG Z H, HAO M D, et al. Effects of cropping systems on soil water, organic N and mineral N in dryland soil on the Loess Plateau[J].Scientia Agricultura Sinica, 2008, 41(9): 2686-2692.
[13]李婧, 張達(dá)斌, 王崢, 等.施肥和綠肥翻壓方式對(duì)旱地冬小麥生長(zhǎng)及土壤水分利用的影響[J].干旱地區(qū)農(nóng)業(yè)研究, 2012,30(3): 136-142.
LI J, ZHANG D B, WANG Z, et al. Effect of fertilizer and green manure incorporation methods on the growth and water use efficiency of winter wheat[J].Agricultural Research in the Arid Areas, 2012, 30(3): 136-142.
[14]張祺, 王俊.填閑種植和施氮量對(duì)旱作冬小麥農(nóng)田土壤水分及作物產(chǎn)量的影響[J].干旱地區(qū)農(nóng)業(yè)研究, 2018,36(6): 120-124.
ZHANG Q, WANG J. Effects of cover crop and N fertilization on soil moisture and crop yield in a dryland winter wheat field[J].Agricultural Research in the Arid Areas, 2018, 36(6): 120-124.
[15]張樹蘭,LOVDAHL L,同延安.渭北旱塬不同田間管理措施下冬小麥產(chǎn)量及水分利用效率[J].農(nóng)業(yè)工程學(xué)報(bào),2005,21(4):20-24.
ZHANG S L, LOVDAHL L, TONG Y A. Effects of different field management practices on winter wheat yield and water utilization efficiency in Weibei Loess Plateau[J].Transactions of the CSAE, 2005, 21(4): 20-24.
[16]RESTOVICH S B, ADRIN E A, PORTELA S I. Introduction of cover crops in a maize-soybean rotation of the Humid Pampas: Effect on nitrogen and water dynamics[J].Field Crops Research, 2012, 128:62-70.
[17]DAIGH A L, HELMERS M J, KLADIVKO E, et al. Soil water during the drought of? 2012 as affected by rye cover crops in fields in Iowa and Indiana[J]. Journal of Soil and Water Conservation, 2014, 69(6):564-573.
[18]BASCHE A D, KASPAR T C, ARCHONTOULIS S V, et al. Soil water improvements with the long-term use of a winter rye cover crop[J]. Agricultural Water Management, 2016, 172:40-50.
[19]SALMERON M, CAVERO J, QUILEZ D, et al. Winter cover crops affect monoculture maize yield and nitrogen leaching under irrigated mediterranean conditions[J].Agronomy Journal, 2010, 102(6):1700-1709.
[20]WELLS M S, REBERG-HORTON S C, SMITH A N, et al. The reduction of plant-available nitrogen by cover crop mulches and subsequent effects on soybean performance and weed interference[J].Agronomy Journal, 2013, 105(2): 539-545.
[21]TOSTI G, BENINCASA P, FARNESELLI M, et al. Green manuring effect of pure and mixed barley-hairy vetch winter cover crops on maize and processing tomato N nutrition[J]. European Journal of Agronomy, 2012, 43(6):136-146.
[22]OVALLE C, DEL POZO A, PEOPLES M B, et al. Estimating the contribution of nitrogen from legume cover crops to the nitrogen nutrition of grapevines using a 15N dilution technique [J]. Plant and Soil, 2010, 334(1/2):247-259.
[23]POEPLAU C, DON A. Carbon sequestration in agricultural soils via cultivation of cover crops:A meta-analysis[J]. Agriculture, Ecosystems and Environment, 2015, 200:33-41.
[24]張達(dá)斌, 姚鵬偉, 李婧, 等.豆科綠肥及施氮量對(duì)旱地麥田土壤主要肥力性狀的影響[J].生態(tài)學(xué)報(bào), 2013, 33(7):2272-2281.
ZHANG D B, YAO P W, LI J, et al. Effects of two years incorporation of leguminous green manure on soil properties of a wheat field in dryland conditions[J].Acta Ecologica Sinica, 2013, 33(7): 2272-2281.
[25]楊濱娟, 黃國(guó)勤, 蘭延, 等.施氮和冬種綠肥對(duì)土壤活性有機(jī)碳及碳庫管理指數(shù)的影響[J].應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(10): 2907-2913.
YANG B J, HUANG G Q, LAN Y, et al. Effects of nitrogen application and winter green manure on soil active organic carbon and the soil carbon pool management index[J].Chinese Journal of Applied Ecology, 2014, 25(10): 2907-2913.
[26]杜威, 王紫泉, 和文祥, 等.豆科綠肥對(duì)渭北旱塬土壤養(yǎng)分及生態(tài)化學(xué)計(jì)量學(xué)特征影響[J].土壤學(xué)報(bào), 2017, 54(4):999-1008.
DU W, WANG Z Q, HE W X, et al. Effects of leguminous green manure on soil nutrients and their ecological stoichiometry characteristics in Weibei rainfed highland[J].Acta Pedologica Sinica, 2017, 54(4): 999-1008.
[27]SANZ-COBENA A, GARCA-MARCO S, QUEMADA M,et al. Do cover crops enhance N2O, CO2 or CH4 emissions from soil in mediterranean arable systems? [J]. Science of the Total Environment, 2014, 466:164-174.
[28]MUHAMMAD I, SAINJU U M, ZHAO F Z, et al. Regulation of soil CO2 and N2O emissions by cover crops: A meta-analysis [J]. Soil and Tillage Research,2019, 192: 103-112.
