国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

泰勒級(jí)數(shù)在高等數(shù)學(xué)中的應(yīng)用研究

2020-06-05 11:06韓冰冰
關(guān)鍵詞:級(jí)數(shù)盤錦鄰域

韓冰冰

(盤錦職業(yè)技術(shù)學(xué)院基礎(chǔ)部,遼寧盤錦124000)

在高等數(shù)學(xué)中,泰勒級(jí)數(shù)屬于函數(shù)項(xiàng)級(jí)數(shù)中冪級(jí)數(shù)的一種特例。泰勒級(jí)數(shù)作為一種數(shù)學(xué)工具,能夠使數(shù)學(xué)問(wèn)題變得簡(jiǎn)單,因此常應(yīng)用在理論研究和數(shù)值計(jì)算中。由于泰勒級(jí)數(shù)的知識(shí)難度較大,為了讓學(xué)生更好地掌握泰勒級(jí)數(shù),有必要將泰勒級(jí)數(shù)知識(shí)進(jìn)行詳細(xì)論述,以提高學(xué)生的學(xué)習(xí)興趣。本文將從泰勒級(jí)數(shù)的類型、展開(kāi)條件、展開(kāi)方法和應(yīng)用出發(fā),通過(guò)探討合理地建立泰勒級(jí)數(shù)的教學(xué)體系,以提高學(xué)生學(xué)習(xí)效果。

1 泰勒級(jí)數(shù)的類型

1.1 一元函數(shù)y=f(x)的泰勒級(jí)數(shù)

如果函數(shù)f(x)在點(diǎn)x0處存在直至n階的導(dǎo)數(shù),那么x0的鄰域內(nèi)有n階的泰勒級(jí)數(shù)[1]

①f(x)在x0=0時(shí),級(jí)數(shù)就是麥克勞林級(jí)數(shù)[2],即

這種展開(kāi)式是唯一的,而且函數(shù)f(x)的麥克勞林級(jí)數(shù)和x的冪級(jí)數(shù)是一致的。但是需要注意的是,如果f(x)在x0處有各階導(dǎo)數(shù),那么泰勒級(jí)數(shù)能否在某個(gè)區(qū)間內(nèi)收斂,是否收斂于f(x)仍需驗(yàn)證[3]。

而泰勒級(jí)數(shù)收斂的充要條件是f(x)在x0處泰勒公式余項(xiàng)的極限為0,即如公式(3)[4]

當(dāng)f(x)的各階導(dǎo)數(shù)都存在時(shí),即泰勒級(jí)數(shù)在收斂情況下,與泰勒公式相同,都等于f(x)。

②f(x±a)在x處展開(kāi)時(shí)的泰勒級(jí)數(shù)[2]為

1.2 多元函數(shù)y=f(x)的泰勒級(jí)數(shù)(以二元為例)

如果二元函數(shù)u=f(x,y)在點(diǎn)(x0,y0)對(duì)x及y具有直到n+1階的連續(xù)偏導(dǎo)數(shù)[3]

展開(kāi)后就得到二元函數(shù)的泰勒級(jí)數(shù)。

下面以一元函數(shù)y=f(x)的泰勒級(jí)數(shù)為例進(jìn)行說(shuō)明。

2 泰勒級(jí)數(shù)的展開(kāi)條件

不同函數(shù)在展開(kāi)為泰勒級(jí)數(shù)時(shí)的條件是不同的。復(fù)函數(shù)f(z)展開(kāi)條件比較簡(jiǎn)單的原因是有柯西積分公式及推廣形式[5]

而實(shí)函數(shù)f(x)展開(kāi)為泰勒級(jí)數(shù)條件很苛刻,必須具有如下條件[5]:

①f(x)在x0點(diǎn)存在各階導(dǎo)數(shù);

②存在δ>0,使一切x,只要|x-x0|<δ,便有

其中,rn為泰勒級(jí)數(shù)的余項(xiàng)。

所以,在解決實(shí)函數(shù)f(x)時(shí),可以通過(guò)復(fù)函數(shù)f(z)進(jìn)行求解。

3 泰勒級(jí)數(shù)的展開(kāi)方法

把函數(shù)展開(kāi)成泰勒級(jí)數(shù),主要有直接展開(kāi)法和間接展開(kāi)法。

3.1 直接展開(kāi)法[6]

直接展開(kāi)法主要分為四個(gè)步驟進(jìn)行:

①求出函數(shù)的各階導(dǎo)數(shù)f(x),f'(x),…,f(n)(x),…;

②函數(shù)f(x)及各階導(dǎo)數(shù)在x=x0處的值:f(x0),f'(x0),…,f(n)(x0),…;

③寫出泰勒級(jí)數(shù)

④考察余項(xiàng)Rn(x)在x0的某一鄰域U(x0)內(nèi)的極限是否為零。

3.2 間接展開(kāi)法

由于直接展開(kāi)法的展開(kāi)過(guò)程比較煩瑣,實(shí)際應(yīng)用較少。所以泰勒級(jí)數(shù)在展開(kāi)時(shí),常用間接展開(kāi)法[7]。下面就利用間接展開(kāi)法來(lái)簡(jiǎn)單介紹泰勒級(jí)數(shù)的應(yīng)用。

3.2.1 函數(shù)的近似計(jì)算[8]

3.2.2 證明不等式

例2設(shè)n為自然數(shù),試證:(當(dāng)t≤n時(shí))

證明:不等式兩邊同乘e-t,利用麥克勞林級(jí)數(shù)展開(kāi),則

3.2.3 函數(shù)極限[4]3.2.4級(jí)數(shù)斂散性[9]

猜你喜歡
級(jí)數(shù)盤錦鄰域
基于混合變鄰域的自動(dòng)化滴灌輪灌分組算法
做強(qiáng)“盤錦大米”品牌 促進(jìn)盤錦大米產(chǎn)業(yè)增值
含例鄰域邏輯的薩奎斯特對(duì)應(yīng)理論
二重Dirichlet級(jí)數(shù)在收斂半平面內(nèi)的增長(zhǎng)性
無(wú)窮級(jí)數(shù)的柯西和與切薩羅和
一個(gè)非終止7F6-級(jí)數(shù)求和公式的q-模擬
空中俯瞰遼寧盤錦血色海灘 多彩畫卷美得驚艷
鄰域決策的隨機(jī)約簡(jiǎn)與集成分類研究
下一站,盤錦
“盤錦大米”品牌價(jià)值榮登全國(guó)大米品牌榜首