国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

納米技術(shù)在肉類保鮮中的應(yīng)用研究進(jìn)展

2020-05-17 21:10鄧鈺楨張亞迪楊曉溪邊朋沙郎玉苗
肉類研究 2020年12期
關(guān)鍵詞:抑菌納米技術(shù)肉類

鄧鈺楨 張亞迪 楊曉溪 邊朋沙 郎玉苗

摘 要:肉品保鮮技術(shù)能夠延緩肉品氧化反應(yīng)及其腐敗變質(zhì),提高肉品品質(zhì)和安全性。常用的保鮮方法可分為物理保鮮方法和化學(xué)保鮮方法,其中物理保鮮技術(shù)是一種有效抑制細(xì)菌或殺死細(xì)菌的保鮮方法,然而其成本高、操作復(fù)雜、難以把控;化學(xué)保鮮方法成本低、保鮮效果好,但存在潛在毒性等問題。納米材料因其特殊結(jié)構(gòu)引起表面效應(yīng)、小尺寸效應(yīng)、量子尺寸效應(yīng)和宏觀量子隧道效應(yīng)的特性可減少保鮮劑的使用,并提高保鮮劑的作用效果。納米技術(shù)在肉類保鮮中已有應(yīng)用并呈現(xiàn)良好保鮮效果,因此利用納米技術(shù)有望開發(fā)出低成本、高效、安全的保鮮方法。本文對(duì)肉品保鮮中常用納米技術(shù)進(jìn)行介紹,綜述納米技術(shù)在肉類保鮮中的應(yīng)用,并對(duì)納米技術(shù)在肉類保鮮中的應(yīng)用進(jìn)行展望。

關(guān)鍵詞:納米技術(shù);肉類;抑菌;抗氧化;品質(zhì)特性

Application of Nanotechnology in Meat Preservation: A Review

DENG Yuzhen1,2, ZHANG Yadi1,2, YANG Xiaoxi1,2, BIAN Pengsha3, LANG Yumiao1,2,*

(1.College of Public Health, Hebei University, Baoding 071002, China; 2.Key Laboratory of Public Health Safety of Hebei Province, Baoding 071000, China; 3.Hebei Research Center for Geoanalysis, Baoding 071000, China)

Abstract: Meat preservation technology can delay meat oxidation and spoilage and consequently ensure meat quality and safety. Physical and chemical methods are nowadays commonly used for meat preservation. Physical preservation technology can effectively inhibit or kill bacteria, despite being costly, complicated to operate, and difficult to control. Chemical preservation method is cheap and efficient, but its application is hampered by problems such as potential toxicity. Nanomaterials can reduce the dose and improve the efficiency of preservatives due to the surface effects, small size effects, quantum size effects, and macroscopic quantum tunneling effects caused by the special structures of nanomaterials. At present, nanotechnology has been applied in meat preservation with good efficiency. Therefore, it is expected that nanotechnology will be used to develop low-cost, efficient and safe preservation methods. This article summarizes the nanomaterials commonly used in meat preservation, and discusses the current and future applications of nanotechnology in meat preservation.

Keywords: nanotechnology; meat; bacteriostatic; antioxidant; quality characteristics

DOI:10.7506/rlyj1001-8123-20201123-276

中圖分類號(hào):TS251.1? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-8123(2020)12-0087-07

引文格式:

鄧鈺楨, 張亞迪, 楊曉溪, 等. 納米技術(shù)在肉類保鮮中的應(yīng)用研究進(jìn)展[J]. 肉類研究, 2020, 34(12): 87-93. DOI:10.7506/rlyj1001-8123-20201123-276.? ? http://www.rlyj.net.cn

DENG Yuzhen, ZHANG Yadi, YANG Xiaoxi, et al. Application of nanotechnology in meat preservation: a review[J]. Meat Research, 2020, 34(12): 87-93. DOI:10.7506/rlyj1001-8123-20201123-276.? ? http://www.rlyj.net.cn

隨著經(jīng)濟(jì)的發(fā)展以及人們生活水平的提高,肉類銷售量呈逐年上升趨勢(shì),2019年肉類產(chǎn)量已達(dá)到7 649 萬t[1]。

肉品營(yíng)養(yǎng)豐富,在屠宰、分割、運(yùn)輸和銷售過程中易發(fā)生腐敗變質(zhì)及一系列生化反應(yīng),如脂肪氧化、肉色褪色等,進(jìn)而使肉品安全性及品質(zhì)下降。因此,肉類保鮮技術(shù)的研發(fā)對(duì)保障肉品質(zhì)量與安全至關(guān)重要[2-3],有助于肉品產(chǎn)業(yè)健康、可持續(xù)發(fā)展,保障消費(fèi)者生命健康。食品保鮮方法主要為物理保鮮方法和化學(xué)保鮮方法[4]。物理保鮮技術(shù)有冷藏、凍藏、真空包裝、氣調(diào)包裝、活性包裝、平衡改性氣調(diào)包裝、高壓、輻射和脈沖電場(chǎng)等,但其存在成本高、難控制、肉類品質(zhì)降低等問題。在肉制品保鮮中化學(xué)保鮮技術(shù)主要分為應(yīng)用化學(xué)防腐劑和天然防腐劑,化學(xué)防腐劑成本低、用量少,然而卻存在一定毒性;天然防腐劑具有良好的抑菌性和抗氧化性,但存在穩(wěn)定性和溶解性差等問題[5-7]。因此,尋找一種便捷、高效、安全的肉類保鮮方法對(duì)肉類發(fā)展至關(guān)重要。

