智慧來(lái) 李逸楠
摘要:概念是信息?;^(guò)程中的重要粒度之一。然而,基于概念的知識(shí)表示并不能有效地對(duì)具有家族相似性的原型范疇進(jìn)行刻畫。該文在現(xiàn)代范疇理論的啟發(fā)下,提出用概念簇表示一組密切相關(guān)的概念,以刻畫粒度大于概念的信息粒。其次,研究了概念簇的若干重要性質(zhì)與計(jì)算方法。最后,提出了一種基于概念簇的信息檢索方法。
關(guān)鍵詞:形式概念分析;粒計(jì)算;概念簇;知識(shí)表示
中圖分類號(hào):TP18
DOI:10.16152/j.cnki.xdxbzr.2020-04-003開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Knowledge representation based on concept cluster
ZHI Huilai, LI Yinan
(School of Computer Science & Technology, Henan Polytechnic University, Jiaozuo? 454003, China)
Abstract: Concept is one of the important granularities in the process of information granulation. However, concept-based knowledge representation cannot effectively describe prototype category with family similarity.Inspired by the modern category theory, this paper proposes to concept cluster to represent a group of closely related concepts, so as to depict information
granules with granularities larger than concepts. And then, some important properties and calculation methods of concept clusters are studied. Finally, an information retrieval method based on concept cluster is proposed.
Key words: formal concept analysis; granular computing; concept cluster; knowledge representation
在大數(shù)據(jù)潮流下,粒計(jì)算提供了知識(shí)發(fā)現(xiàn)和從人工智能到機(jī)器實(shí)現(xiàn)的有效方法[1-2]。信息?;遣捎昧S?jì)算思想解決問(wèn)題的前提。在具體問(wèn)題中,大小各異的粒形成了粒度鏈條[3],人們主要通過(guò)粒之間的轉(zhuǎn)換、推理以及相互交互來(lái)實(shí)現(xiàn)問(wèn)題的求解[4-6]。
形式概念分析[7-8]是一種最為有效的粒計(jì)算方法。面向特定的數(shù)據(jù)分析與知識(shí)發(fā)現(xiàn)的需要,通過(guò)構(gòu)造性方法可以得到一系列不同種類的概念[9-13],從而滿足不同的應(yīng)用需求。近年來(lái),粗糙集、粒計(jì)算、模糊集、三支決策理論等與形式概念分析融合發(fā)展,在基于知識(shí)的信息處理等相關(guān)領(lǐng)域產(chǎn)生了一大批理論與應(yīng)用成果[14-17]。
然而,以概念作為基本粒度的知識(shí)發(fā)現(xiàn)并不能有效地對(duì)具有家族相似性的原型范疇進(jìn)行刻畫。實(shí)質(zhì)上,這是由于整個(gè)粒度鏈條沒(méi)有得到徹底的研究,位于粒度鏈條頂端的子格在應(yīng)用中沒(méi)有得到應(yīng)有的重視。
現(xiàn)代范疇理論[18-19]強(qiáng)調(diào)家族相似概念,不具有共同屬性的對(duì)象仍然可能屬于同一范疇。顯然,形式概念不能準(zhǔn)確刻畫這樣的情形。
為了解決上述問(wèn)題,本文在現(xiàn)代范疇理論的啟發(fā)下,提出用概念簇表示一組密切相關(guān)的概念,并對(duì)概念簇的性質(zhì)、計(jì)算以及應(yīng)用進(jìn)行初步的探討。
4 結(jié) 語(yǔ)
概念簇是一組具有“家族相似性”的概念構(gòu)成的信息粒,本質(zhì)上是概念格的一個(gè)子格。概念簇的提出使得子格從概念認(rèn)知的角度得到闡釋,且符合現(xiàn)代范疇理論的主要思想。
概念簇作為信息?;^(guò)程中的重要粒度之一,還有許多有待深入研究的問(wèn)題。例如,不確定環(huán)境下的概念簇如何定義,與經(jīng)典二值形式背景下的概念簇有何區(qū)別與聯(lián)系;概念簇與概念格中的不可約概念有什么聯(lián)系;概念簇在三支概念分析的背景下具有哪些重要的性質(zhì);概念約簡(jiǎn)對(duì)概念簇結(jié)構(gòu)有什么影響。
最后需要指出的是,概念簇與概念格密切關(guān)聯(lián),概念格的結(jié)構(gòu)復(fù)雜性制約了應(yīng)用的有效性。因此,有關(guān)概念簇的研究還需要付出更多的努力。
參考文獻(xiàn):
[1] 徐計(jì),王國(guó)胤,于洪. 基于粒計(jì)算的大數(shù)據(jù)處理[J].計(jì)算機(jī)學(xué)報(bào),2015, 38(8): 1497-1517.
XU J, WANG G Y, YU H. Review of big data processing based on granular computing[J].Chinese Journal of Computers, 2015, 38(8): 1497-1517.
[2] 梁吉業(yè), 錢宇華, 李德玉,等. 大數(shù)據(jù)挖掘的粒計(jì)算理論與方法[J].中國(guó)科學(xué)F輯:信息科學(xué), 2015, 45(11):1355-1369.
LIANG J Y, QIAN Y H, LI D Y, et al. Theory and method of granular computing for big data mining [J].Science in China Series F: Information Sciences, 2015, 45(11):1355-1369.
