肖小麗 詹杰
摘? 要:在可持續(xù)發(fā)展綠色能源開發(fā)中,風力發(fā)電一直備受人們的關(guān)注。經(jīng)過長期的試驗表明,傳統(tǒng)風力渦輪機發(fā)電系統(tǒng)制造成本昂貴、維護運營較難。而高空風箏發(fā)電系統(tǒng)成本更低、發(fā)電效率更高,更有利于長期發(fā)展。高空風箏發(fā)電系統(tǒng)單位時間內(nèi)的發(fā)電功率是我們評價一個系統(tǒng)好壞的關(guān)鍵指標,為了使風箏發(fā)電系統(tǒng)獲得的發(fā)電量達到更大,文章將對風箏發(fā)電機的飛行軌跡進行研究優(yōu)化。
關(guān)鍵詞:風箏發(fā)電;圓形軌跡;軌跡優(yōu)化
中圖分類號:TM31? ? ? ? ?文獻標志碼:A? ? ? ? ?文章編號:2095-2945(2020)14-0016-02
Abstract: In the sustainable development of green energy development, wind power generation has been concerned by people. The long-term test shows that the traditional wind turbine power generation system is expensive to manufacture and difficult to maintain. The high-altitude kite power generation system has lower cost and higher power generation efficiency, which is more conducive to long-term development. The power of kite power generation system in unit time is the key index for us to evaluate the quality of a system. In order to make the power generated by kite power generation system reach a higher level, this paper will study and optimize the flight path of kite generator.
Keywords: kite generator; circular trajectory; trajectory optimization
引言
風箏發(fā)電機發(fā)電過程由牽引階段和回收階段構(gòu)成。[1]在牽引階段,風箏沿一定軌跡在強橫風力的作用下反復(fù)飛行,并拉動纏繞在滾筒上的系繩進行發(fā)電。當系繩卷出長度達到最大時,為實現(xiàn)系統(tǒng)的動力循環(huán)需將風箏拉回到牽引階段初始長度。在回收階段,發(fā)電機發(fā)電帶動滾筒回繞系繩,風箏被拉回為下一次循環(huán)做準備。牽引階段通過系繩的牽引力帶動電動機運轉(zhuǎn)使得發(fā)電系統(tǒng)產(chǎn)生電能,而回收階段需要消耗牽引階段產(chǎn)生的一部分電能,通過周期性循環(huán)使得產(chǎn)生的電量差不斷積累以供人們的生活需求。
在牽引階段,風箏在高空中的飛行主要有圓形軌跡[2]和八字形軌跡[3]兩種,即隨著系繩的不斷放出風箏以螺旋圓形或者八字形軌跡重復(fù)飛行。為了使得回收階段消耗的能量減小,回收方式有滑翔返回方式、垂直軌道返回方式、逆風軌道返回方式三種。[4]滑翔返回方式是在牽引階段結(jié)束時,減小風箏的有效表面積來改變風箏的氣動升力,從而減小系繩卷回過程中所需要的牽引力。即通過控制收回兩根系繩中的一根產(chǎn)生長度差使風箏表面與系繩在同一直線上。垂直軌道返回方式是在牽引階段結(jié)束時,控制牽引風箏的兩條系繩長度差使風箏不斷升高直至風箏平面與地面平行,即風箏表面與風速方向平行。此時,風箏表面所受空氣動力減小,可以通過卷回系繩使風箏垂直向下運動直至到達牽引過程系繩初始長度。逆風軌道返回方式是在牽引過程結(jié)束時,減小風箏的攻角使風箏所受空氣動力降低。同時提高地面滾筒的卷回速度,使風箏處的氣流減小,從而使得系繩牽引力也相應(yīng)減小。風箏逆風沿低軌道返回,要使攻角不能低于最低值,否則容易倒塌。圓形軌跡由于其拓撲結(jié)構(gòu)簡單在實踐中經(jīng)常被用到,因此下文選擇圓形軌跡行進優(yōu)化研究。
1 理論基礎(chǔ)
風箏發(fā)電系統(tǒng)的最終目標是獲得最大凈發(fā)電量,即盡量使得系繩卷出階段獲得最大電能,同時使得系繩卷回階段消耗最少的電能。[5]因此針對不同的階段,提出了不同的目標函數(shù)。
3 結(jié)束語
本文簡單介紹了風箏發(fā)電機飛行軌跡的種類,并通過Matlab仿真優(yōu)化了單個周期內(nèi)的圓形軌跡,得到了相應(yīng)的升力系數(shù)取值。由于風箏沿圓形軌跡飛行可能會出現(xiàn)系繩纏繞的不足,因此八字形軌跡研究具有重要的意義。通過圓形軌跡的優(yōu)化研究為八字形軌跡的研究奠定基礎(chǔ)。
參考文獻:
[1]Wood T A, Hesse H, Polzin M, et al. Modeling, Identification, Estimation and Adaptation for the Control of Power-Generating Kites[J]. IFAC-Papers OnLine, 2018,51(15):981-989.
[2]Kheiri M, Nasrabad V S, Bourgault F. A new perspective on the aerodynamic performance and power limit of crosswind kite systems[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019,190:190-199.
[3]Erhard M, Strauch H. Control of towing kites for seagoing vessels[J]. IEEE Transactions on Control Systems Technology, 2012,21(5):1629-1640.
[4]Williams P. Optimal wind power extraction with a tethered kite[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. 2006:6193.
[5]Canale M, Fagiano L, Ippolito M, et al. Control of tethered airfoils for a new class of wind energy generator[C]//Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006:4020-4026.
[6]Patterson M A, Rao A V. GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software (TOMS), 2014,41(1):1-37.
[7]Gong-Jian Y U, Shou-Yi L, Xun-Liang Y, et al. HP-RPM based trajectory optimization for hypersonic glide vehicle[J]. flight dynamics,2017,35(02):59-63.
[8]Pastor-Rodríguez A, Sánchez-Arriaga G, Sanjurjo-Rivo M. Modeling and stability analysis of tethered kites at high altitudes[J]. Journal of Guidance, Control, and Dynamics, 2017,40(8):1892-1901.