納米保鮮技術(shù)是指利用納米材料作為保鮮劑或?qū)⒓{米材料添加到食品包裝中起到對(duì)食品的抑菌保鮮作用[8]。

通過控制納米粒子尺寸、粒子間相互作用等方式,可以促進(jìn)納米材料在食品中的應(yīng)用[9]。納米技術(shù)有助于增強(qiáng)防腐劑特性、延長(zhǎng)食品貨架期、改善肉類質(zhì)地、滿足味蕾、改善封裝食品氣味、營(yíng)養(yǎng)物質(zhì)穩(wěn)定性和生物利

用度[10-11]。Sullivan等[12]發(fā)現(xiàn),苯甲酸和山梨酸的納米級(jí)增溶劑與苯甲酸和山梨酸的非納米等效物相比,抗菌性能更佳。由于納米級(jí)抑菌劑具有尺寸小、表面積大等特點(diǎn),不僅對(duì)細(xì)菌表現(xiàn)出高抑菌性,而且對(duì)生物膜有較強(qiáng)的抵抗作用。Yao Xiaolin等[13]用乳化-凝膠技術(shù)制備了一種可以抑制富馬酸亞鐵釋放出鐵味的微結(jié)構(gòu)凝膠珠,從凝膠珠釋放的亞鐵離子在模擬胃液中被阻滯,然后在模擬腸液中進(jìn)行更高程度的釋放,有利于十二指腸對(duì)鐵的吸收。Alizadeh-Sani等[14]使用澆鑄法制備由纖維素納米纖維/乳清蛋白作為基質(zhì),二氧化鈦顆粒和迷迭香精油作為功能成分的生物聚合物包裝材料,該活性包裝材料顯著抑制了羔羊肉貯藏過程中的微生物生長(zhǎng)、脂質(zhì)氧化和脂肪降解作用,從而使保質(zhì)期從約6 d增加到15 d。

目前許多研究者將納米技術(shù)應(yīng)用到肉類保鮮中,其中在納米包裝上應(yīng)用最多[15]。利用納米粒子特性,可有效提高肉品質(zhì)量、安全性和功能性。本文將圍繞納米保鮮技術(shù)在肉類中的應(yīng)用現(xiàn)狀進(jìn)行總結(jié)和分析,從不同方面的應(yīng)用進(jìn)行闡述,為納米保鮮技術(shù)在肉類中的應(yīng)用提供依據(jù)。

1 肉品保鮮中常用的納米技術(shù)

納米技術(shù)是用單個(gè)原子、分子制造物質(zhì)的科學(xué)技術(shù),所用材料尺寸1~100 nm。納米材料具有尺寸小、表面能高、比表面積大等特點(diǎn),物質(zhì)特性會(huì)隨粒子尺寸減小發(fā)生顯著變化[16]。納米保鮮技術(shù)是將具有保鮮效果的天然提取物質(zhì)以納米形式添加到肉類加工過程中或添加到聚合物的納米復(fù)合包裝材料中,有利于促進(jìn)保鮮效果。肉品保鮮中常見的納米材料形式為納米乳液、納米纖維、納米膠囊、納米涂層和納米級(jí)成分/添加劑等,

納米材料的應(yīng)用有利于改善肉類風(fēng)味和口感、延長(zhǎng)貨架期等[17]。納米乳液廣泛應(yīng)用于提高疏水性成分的生物利用度,通常通過高壓均化器、高速均化器、超聲發(fā)生器或微流化器與乳化劑作用或改變?nèi)芤合嗟臈l件等結(jié)合制備[18-19]。納米纖維更多應(yīng)用于肉制品包裝材料,如靜電紡絲法制備的納米纖維可以防水、防油、防污,更好地控制透氣率,避免肉制品受到外界環(huán)境的污染。納米膠囊在肉制品保鮮中的應(yīng)用有利于包埋本體顏色、氣味,避免影響肉制品感官;增大溶解性,提高抑菌效果;起到緩釋作用,延長(zhǎng)作用時(shí)間。納米顆??梢蕴峁└哓?fù)載能力和穩(wěn)定性、持續(xù)釋放以及跨細(xì)胞膜和生物屏障攜帶親水性和親脂性物質(zhì)的能力[20-21],有利于保鮮劑作用于肉類時(shí)發(fā)揮更優(yōu)作用。

1.1 納米材料的制備

食品工業(yè)中常用納米制備技術(shù)有離子凝膠法、沉淀法、自組裝法和靜電紡絲技術(shù)等其他方法[22-23]。離子凝膠法是指利用陽離子與陰離子通過靜電吸引作用產(chǎn)生交聯(lián)形成納米粒子。Martínez-Hernández等[24]采用水包油乳液在殼聚糖溶液中形成香芹酚液滴,每個(gè)液滴通過質(zhì)子化氨基離子(NH3+)交聯(lián),殼聚糖分子與聚磷酸基團(tuán)結(jié)合,形成殼聚糖納米粒子。沉淀法是指在樣品與載體材料混合溶液中,通過物理化學(xué)因素影響載體材料的溶解度,從而使納米微粒析出。Seetha等[25]采用沉淀法合成可見光的氧化銦納米粒子,以乙醇溶解的氫氧化鈉為沉淀劑,得到氫氧化銦沉淀。自組裝法是利用分子的自組裝能力,通過非共價(jià)作用自發(fā)形成具有特定排列順序的分子聚合體。Xiang Siying等[26]通過“綠色”化學(xué)合成策略,以綠茶提取物為基礎(chǔ)制備納米粒子,發(fā)現(xiàn)納米粒子的形成過程包括共價(jià)共聚合和非共價(jià)超分子自組裝途徑,使納米粒子的粒徑和化學(xué)成分得以微調(diào)。靜電紡絲技術(shù)是指通過靜電力制備聚合物納米纖維的方法,主要是利用高壓靜電激發(fā)聚合物的帶電射流,使射流固化得到納米纖維。Lin Lin等[27]采用靜電紡絲技術(shù)將辣木油/殼聚糖納米顆粒應(yīng)用于食品包裝中,其中水蒸氣透過率是納米纖維的主要參數(shù),與食物和環(huán)境間的水分轉(zhuǎn)移有關(guān),表面低水蒸氣透過率的材料適合包裝食品并能延長(zhǎng)食品保質(zhì)期。

