周井文,秦文津2,任培強
(1.上海航天精密機械研究所,上海 201600;2.上海航天智能裝備有限公司,上海 201112)
當前航空航天產品為滿足輕量化需求和結構強度、裝配精度等指標,絕大部分采用深腔、減重槽框和空心薄壁等整體結構,例如整體葉盤、壁板、桁架等。由于極大的材料去除量和典型的弱剛性結構特點,采用傳統(tǒng)加工方式及加工工序存在加工效率低、刀具系統(tǒng)剛度差、加工難度大等一系列問題。基于這一現(xiàn)狀,近年來國內外學者提出了高速插銑加工方式。插銑加工又稱為Z軸銑削法,即在數(shù)控加工過程中,刀具沿刀軸方向直線進給,利用底部的切削刃進行鉆、銑組合切削[1],這是一種能夠在Z方向上快速去除大量金屬的加工方式,主要用于粗加工和半精加工。刀具在重復插銑達到預定深度時,不斷地縮回和復位以便于下一次插銑時可快速地從重疊走刀處去除大量金屬[2]。與傳統(tǒng)的側銑加工相比,插銑加工能降低刀具的徑向切削力,使切削力保持穩(wěn)定[3]。
目前,插銑加工的研究方向主要可以分為插銑動力學研究、加工模態(tài)分析、工藝技術等方面。Li 等[4]研究并提出了復雜型面插銑模型并且預測了銑削力的大小,但并未考慮系統(tǒng)的動態(tài)結構的影響。Damir 等[5]就柔性和剛性工件系統(tǒng)的條件下研究插銑力和插銑振動。趙偉[6]分析了高速插銑加工的穩(wěn)定性,并從理論粗糙度、切削速度和切削振動的角度分析加工表面粗糙度,從而建立插銑加工的表面粗糙度模型。Altintas等[7–9]研究了插銑加工過程的動力學與穩(wěn)定性,建立插銑加工時域仿真模型,該模型在考慮刀具的切削誤差和時間變量參數(shù)的影響的基礎上,對切削力、扭矩、振動做出預測,并且建立顫振穩(wěn)定性圖。
本文采用正交試驗,研究了刀具轉速、每齒進給量和徑向切寬對切削力的影響規(guī)律,并對切削力信號進行了快速傅里葉(FFT)變換,分析了切削加工穩(wěn)定性。同時建立了刀具切削角與瞬時切削力的關系,研究了切削力系數(shù)隨每齒切削材料面積的變化規(guī)律。
試驗在車間DMG Mori 1035V三軸加工中心上進行(圖1(a)),機床最大轉速為12000r/min,主軸最大功率為17kW,X/Y/Z方向行程分別為1035mm/560mm/530mm。切削力測量系統(tǒng)為Kistler 9253B23 多分量測力儀、Kistler 5070A 電荷放大器(圖1(b))以及相應的數(shù)據(jù)采集與處理系統(tǒng)。測力儀基本參數(shù)為靈敏度0.05N;量程為±12kN(X,Y),–12~25kN(Z),±200N·m(扭矩);三向測力方向如圖1(b)所示。試驗刀具為機夾式刀具,直徑為25mm,齒數(shù)為2。刀片無涂層,后角為21°,刀尖圓角為0.8mm。刀片側刃長度為11mm(圖1(c))。
試驗采用基于刀具轉速N、每齒進給量fz和徑向切寬ae的3 因素3水平正交試驗,具體加工參數(shù)見表1。試驗材料為典型2A12 硬鋁合金鍛件。
對切削力Fx、Fy和Fz進行方差分析(ANOVA),具體如表2~4 所示。以Sign.<0.1 作為顯著性依據(jù),可以認為只有每齒進給量fz和徑向切寬ae是影響切削力Fx的顯著因素,其余均不是顯著因素。
圖1 加工條件及加工刀具Fig.1 Experimental setup and cutting tools
表1 各加工參數(shù)因素水平及實測切削力Table1 Factors of each machining parameter and measured cutting force
表2 Fx方差分析表Table2 Analysis of variance of Fx
表3 Fy方差分析表Table3 Analysis of variance of Fy
表4 Fz方差分析表Table4 Analysis of variance of Fz