[29]戈小榮, 王俊, 張祺, 等.不同降水格局下填閑種植對(duì)旱作冬小麥農(nóng)田夏閑期土壤溫室氣體排放的影響[J].草業(yè)學(xué)報(bào), 2018, 27(5):27-38.
GE X R, WANG J, ZHANG Q, et al. Effect of cover cropping on soil greenhouse gas emissions during summer fallow under manipulated rainfall[J].Acta Prataculturae Sinica, 2018, 27(5): 27-38.
[30]JAHANZAD E, BARKER A V, HASHEMI M, et al. Nitrogen release dynamics and decomposition of buried and surface cover crop residues[J]. Agronomy Journal, 2016, 108(4):1735.
[31]BLANCO-CANQUI H, MIKHA M M, PRESLEY D A R, et al. Addition of cover crops enhances No-till potential for improving soil physical properties[J]. Soil Science Society of America Journal, 2011, 75(4):1471-1482.
[32]BLANCO-CANQUI H, JASA P J.Do grass and legume cover crops improve soil properties in the long term?[J]. Soil Science Society of America Journal, 2019, 83(4): 1181-1187.
[33]SAINJU U M, SINGH H P, SINGH B P, et al. Cover crop and nitrogen fertilization influence soil carbon and nitrogen under bioenergy sweet sorghum[J]. Agronomy Journal, 2018, 110(2):463-471.
[34]SAINJU U M, SINGH B P, WHITEHEAD W F, et al. Carbon supply and storage in tilled and nontilled soils as influenced by cover crops and nitrogen fertilization [J]. Journal of Environmental Quality, 2006, 35(4):1507-1517.
[35]ROSENZWEIG S T, SCHIPANSKI M E, KAYE J P. Rhizosphere priming and plant-mediated cover crop decomposition[J]. Plant and Soil, 2017, 417(1/2): 127-139.
[36]AUSTIN E E, WICKINGS K, MCDANIEL M D, et al. Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system[J]. Global Change Biology Bioenergy, 2017, 9(7):1252-1263.
[37]MUTEGI J K, PETERSEN B M, MUNKHOLM L J. Carbon turnover and sequestration potential of fodder radish cover crop[J].Soil Use and Management, 2013, 29(2):191-198.
[38]KIMN, ZABALOYMC, GUANK, et al.Do cover crops benefit soil microbiome? A meta-analysis of current research [J].Soil Biology and Biochemistry, 2020, 142: 107701.
[39]FINNEY D M, BUYER J S, KAYE J P. Living cover crops have immediate impacts on soil microbial community structure and function [J]. Journal of Soil and Water Conservation, 2017, 72(4):361-373.
[40]DETHERIDGE A P, BRAND G, FYCHAN R, et al.The legacy effect of cover crops on soil fungal populations in a cereal rotation [J]. Agriculture, Ecosystems and Environment, 2016, 228: 49-61.
[41]FRASIERI, NOELLEMEYERE, FIGUEROLAE, et al.High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration [J]. Global Ecology and Conservation, 2016, 6: 242-256.
[42]FINNEY D M, WHITE C M, KAYE J P. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures [J]. Agronomy Journal, 2016, 108(1): 39-52.
[43]DELGADO J A, GANTZER C J. The 4Rs for cover crops and other advances in cover crop management for environmental quality [J]. Journal of Soil and Water Conservation, 2015, 70(6): 142A-145A.
[44]PRATT O J, WINGENBACH G. Factors affecting adoption of green manure and cover crop technologies among Paraguayan smallholder farmers [J]. Agroecology and Sustainable Food Systems, 2016,40(10):1043-1057.
[45]TRIBOUILLOIS H, COHAN J P,JUSTES E. Cover crop mixtures including legume produce ecosystem services of nitrate capture and green manuring: Assessment combining experimentation and modelling [J]. Plant and Soil, 2016, 401(1/2): 347-364.
[46]SAINJU U M, SINGH H P, SINGH B P.Cover crop effects on soil carbon and nitrogen under bioenergy sorghum crops [J]. Journal of Soil and Water Conservation, 2015, 70(6): 410-417.
[47]SAINJU U M, SINGH B P. Nitrogen storage with cover crops and nitrogen fertilization in tilled and nontilled soils [J]. Agronomy Journal, 2008, 100(3): 619-627.
[48]ALONSO-AYUSO M, QUEMADA M, VANCLOOSTER M, et al.Assessing cover crop management under actual and climate change conditions [J]. Science of the Total Environment, 2018, 621: 1330-1341.
[49]MARINARI S, MANCINELLI R, BRUNETTI P, et al.Soil quality, microbial functions and tomato yield under cover crop mulching in the Mediterranean environment [J]. Soil and Tillage Research, 2015,145: 20-28.
[50]BASCHE A D, ARCHONTOULIS S V, KASPAR T C, et al.Simulating long-term impacts of cover crops and climate change on crop production and environmental outcomes in the Midwestern United States [J]. Agriculture, Ecosystems & Environment, 2016,218: 95-106.
[51]MARTINEZ-FERIA R A, DIETZEL R,LIEBMAN M, et al.Rye cover crop effects on maize: A system-level analysis [J]. Field Crops Research, 2016, 196: 145-159.
(編 輯 李 波,邵 煜)
西北大學(xué)學(xué)報(bào)(自然科學(xué)版)2020年5期