1.2 納米材料來源

納米復(fù)合材料的聚合物可以分為天然和合成2 種來源。合成聚合物大多以石油為基材,可以分為化學(xué)合成(聚己內(nèi)酯、聚乳酸、聚乙醇酸)和微生物分泌物(多羥基鏈烷酸酯、聚-b-羥基丁酸酯)兩大類,但合成聚合物存在污染環(huán)境、回收率低、對(duì)人體具有潛在危害等缺點(diǎn)[28]。天然聚合物主要分為脂質(zhì)(如小燭樹蠟、巴西棕櫚蠟和蜂蠟等)、蛋白質(zhì)(如明膠、乳清蛋白、大豆蛋白、膠原蛋白等)和多糖(如殼聚糖、海藻酸鈉、果膠、阿拉伯膠及其各種衍生物等)三大類。各種天然聚合物逐漸取代單一或合成聚合物?;谔烊痪酆衔镏苽涞募{米復(fù)合材料具有良好的機(jī)械性能、生物相容性、生物降解性、耐化學(xué)性、抗菌性和阻氣性[29-31],且具有成本低、易加工、可降解等優(yōu)點(diǎn)[32-33],可以用作食品包裝的生態(tài)友好型材料。Wu Zhengguo等[34]采用脂質(zhì)體包封月桂精油和銀納米粒子,并與殼聚糖混合包埋聚乙烯(polyethylene,PE)膜包裝豬肉,結(jié)果表明,薄膜具有良好的抗菌活性,可使豬肉在4 ℃保存15 d,而純PE膜包裝僅保存9 d。

2 納米技術(shù)在肉品中的應(yīng)用

2.1 抑菌方面的應(yīng)用

肉類含有豐富的營(yíng)養(yǎng)物質(zhì),極易發(fā)生腐敗變質(zhì)。肉類的腐敗變質(zhì)可分為生物、化學(xué)和物理三大類,其中生物因素導(dǎo)致的腐敗變質(zhì)最為常見。常見的肉制品腐敗菌和致病菌有大腸桿菌、金黃色葡萄球菌、單核李斯特菌、乳酸菌、銅綠假單胞菌、熒光假單胞菌和枯草芽孢桿菌等[35]。抑菌劑根據(jù)來源可分為合成抑菌劑和天然抑菌劑。常用的合成抑菌劑有苯甲酸鈉、山梨酸鉀、對(duì)羥基苯甲酸酯類、丙酸鹽、亞硫酸及其鹽類、硝酸鹽及亞硝酸鹽等,合成抑菌劑雖有良好的抑菌性,但對(duì)人體存在潛在危害。天然抑菌劑大部分來源于水果和蔬菜,常用的有生物堿類、有機(jī)酸類、黃酮類、單寧類物質(zhì)等,具有良好的抑菌性,但存在不穩(wěn)定、水溶性差、易受pH值影響等問題[36-37]。將抑菌劑通過納米技術(shù)修飾,可以增強(qiáng)其抑菌活性、減少抑菌劑使用、掩蓋抑菌物質(zhì)本身顏色,有助于保持食品原有品質(zhì)、增大溶解性和抑菌作用的發(fā)揮等[38-40],提高抑菌劑在肉類應(yīng)用上的效果。納米抑菌材料能夠破壞細(xì)胞膜,并阻礙電子及質(zhì)子的傳遞,使細(xì)胞內(nèi)容物凝固[41];與細(xì)胞膜內(nèi)磷脂相互作用,引起細(xì)胞內(nèi)容物外流[35];降低原料肉的pH值,抑制微生物的生長(zhǎng)[42];其代謝過程中產(chǎn)生的酸、過氧化氫、二氧化碳和細(xì)菌素能夠抑制腐敗菌生長(zhǎng)[43]。Cui Haiying等[44]將茶樹精油脂質(zhì)體/殼聚糖納米纖維膜應(yīng)用于雞肉樣品,并測(cè)定其抑菌性,結(jié)果表明,在4、12、25、37 ℃對(duì)鼠傷寒沙門氏菌有良好的抑菌性,并且可以在貯藏4 d內(nèi)有效保持雞肉的質(zhì)量。納米技術(shù)在肉制品抑菌方面的應(yīng)用見表1。