基于三向切削力Fx、Fy和Fz的平均值建立基于刀具轉速N、每齒進給量fz和徑向切寬ae的多元線性回歸方程(式(1)~(3))??梢园l(fā)現(xiàn)對于切削力Fy和Fz,由于其方程相關系數(shù)非常低,切削力信號離散而無規(guī)律。對于切削力Fy可以發(fā)現(xiàn)每齒進給量fz和徑向切寬ae在方程中指數(shù)遠大于刀具轉速N,復合方差分析結果。對切削力原始信號進行時頻域轉換,具體如圖2所示。當?shù)毒咿D速N為6000r/min 時,測力信號的主頻如式(4)所示應為200Hz,次頻為100Hz 和300Hz??梢园l(fā)現(xiàn)對于切削力Fx,信號穩(wěn)定且主頻振幅最大,遠大于其他頻率。800Hz 頻率振幅同樣很大,同時為主頻的整數(shù)倍,可以認為是加工過程中的振動所致,同時也符合前文方差分析中刀具轉速的顯著性影響非常低的結論。然而對于切削力Fy和Fz,可以發(fā)現(xiàn)主頻在頻譜圖中振幅已不占主要,即使排除次頻仍然存在大量其他頻率振幅。說明在加工過程中刀具在y方向和z方向存在較多低頻振動,這一現(xiàn)象也印證了前文的多元線性回歸方程擬合相關性非常低的問題。
結合前文分析,可以得到切削力Fx隨每齒進給量fz和徑向切寬ae變化趨勢,具體如圖3所示,可以發(fā)現(xiàn)切削力Fx在選定參數(shù)區(qū)間內隨每齒進給量fz和徑向切寬ae的增大而穩(wěn)定增大。
圖4為典型插銑加工刀具每齒運動軌跡示意圖,可以發(fā)現(xiàn)瞬時實際每齒切厚ae'是隨刀具轉角φ呈現(xiàn)先增大(0°<φ<90°)后減?。?0°<φ<180°)的趨勢。實際瞬時每齒切厚ae'是不等于預設軸向切寬ae的,具體關系如式(5)所示。依照海倫公式和三角形兩邊一內角的面積公式,消去公共面積變量三角形面積即可。
式中,ae' 為實際每齒切厚;ae為徑向切寬;φ為刀具轉角;Dc為刀具直徑,本試驗默認為25mm。需要指出的是刀具直徑25mm 為插銑刀具直接中位數(shù)(一般插銑刀在16~60mm 之間),具備一定代表性,且隨著刀具直徑Dc的增大,實際每齒切厚ae'將隨之減小,但是在刀具直徑范圍內其變化幅度非常細微,暫不討論。
實際每齒切厚ae' /徑向切寬ae隨刀具轉角φ變化趨勢具體如圖5所示,可以發(fā)現(xiàn)實際每齒切厚ae' 在刀具轉角φ=90°時達到最大值,等于徑向切寬ae,在刀具切入/切出階段,實際每齒切厚ae' 最小。
圖2 三向切削力頻譜分析(N=6000r/min,fz=0.06mm/z,ae=1mm)Fig.2 Spectral analysis of cutting forces (N=6000r/min,fz=0.06mm/z,ae=1mm)
圖3 每齒進給量fz和徑向切寬ae對切削力Fx的影響Fig.3 Influences of feed rate and radial cutting width on cutting force Fx
基于以上分析,可以計算每齒所切削材料的截面積S',具體見式(7)。
其中,fz為插銑加工每齒進給量。
基于圖5同樣可以認為每齒所切削材料的截面積S'與實際每齒切厚ae'具有同樣規(guī)律,在此不再贅述。
圖6所示為切削力Fx和Fy隨時間變化規(guī)律,可以發(fā)現(xiàn)切削力Fx的波形規(guī)律性要明顯優(yōu)于切削力Fy的波形,這與之前的分析也能夠完全吻合(試驗序號5)。將圖6的關系按照式(8)轉化為隨刀具轉角φ的變化規(guī)律,具體如圖7所示,可以發(fā)現(xiàn)切削力Fx具有非常強的規(guī)律性,而切削力Fy規(guī)律性較差。結合圖4可以發(fā)現(xiàn)對于切削過程中切削力Fx和Fy僅為法向切削力Fn和切向切削力Ft合成而成,兩者之間的關系為