[3] QI J J, WEI L, WAN Q. Multi-level granularity in formal concept analysis [J]. Granular Computing, 2019, 4(3):351362.
[4] ZADEH L A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and Systems, 1997, 90(2):111-127.
[5] FUJITA H, GAETA A, LOIA V, et al. Resilience analysis of critical infrastructures: A cognitive approach based on granular computing[J]. IEEE Transactions on Cybernetics, 2019, 49(5): 1835-1848.
[6] HONKO P. Recent granular computing frameworks for mining relational data[J]. Artificial Intelligence Review, 2019, 52(4): 2705-2742.
[7] FERR S, CELLIER P. Graph-FCA:An extension of formal concept analysis to knowledge graphs[J]. Discrete Applied Mathematics, 2020, 273: 81-102.
[8] 李金海, 吳偉志. 形式概念分析的粒計(jì)算方法及其研究展望[J].山東大學(xué)學(xué)報(bào)(理學(xué)版), 2017,52(7):5-16.
LI J H, WU W Z. Granular computing approach for formal concept analysis and its research outlooks[J].Journal of Shandong University(Natural Science), 2017, 52(7): 5-16.
[9] QI J J, QIAN T, WEI L. The connections between three-way and classical concept lattices[J]. Knowledge-Based Systems, 2016, 91: 143-151.
[10]ZHI H L, QI J J, QIAN T, et al. Three-way dual concept analysis[J]. International Journal of Approximate Reasoning, 2019, 114: 151-165.
[11]WANG L D, LIU X D. Concept analysis via rough set and AFS algebra[J].Information Sciences, 2008, 178(21): 4125-4137.
[12]SHE Y H, HE X L, QIAN T, et al. A theoretical study on object-oriented and property-oriented multi-scale formal concept analysis[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(11): 3263-3271.
[13]KONECNY J. Attribute-oriented fuzzy concept lattices and standard fuzzy concept lattices induce the same similarity on objects[J]. Fuzzy Sets and Systems, 2016, 294: 136-140.
[14]魏玲,曹麗,祁建軍,等.形式概念分析中的概念約簡(jiǎn)與概念特征[J/OL].中國(guó)科學(xué):信息科學(xué),https:∥doi.org/10.1360/N112018-00272.
WEI L, CAO L, QI J J, et al. Concept reduction and concept characteristics in formal concept analysis[J/OL].Science China: Information Sciences, in press,https:∥doi.org/10.1360/N112018-00272.
[15]YAO Y Y. Rough-set concept analysis:Interpreting RS-definable concepts based on ideas from formal concept analysis[J]. Information Sciences,2016,346/347:442-462.
[16]WU W Z,LEUNG Y,MI J S.Granular computing and knowledge reduction in formal contexts [J]. IEEE Transactions on Knowledge and Data Engineering,2009,21(10):1461-1474.
[17]ZHI H L, QI J J, QIAN T, et al. Conflict analysis under one-vote veto based on approximate three-way concept lattice[J].Information Sciences,2020,526:316-330.
[18]CROFT W, CRUSE D A. Cognitive Linguistics[M].Cambridge: Cambridge University Press. 2004.
[19]WAXMAN S.Woman,F(xiàn)ire,and Dangerous Things:What Categories Reveal About the Mind[M].George Lakoff.Chicago:University of Chicago Press,1987.
[20]鄧大勇, 盧克文, 苗奪謙,等. 知識(shí)系統(tǒng)中全粒度粗糙集及概念漂移的研究[J]. 計(jì)算機(jī)學(xué)報(bào), 2019, 42(1): 85-97.
DENG D Y, LU K W, MIAO D Q, et al. Study on entire-granulation rough sets and concept drifting in a knowledge system[J]. Chinese Journal of Computers, 2019, 42(1): 85-97.
[21]GANTER B, KUZNETSOV S O. Hypotheses and version spaces[J].Lecture Notes in Computer ence, 2003,2746:83-95.
[22]ZHI H L, LI J H.Granule description based on formal concept analysis[J]. Knowledge-Based Systems, 2016, 104:62-73.
[23]WEI L, WAN Q. Granular transformation and irreducible element judgment theory based on pictorial diagrams[J]. IEEE Transactions on Cybernetics,2016, 46 (2):380-387.
[24]ZHI H L, LI J H. Granule description based knowledge discovery from incomplete formal contexts via necessary attribute analysis[J]. Information Sciences, 2019, 485:347-361.
(編 輯 張 歡)
作者簡(jiǎn)介:
智慧來(lái),男,1981年生,河南偃師人,博士,副教授。2010年畢業(yè)于上海大學(xué),獲工學(xué)博士學(xué)位,主要從事粒計(jì)算、形式概念分析、粗糙集等方面的研究。主持完成國(guó)家自然科學(xué)基金(青年基金)1項(xiàng),以第一作者在計(jì)算機(jī)學(xué)報(bào),電子學(xué)報(bào),Information Sciences,Knowledge-Based Systems,International Journal of Machine Learning and Cybernetics,International Journal of Approximate Reasoning,Granular Computing等國(guó)內(nèi)外期刊發(fā)表學(xué)術(shù)論文20余篇,獲發(fā)明專利1項(xiàng)、軟件著作權(quán)2項(xiàng),在科學(xué)出版社出版專著1部,獲河南省自然科學(xué)優(yōu)秀論文一、二、三等獎(jiǎng)各1項(xiàng)。