2.2 抗氧化方面的應(yīng)用

肉類中含有豐富的飽和脂肪酸和不飽和脂肪酸,其中不飽和脂肪酸中不穩(wěn)定的雙鍵氧化能夠產(chǎn)生一些影響肉制品顏色、質(zhì)構(gòu)、氣味和營(yíng)養(yǎng)品質(zhì)的次級(jí)氧化產(chǎn)物,如己醛、戊醛、庚醛、辛醛等[55],從而導(dǎo)致肉制品褪色并產(chǎn)生異味[56-57]。為了保證肉類品質(zhì)、延長(zhǎng)貨架期,抗氧化劑在肉制品保鮮中必不可少,在生鮮肉保鮮中也具有很大的意義??寡趸镔|(zhì)可分為合成抗氧化物質(zhì)和天然抗氧化物質(zhì)。合成抗氧化物質(zhì)主要有丁基羥基茴香醚和二丁基羥基甲苯等,雖然抗氧化效果好,但其安全性一直受到質(zhì)疑。天然抗氧化物質(zhì)主要有黃酮類、苯酚類、皂苷類、鞣質(zhì)類、生物堿類、多糖類、VA、VC、VE及其衍生物,雖然有良好的抗氧化作用,但存在穩(wěn)定性差、溶解性差等問題,影響其在肉類中的應(yīng)用[58-60]。相比于合成抗氧化物,大眾更傾向于天然抗氧化物[59]??寡趸瘎┰谌忸悜?yīng)用中主要有3 種機(jī)制:氫原子轉(zhuǎn)移、金屬離子螯合及電子伴隨質(zhì)子轉(zhuǎn)移[58]?;诳寡趸瘎┑募{米材料依靠納米粒子的尺寸效應(yīng)更易清除或阻止自由基,能增大天然抗氧化劑的溶解度和穩(wěn)定性,且具有緩釋作用,延長(zhǎng)抗氧化時(shí)間。Xiang Siying等[26]以茶葉提取物為基礎(chǔ),通過共價(jià)共聚合和非共價(jià)超分子自組裝制備一系列功能納米粒子,通過1,1-二苯基-2-三硝基苯肼自由基清除實(shí)驗(yàn)證實(shí)多酚納米粒子具有良好的自由基清除能力。

武陶[61]利用離子凝膠法制備山梨酸納米顆粒,比較空白組、空白納米粒子組、山梨酸納米粒子組和山梨酸組中式香腸自然風(fēng)干20 d后貯藏期間的過氧化值,結(jié)果表明,空白組過氧化值一直上升,其他組大致為先上升后下降的趨勢(shì),其中,山梨酸納米粒子組過氧化值最低。一些抗氧化物質(zhì)與納米技術(shù)相結(jié)合在肉類中的應(yīng)用如表2所示。

2.3 保持品質(zhì)特性方面的應(yīng)用

食品需色香味俱全,肉類的主要品質(zhì)屬性是外觀、質(zhì)地、多汁性、風(fēng)味和功能性。在所有品質(zhì)屬性中,外觀是消費(fèi)者選擇食品的最關(guān)鍵條件,而顏色一直是新鮮家禽和肉類產(chǎn)品及最終產(chǎn)品滿意度的主要選擇標(biāo)準(zhǔn)。影響肉色的主要因素是肌紅蛋白含量、血紅素結(jié)構(gòu)的化學(xué)狀態(tài)和肉的pH值[66]。除此之外,肉類的保水性對(duì)感官特性產(chǎn)生很大影響,肉類水分分為游離水、束縛水和結(jié)合水,當(dāng)處于不同的保存環(huán)境時(shí),可能引起肉類水分含量減少、水分狀態(tài)轉(zhuǎn)化,從而引起感官改變[67]。在肉類的生產(chǎn)、加工、運(yùn)輸和銷售中,如何在保持原有色香味的同時(shí)延長(zhǎng)貨架期、改善口感、提高營(yíng)養(yǎng)是目前的研究熱點(diǎn)。肉類的品質(zhì)不僅影響肉類的營(yíng)養(yǎng)價(jià)值、質(zhì)地等食用品質(zhì),而且影響其經(jīng)濟(jì)價(jià)值。許多研究者通過包裝材料與納米技術(shù)相結(jié)合,不僅延長(zhǎng)了肉類貨架期,而且促進(jìn)了人體對(duì)營(yíng)養(yǎng)物質(zhì)的消化吸收。Zhang Huiyun等[68]制備封裝龍蒿精油的納米膠囊,并與殼聚糖-明膠結(jié)合制成可食用涂膜,對(duì)豬肉片進(jìn)行涂膜處理可以有效延緩樣品的顏色變化,表明經(jīng)過納米技術(shù)處理的龍蒿精油可顯著延緩豬肉片褐變、褪色。Amjadi等[69]制備摻入甜菜堿納米脂質(zhì)體的明膠/殼聚糖納米纖維/ZnO納米顆粒生物納米復(fù)合膜,用其包裝的鮮牛肉在貯藏期間很好地保持了理化和顏色特性。一些應(yīng)用納米技術(shù)保護(hù)肉類品質(zhì)的研究如表3所示。

3 結(jié) 語

目前納米技術(shù)已廣泛應(yīng)用于計(jì)算機(jī)、合成新材料、化妝品等多個(gè)領(lǐng)域,其在食品領(lǐng)域中的應(yīng)用越來越受到科學(xué)家的重視。納米保鮮技術(shù)在肉類保鮮中可以將其活性或智能特性傳遞到食品包裝中,能夠保護(hù)肉類免受外界因素的影響,并通過抗菌性和/或?qū)Νh(huán)境變化的響應(yīng)來提高肉類的穩(wěn)定性,具有深遠(yuǎn)的發(fā)展空間。利用納米技術(shù)開發(fā)綠色、可食、高效的保鮮材料,不僅可以保護(hù)食物感官特性,還能保證營(yíng)養(yǎng)價(jià)值,延長(zhǎng)貨架期。盡管納米保鮮技術(shù)有很多優(yōu)點(diǎn),但納米技術(shù)在食品領(lǐng)域中的應(yīng)用還不成熟。如何更好地控制緩釋,使其發(fā)揮理想作用并控制其向食品中遷移,仍需要進(jìn)一步研究。納米保鮮技術(shù)對(duì)于肉類工業(yè)有重大意義,但如何批量生產(chǎn)納米保鮮劑是納米保鮮技術(shù)產(chǎn)業(yè)化應(yīng)用的關(guān)鍵問題之一。