結合圖8(a)可以發(fā)現(xiàn),對于切向切削力Ft,其大小隨刀具轉角φ呈現(xiàn)對稱分布,且在φ=90°時達到最大值,當φ=20° 和160° 時 可以發(fā)現(xiàn)明顯的低谷。當?shù)毒咿D角φ在0~20° 和160°~180° 范 圍 內,由于最小切厚理論,此時刀具并沒有切除材料。一是由于過小的切厚導致材料受力發(fā)生彈性變形退讓;二是由于刀具刃口圓角的存在,使得被去除材料受刃口圓角的擠壓并沒有被去除。在這一階段刀具后刀面僅是在加工表面發(fā)生擠壓,并不成屑。當?shù)毒咿D角φ在20°~90°和160°~90°范圍內時,根據(jù)金屬切削理論,隨著瞬時切厚ae' 的不斷增大,意味著在刀具前刀面(即第1 變形區(qū))發(fā)生剪切滑移變形的材料厚度不斷增加,這導致了切向切削力Ft的不斷增大。
圖4 插銑加工刀具每齒運動軌跡示意圖Fig.4 Diagram of cutting edge movement
圖5 刀具轉角φ對實際每齒切厚ae'/徑向切寬ae的影響Fig.5 Influences of tool engage angle φ on actual chip thickness ae'/ radial cutting width ae
圖6 切削力Fx和Fy隨時間變化規(guī)律Fig.6 Cutting forces Fx and Fy vs time
對法向切削力Fn分析可以發(fā)現(xiàn),切削力整體相對于φ=90°對稱(圖8(b))。在于在刀具轉角φ=45°和135°時法向切削力Fn達到最大值,并且在0~45°和180°~135°范圍內,法向切削力Fn不斷增大。結合上文的分析可以得到在這一區(qū)域屬于材料回彈區(qū)域,并且回彈隨著瞬時切厚ae'的增大而不斷加劇。同時可以發(fā)現(xiàn)在20°~45°和160°~135°范圍內,屬于刀具后刀面與工件材料作用的過渡區(qū)域,在這一區(qū)間屬于從擠壓階段向切削階段的轉變區(qū)域,屬于劃擦區(qū)域。可以發(fā)現(xiàn)當?shù)毒呷锌谡嬲_始切除材料時(即φ=45°~135°),工件材料對刀具后刀面的擠壓回彈作用反而減輕,此時材料主要在刀具前刀面發(fā)生剪切滑移變形,具體如圖9所示。
本文利用鋁合金插銑加工正交試驗,從工藝角度分析了刀具轉速N、每齒進給量fz和徑向切寬ae加工參數(shù)對三向切削力的影響規(guī)律,并進行了方差顯著性分析(ANOVA),建立了關于加工參數(shù)的多元線性回歸方程,討論了加工過程振動對切削力信號的影響。從切削理論角度建立了切削力與刀具轉角、瞬時每齒切厚的理論計算關系?;谇邢?法向切削力的變化規(guī)律,將切削弧區(qū)劃分為擠壓區(qū)、劃擦區(qū)和切削區(qū)。具體結論如下:
(1)每齒進給量fz和徑向切寬ae均是影響切削力Fx的顯著因素;
圖7 切削力Fx和Fy隨刀具轉角φ的變化規(guī)律Fig.7 Cutting forces Fx and Fy vs tool engage angle φ
圖8 切削力Ft和Fn隨刀具轉角φ的變化規(guī)律Fig.8 Cutting forces Ft and Fn vs tool engage angle φ
圖9 切削成屑弧區(qū)劃分Fig.9 Partition of chip-forming area
(2)切削力Fx最為穩(wěn)定,x方向加工過程中無振動。而切削力Fy和Fz信號隨機誤差較大,y方向和z方向加工過程不穩(wěn)定,存在較多低頻振動;
(3)切削弧區(qū)按照刀具轉角φ可以劃分為3 個區(qū)域。
區(qū)域1:0~20°(160°~180°)范圍內,刀具僅僅在材料表面擠壓滑行,并不成屑。
區(qū)域2:20°~45°(135°~160°)范圍內,刀具在材料表面發(fā)生劃擦,屬于從擠壓滑行向切削成屑轉變的過渡階段。在這一范圍內既有刀具后刀面與材料的回彈擠壓作用,也有材料受刀具前刀面的剪切成屑作用。
區(qū)域3:45°~135°范圍內,材料主要發(fā)生剪切滑移變形,屬于正常切削過程。