納米技術(shù)具有雙面性,與效應(yīng)物結(jié)合可增強(qiáng)作用效果,延長(zhǎng)作用時(shí)間,改變宏觀特性,但同時(shí)要注意其帶來的負(fù)面作用。由于納米顆粒具有某些獨(dú)特的特性(如大小、形狀、表面化學(xué)和電荷),使其可以應(yīng)用在生物醫(yī)學(xué)中。但是這些特性被認(rèn)為是納米顆粒誘導(dǎo)生物毒性的基礎(chǔ)。當(dāng)納米粒子直接或間接作用于人體時(shí),可能會(huì)影響器官和組織的正常結(jié)構(gòu)。目前對(duì)于納米技術(shù)的研究只涉及應(yīng)用方面,缺少納米粒子對(duì)于人體健康方面的研究。盡管有生理實(shí)驗(yàn)證明一些納米材料對(duì)小鼠無明顯生理危害,但是對(duì)于人體的潛在風(fēng)險(xiǎn)和益處仍需研究。納米技術(shù)雖然對(duì)肉類保鮮起到很大的作用,但目前需要與其他保鮮技術(shù)同時(shí)使用,才能使其保鮮效果最大化。今后應(yīng)開發(fā)出更安全、便捷、高效的肉類保鮮方法,滿足人們對(duì)肉品品質(zhì)和安全的要求。

參考文獻(xiàn):

[1] 中華人民共和國國家統(tǒng)計(jì)局. 中國統(tǒng)計(jì)年鑒[M]. 北京: 中國統(tǒng)計(jì)出版社, 2020.

[2] 程述震, 王曉拓, 王志東. 冷鮮肉保鮮技術(shù)研究進(jìn)展[J]. 食品研究與開發(fā), 2017, 38(16): 194-198. DOI:10.3969/j.issn.1005-6521.2017.16.042.

[3] RIBEIRO J S, SANTOS M J M C, SILVA L K R, et al. Natural antioxidants used in meat products: a brief review[J]. Meat Science, 2019, 148: 181-188. DOI:10.1016/j.meatsci.2018.10.016.

[4] 李月明, 劉飛, 姜雪晶, 等. 生物可降解膜在肉品保鮮中的應(yīng)用研究進(jìn)展[J]. 肉類研究, 2017, 31(6): 51-54. DOI:10.7506/rlyj1001-8123-201706010.

[5] MCMILLIN K W. Where is MAP going? A review and future potential of modified atmosphere packaging for meat[J]. Meat Science, 2008, 80(1): 43-65. DOI:10.1016/j.meatsci.2008.05.028.

[6] ARVANITOYANNIS I S, STRATAKOS A C. Application of modified atmosphere packaging and active/smart technologies to red meat and poultry: a review[J]. Food and Bioprocess Technology, 2012, 5(5): 1423-1446. DOI:10.1007/s11947-012-0803-z.

[7] OLMO A D, CALZADA J, NU?EZ M. Effect of high pressure processing and modified atmosphere packaging on the safety and quality of sliced ready-to-eat “l(fā)acón”, a cured-cooked pork meat product[J]. Innovative Food Science and Emerging Technologies, 2014, 23: 25-32. DOI:10.1016/j.ifset.2014.03.003.

[8] 樂攀. 納米銀復(fù)合保鮮劑對(duì)南豐蜜橘的保鮮研究[D]. 南昌: 南昌

大學(xué), 2014: 8-13.

[9] OZIMEK L, POSPIECH E, NARINE S. Nanotechnologies in food and meat processing[J]. Acta Scientiarum Polonorum-Technologia Alimentaria, 2010, 9(4): 401-412.

[10] DUNCAN T V. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors[J]. Journal of Colloid and Interface Science, 2011, 363(1): 1-24. DOI:10.1016/j.jcis.2011.07.017.

[11] UNALAN I U, CERRI G, MARCUZZO E, et al. Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector[J]. RSC Advances, 2014, 4(56): 29393-29428. DOI:10.1039/C4RA01778A.

[12] SULLIVAN D J, AZLINHASIM S, CRUZROMERO M C, et al. Antimicrobial effect of benzoic and sorbic acid salts and nano-solubilisates against Staphylococcus aureus, Pseudomonas fluorescens and chicken microbiota biofilms[J]. Food Control, 2020, 107: 106786. DOI:10.1016/j.foodcont.2019.106786.

[13] YAO Xiaolin, XU Kai, WU Kao, et al. Iron encapsulated microstructured gel beads using emulsification-gelation technique for alginate-caseinate matrix[J]. Food and Function, 2020, 11(5): 3811-3822. DOI:10.1016/j.foodcont.2019.106786.

[14] ALIZADEH-SANI M, MOHAMMADIAN E, MCCLEMENTS D J.

Eco-friendly active packaging consisting of nanostructured biopolymer matrix reinforced with TiO2 and essential oil: application for preservation of refrigerated meat[J]. Food Chemistry, 2020, 322: 126782. DOI:10.1016/j.foodchem.2020.126782.

[15] XU Yixiang, REHMANI N, ALSUBAIE L, et al. Tapioca starch active nanocomposite ?lms and their antimicrobial effectiveness on ready-to-eat

chicken meat[J]. Food Packaging and Shelf Life, 2018, 16: 86-91. DOI:10.1016/j.fpsl.2018.02.006.

[16] 商明慧, 陳強(qiáng), 陳春英. 包裝材料及食品中納米材料的檢測(cè)與表征技術(shù)[J]. 生態(tài)毒理學(xué)報(bào), 2013, 8(6): 824-838. DOI:10.7524/AJE.1673-5897.20121117001.

[17] PALIT S. Recent advances in the application of nanotechnology in food industry and the vast vision for the future[J]. Nanoengineering in the Beverage Industry, 2020, 20: 1-34. DOI:10.1016/B978-0-12-816677-2.00001-6.

[18] RAO J J, MCCLEMENTS D J. Food-grade microemulsions, nanoemulsions and emulsions: fabrication from sucrose monopalmitate and lemon oil[J]. Food Hydrocolloids, 2011, 25(6): 1413-1423. DOI:10.1016/j.foodhyd.2011.02.004.

[19] ABOALNAJA K O, YAGHMOOR S, KUMOSANI T A, et al. Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: nanoemulsion delivery systems and nanoemulsion excipient systems[J]. Expert Opinion on Drug Delivery, 2016, 13(9): 1327-1336. DOI:10.1517/17425247.2016.1162154.

[20] ACOSTA E. Bioavailability of nanoparticles in nutrient and nutraceutical delivery[J]. Current Opinion in Colloid and Interface Science, 2009, 14(1): 3-15. DOI:10.1016/j.cocis.2008.01.002.

[21] NUNES S, MADUREIRA A R, CAMPOS D A, et al. Solid lipid nanoparticles as oral delivery systems of phenolic compounds: overcoming pharmacokinetic limitations for nutraceutical applications[J]. Critical Reviews in Food Science and Nutrition, 2015, 57(9): 1863-1873. DOI:10.1080/10408398.2015.1031337.

[22] ROGERS M A. Naturally occurring nanoparticles in food[J]. Current Opinion in Food Science, 2016, 7: 14-19. DOI:10.1016/j.cofs.2015.08.005.

[23] YAO Mingfei, XIAO Hang, MCCLEMENTS D J. Delivery of lipophilic bioactives: assembly, disassembly, and reassembly of lipid nanoparticles[J]. Annual Review of Food Science and Technology, 2014, 5(1): 53-81. DOI:10.1146/annurev-food-072913-100350.

[24] MART?NEZ-HERN?NDEZ G B, AMODIO M L, COLELLI G, et al. Carvacrol-loaded chitosan nanoparticles maintain quality of fresh-cut carrots[J]. Innovative Food Science and Emerging Technologies, 2017, 41: 56-63. DOI:10.1016/j.ifset.2017.02.005.

[25] SEETHA M, BHARATHI S, RAJ A D, et al. Optical investigations on indium oxide nano-particles prepared through precipitation method[J]. Materials Characterization, 2009, 60(12): 1578-1582. DOI:10.1016/j.matchar.2009.09.009.

[26] XIANG Siying, YANG Peng, GUO Hao, et al. Green tea makes polyphenol nanoparticles with radical-scavenging activities[J]. Macromolecular Rapid Communications, 2017, 38(23): 1700446. DOI:10.1002/marc.201700446.

[27] LIN Lin, GU Yulei, CUI Haiying. Moringa oil/chitosan nanoparticles embedded gelatin nano?bers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese[J]. Food Packaging and Shelf Life, 2019, 19: 86-93. DOI:10.1016/j.fpsl.2018.12.005.

[28] YADAV S, MEHROTRA G K, BHARTIYA P, et al. Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging[J]. Carbohydrate Polymers, 2020, 227: 115348. DOI:10.1016/j.carbpol.2019.115348.

[29] JAFARI S M, KHANZADI M, MIRZAEI H, et al. Hydrophobicity, thermal and micro-structural properties of whey protein concentrate-pullulan-beeswax ?lms[J]. International Journal of Biological Macromolecules, 2015, 80: 506-511. DOI:10.1016/j.ijbiomac.2015.07.017.

[30] KHANZADI M, JAFARI S M, MIRZAEI H, et al. Physical and mechanical properties in biodegradable ?lms of whey protein concentrate-pullulan by application of beeswax[J]. Carbohydrate Polymers, 2015, 118: 24-29. DOI:10.1016/j.carbpol.2014.11.015.

[31] RHIM J W, WANG L F, HONG S I. Preparation and characterization of agar/silver nanoparticles composite ?lms with antimicrobial activity[J]. Food Hydrocolloids, 2013, 33(2): 327-335. DOI:10.1016/j.foodhyd.2013.04.002.

[32] DEHNAD D, MIRZAEI H, EMAMDJOMEH Z, et al. Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat[J]. Carbohydrate Polymers, 2014, 109:

148-154. DOI:10.1016/j.carbpol.2014.03.063.

[33] TABATABAEI R H, JAFARI S M, MIRZAEI H, et al. Preparation and characterization of nano-SiO2 reinforced gelatin-κ-carrageenan biocomposites[J]. International Journal of Biological Macromolecules, 2018, 111: 1091-1099. DOI:10.1016/j.ijbiomac.2018.01.116.

[34] WU Zhengguo, ZHOU Wei, PANG Chunsheng, et al. Multifunctional chitosan-based coating with liposomes containing laurel essential oils and nanosilver for pork preservation[J]. Food Chemistry, 2019, 295: 16-25. DOI:10.1016/j.foodchem.2019.05.114.

[35] 賀旺林, 俞龍浩. 基于腐敗微生物的低溫肉制品貨架期預(yù)測(cè)研究

進(jìn)展[J]. 黑龍江八一農(nóng)墾大學(xué)學(xué)報(bào), 2015, 27(2): 51-56. DOI:10.3969/j.issn.1002-2090.2015.02.012.

[36] RODINO S, BUTU A, PETRACHE P, et al. Evaluation of the antimicrobial and antioxidant activity of sambucus ebulus extract[J]. Farmacia, 2015, 63(5): 751-754.

[37] JU Jian, XIE Yunfei, GUO Yahui, et al. The inhibitory effect of plant essential oils on foodborne pathogenic bacteria in food[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(20): 3281-3292.

DOI:10.1080/10408398.2018.1488159.

[38] AHMADI M, MADRAKIAN T, GHAVAMI S. Preparation and characterization of simvastatin nanocapsules: encapsulation of hydrophobic drugs in calcium alginate[J]. Methods in Molecular Biology, 2020, 2125: 47-56. DOI:10.1007/7651.2018.191.

[39] MASON T G, WILKING J N, MELESON K, et al. Nanoemulsions: formation, structure, and physical properties[J]. Journal of Physics Condensed Matter, 2006, 18(41): 635-666. DOI:10.1088/0953-8984/18/41/R01.

[40] UNTARI B, WIJAYA D P, MARDIYANTO M, et al. Physical interaction of chitosan-alginate entrapping extract of papaya leaf and formation of submicron particles dosage form[J]. Science and Technology Indonesia, 2019, 4(3): 64-69. DOI:10.26554/sti.2019.4.3.64-69.

[41] JIANG Jiang, XIONG YoulingL.. Technologies and mechanisms for safety control of ready-to-eat muscle foods: an updated review[J]. Critical Reviews in Food Science and Nutrion, 2015, 55(13): 1886-1901. DOI:10.1080/10408398.2012.732624.

[42] TRZASKA W J, CORREIA J N, VILLEGAS M T, et al. pH manipulation as a novel strategy for treating mucormycosis[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(11): 6968-6974. DOI:10.1128/AAC.01366-15.

[43] 張志剛, 林祥木, 胡濤, 等. 即食肉制品微生物污染及其控制技術(shù)研究進(jìn)展[J]. 肉類研究, 2020, 34(1): 94-102. DOI:10.7506/rlyj1001-8123-20191107-269.

[44] CUI Haiying, BAI Mei, LI Changzhu, et al. Fabrication of chitosan nano?bers containing tea tree oil liposomes against Salmonella spp. in chicken[J]. LWT-Food Science and Technology, 2018, 96: 671-678. DOI:10.1016/j.lwt.2018.06.026.

[45] ZHANG Le, LIU Anjun, WANG Wenhang, et al. Characterisation of microemulsion nanofilms based on Tilapia fish skin gelatine and ZnO nanoparticles incorporated with ginger essential oil: meat packaging application[J]. International Journal of Food Science and Technology, 2017, 52(7): 1670-1679. DOI:10.1111/ijfs.13441.

[46] NAL?ABASMAZ S, AYHAN Z, CIMMINO S, et al. Effects of PP-based

nanopackaging on the overall quality and shelf life of ready-to-eat salami[J]. Packaging Technology and Science, 2017, 30(10): 663-679. DOI:10.1002/pts.2309.

[47] 張慧蕓, 何鵬, 李鑫玲, 等. 丁香精油納米膠囊對(duì)冷藏調(diào)理豬肉餅品質(zhì)的影響[J]. 食品科學(xué), 2019, 40(3): 259-265. DOI:10.7506/spkx1002-6630-20171113-138.

[48] 梁艷文, 嚴(yán)文靜, 趙見營(yíng), 等. 納米Ag@SiO2改性聚偏二氯乙烯涂膜材料及提高清潔雞蛋貯藏保鮮效果[J]. 食品科學(xué), 2018, 39(23): 235-242. DOI:10.7506/spkx1002-6630-201823035.

[49] 張力. 自組裝法制備丁香酚納米微粒及其在冷鮮肉保鮮中的應(yīng)用[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2017: 44-59.

[50] MARCOUS A, RASOULI S, ARDESTANI F. Inhibition of Staphylococcus aureus growth in fresh calf minced meat using low density polyethylene films package promoted by titanium dioxide and zinc oxide nanoparticles[J]. Journal of Particle Science and Technology, 2017, 3(1): 1-11. DOI:10.22104/JPST.2017.451.

[51] SANI M A, EHSANI A, HASHEMI M. Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration[J]. International Journal of Food Microbiology, 2017, 251: 8-14. DOI:10.1016/j.ijfoodmicro.2017.03.018.

[52] RAHMAN P M, MUJEEB V M A, MURALEEDHARAN K. Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat[J]. International Journal of Biological Macromolecules, 2017, 97: 382-391. DOI:10.1016/j.ijbiomac.2017.01.052.

[53] KHAN M R, SADIQ M B, MEHMOOD Z. Development of edible gelatin composite films enriched with polyphenol loaded nanoemulsions as chicken meat packaging material[J]. CyTA-Journal of Food, 2020, 18(1): 137-146. DOI:10.1080/19476337.2020.1720826.

[54] WANG Yifei, ZHANG Qian, BIAN Wenyi, et al. Preservation of traditional Chinese pork balls supplemented with essential oil microemulsion in a phase-change material package[J]. Journal of the Science of Food and Agriculture, 2020, 100(5): 2288-2295. DOI:10.1002/jsfa.10262.

[55] 柯海瑞, 康懷彬, 蔡超奇. 脂肪氧化對(duì)肉品風(fēng)味影響的研究進(jìn)展[J].

農(nóng)產(chǎn)品加工, 2020(6): 58-62; 71. DOI:10.16693/j.cnki.1671-9646(X).2020.03.050.

[56] 王正勇, 盛益東. 肉制品中的脂肪氧化[J]. 江蘇食品與發(fā)酵, 1999(1): 16-19.

[57] MEYNIER A, GENOT C, GANDEMER G. Volatile compounds of oxidized pork phospholipids[J]. Journal of the American Oil Chemists Society, 1998, 75(1): 1-7.

[58] 劉立群, 喻倩倩, 劉毅, 等. 天然抗氧化劑作用機(jī)理及在肉類制品中的應(yīng)用研究進(jìn)展[J]. 肉類研究, 2017, 31(6): 45-50. DOI:10.7506/rlyj1001-8123-201706009.

[59] 樓鼎鼎, 戚炯炯, 張英, 等. 竹葉抗氧化物在雙匯西式肉制品中的應(yīng)用研究[J]. 中國食品學(xué)報(bào), 2006, 6(3): 111-114. DOI:10.16429/j.1009-7848.2006.03.021.

[60] 章林, 黃明, 周光宏. 天然抗氧化劑在肉制品中的應(yīng)用研究進(jìn)展[J]. 食品科學(xué), 2012, 33(7): 299-303.

[61] 武陶. 山梨酸納米粒的制備及其在肉品保鮮上的應(yīng)用[D]. 楊凌:

西北農(nóng)林科技大學(xué), 2014: 43-49.

[62] PANEA B, RIPOLL G, GONZ?LEZ J, et al. Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality[J]. Journal of Food Engineering, 2014, 123:

104-112. DOI:10.1016/j.jfoodeng.2013.09.029.

[63] 王佳奕, 王綪, 丁武. 山梨酸納米微粒在冷卻豬肉保鮮中的應(yīng)用[J].

食品科學(xué), 2018, 39(9): 202-206. DOI:10.7506/spkx1002-6630-201809031.

[64] SOUZA V G L, RODRIGUES C, VALENTE S, et al. Eco-friendly ZnO/chitosan bionanocomposites films for packaging of fresh poultry meat[J]. Coatings, 2020, 10(2): 110. DOI:10.3390/coatings10020110.

[65] PABAST M, SHARIATIFAR N, BEIKZADEH S, et al. Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat[J]. Food Control, 2018, 91: 185-192. DOI:10.1016/j.foodcont.2018.03.047.

[66] FLETCHER D L. Poultry meat quality[J]. Worlds Poultry Science Journal, 2002, 58(2): 131-145. DOI:10.1079/WPS20020013.

[67] 謝菁. 冷鮮豬肉復(fù)合保鮮包裝技術(shù)的研究[D]. 無錫: 江南大學(xué), 2019: 8-26.

[68] ZHANG Huiyun, LIANG Ying, LI Xinling, et al. Effect of chitosan-gelatin coating containing nano-encapsulated tarragon essential oil on the preservation of pork slices[J]. Meat Science, 2020, 167. DOI:10.1016/j.meatsci.2020.108137.

[69] AMJADI S, NAZARI M, ALIZADEH S A, et al. Multifunctional betanin nanoliposomes-incorporated gelatin/chitosan nanofiber/ZnO nanoparticles nanocomposite film for fresh beef preservation[J]. Meat Science, 2020, 167: 108161. DOI:10.1016/j.meatsci.2020.108161.

[70] LEE J, KIM H, CHOI M J, et al. Improved physicochemical properties of pork patty supplemented with oil-in-water nanoemulsion[J]. Food Science of Animal Resources, 2020, 40(2): 262-273. DOI:10.5851/kosfa.2020.e11.

[71] LIU Qiong, ZHANG Min, BHANDARI B, et al. Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products[J]. Food Control, 2020, 107: 106771. DOI:10.1016/j.foodcont.2019.106771.

[72] ZHUANG Chenjun, JIANG Yongli, ZHONG Yu, et al. Development and characterization of nano-bilayer films composed of polyvinyl alcohol, chitosan and alginate[J]. Food Control, 2018, 86: 191-199. DOI:10.1016/j.foodcont.2017.11.024.

[73] 孫艷文, 邵京, 馬蕊, 等. 丁香精油微膠囊工藝優(yōu)化及其對(duì)冰溫豬肉保鮮效果的影響[J]. 食品工業(yè)科技, 2018, 39(19): 134-141. DOI:10.13386/j.issn1002-0306.2018.19.024.

[74] 王雅南, 王穩(wěn)航. 肉桂精油-羥丙甲基纖維素乳液涂層對(duì)冷鮮肉保鮮效果的影響[J]. 中國食品添加劑, 2018(4): 164-170.

[75] 李紅梅. 食品納米包裝材料的制備及對(duì)食品保鮮作用的研究[D].

南京: 南京農(nóng)業(yè)大學(xué), 2008: 59-64.

猜你喜歡
抑菌納米技術(shù)肉類
《肉類研究》雜志征訂啟事
《肉類研究》雜志征訂啟事
懂納米技術(shù)的變色龍
納米技術(shù)在食品科學(xué)工程中的體系構(gòu)建
納米技術(shù)浮選技術(shù)研究進(jìn)展
納米技術(shù)在新能源電池中的應(yīng)用
歡迎訂閱2016年《肉類研究》雜志