彭濤 李愛國 何培亮
【摘要】 絕經(jīng)后雌激素水平下降是導(dǎo)致女性骨質(zhì)疏松的重要因素之一,目前研究發(fā)現(xiàn),絕經(jīng)患者體內(nèi)的一共同特征是機(jī)體內(nèi)的氧化應(yīng)激水平增高。氧化應(yīng)激是指體內(nèi)抗氧化與氧化作用失衡,使機(jī)體傾向于氧化,導(dǎo)致產(chǎn)生大量氧化產(chǎn)物蓄積,該機(jī)制可能打破了成骨細(xì)胞和破骨細(xì)胞的動態(tài)平衡狀態(tài),從而造成骨質(zhì)疏松的發(fā)生。目前發(fā)現(xiàn)絕經(jīng)后骨質(zhì)疏松與氧化應(yīng)激關(guān)系密切,但具體機(jī)制尚未完全闡明。本文通過查詢國內(nèi)外文獻(xiàn),對氧化應(yīng)激與絕經(jīng)后骨質(zhì)疏松發(fā)病機(jī)制的研究進(jìn)展進(jìn)行綜述,以此對以后抗絕經(jīng)后骨質(zhì)疏松藥物做出思考。
【關(guān)鍵詞】 氧化應(yīng)激 骨質(zhì)疏松癥 活性氧
doi:10.14033/j.cnki.cfmr.2020.10.077 文獻(xiàn)標(biāo)識碼 A 文章編號 1674-6805(2020)10-0-03
Research Progress on the Relationship between Postmenopausal Osteoporosis and Oxidative Stress/PENG Tao, LI Aiguo, HE Peiliang. //Chinese and Foreign Medical Research, 2020, 18(10): -188
[Abstract] The decrease of estrogen level after menopause is one of the important factors leading to osteoporosis in women. Current research has found that a common feature in menopausal patients is the increased level of oxidative stress in the body. Oxidative stress refers to the imbalance between antioxidant and oxidative effects in the body, which makes the body tend to oxidize, resulting in the accumulation of a large number of oxidation products. This mechanism may break the dynamic balance between osteoblasts and osteoclasts, and cause the occurrence of osteoporosis. At present, it is found that postmenopausal osteoporosis is closely related to oxidative stress, but the specific mechanism has not been fully elucidated. This paper reviews the research progress of oxidative stress and the pathogenesis of postmenopausal osteoporosis by consulting domestic and foreign literature, so as to make a reflection on the future anti-postmenopausal osteoporosis drugs.
[Key words] Oxidative stress Osteoporosis Reactive oxygen species
First-authors address: Guizhou Medical University, Guiyang 550004, China
絕經(jīng)后骨質(zhì)疏松癥是由于機(jī)體內(nèi)雌激素水平下降,導(dǎo)致骨質(zhì)流失增加,骨微結(jié)構(gòu)破壞,造成骨脆性增加,從而易于發(fā)生骨折的全身性骨病。近年來的研究發(fā)現(xiàn),雌激素具有明顯的抗氧化作用,雌激素的缺乏可能會損害抗氧化系統(tǒng)并導(dǎo)致骨骼中氧化應(yīng)激水平增加[1]。雌激素降低導(dǎo)致的絕經(jīng)后骨質(zhì)疏松癥的理論雖然已被廣泛接受,但其發(fā)生機(jī)制仍未被充分揭示,而其中以氧化應(yīng)激介導(dǎo)的發(fā)病機(jī)制逐漸被人們重視[2],本文對絕經(jīng)后骨質(zhì)疏松與氧化應(yīng)激研究進(jìn)展進(jìn)行綜述,現(xiàn)報道如下。
1 氧化應(yīng)激
人體每天正常的新陳代謝過程中會不斷產(chǎn)生自由基,其中約95%為活性氧簇(ROS),包括超氧陰離子(O2-)、過氧化氫(H2O2 )和羥自由基(·OH)等。其在細(xì)胞內(nèi)與抗氧化防御系統(tǒng)保持動態(tài)平衡。當(dāng)機(jī)體內(nèi)抗氧化與氧化作用失衡,將對機(jī)體產(chǎn)生一系列病理生理損傷,被稱為氧化應(yīng)激[3]。研究發(fā)現(xiàn)絕經(jīng)期婦女隨著年齡的增長,雌激素水平下降,人體的抗氧化水平低下,機(jī)體內(nèi)相關(guān)的NADPH等氧化酶活性增加,導(dǎo)致活性氧(ROS)不能及時清除,從而使累積的ROS誘導(dǎo)了氧化應(yīng)激的發(fā)生,損傷成骨細(xì)胞和骨細(xì)胞[4]。Chavan等[5]在對50例健康人群和75例臨床確診的絕經(jīng)后骨質(zhì)疏松患者的對比研究中發(fā)現(xiàn),絕經(jīng)后骨質(zhì)疏松患者體內(nèi)的氧化標(biāo)志物顯著高于健康組。Li等[6]在去卵巢(OVX)大鼠的骨質(zhì)疏松模型中發(fā)現(xiàn),OVX大鼠體內(nèi)的氧化應(yīng)激指標(biāo)及活性氧自由基水平高于對照組,可見,在骨質(zhì)疏松的病理生理過程中,與氧化應(yīng)激反應(yīng)存在一定的因果關(guān)系。
2 絕經(jīng)后骨質(zhì)疏松與氧化應(yīng)激的關(guān)系
絕經(jīng)后隨著年齡的增長,機(jī)體ROS的產(chǎn)生不斷增加,抗氧化體系能力的下降,繼而發(fā)生的氧化應(yīng)激會損傷骨細(xì)胞膜及細(xì)胞核中的脂類、線粒體DNA和轉(zhuǎn)錄因子等大分子物質(zhì)[7]。另外研究發(fā)現(xiàn),通過H2O2或黃嘌呤/黃嘌呤氧化酶產(chǎn)生的O2-刺激人成骨樣MG63細(xì)胞系和原代小鼠骨髓基質(zhì)細(xì)胞和顱骨成骨細(xì)胞的RANKL、mRNA和蛋白表達(dá)增加[8]。RANKL通過與RANK結(jié)合不僅促進(jìn)破骨細(xì)胞的分化,而且呈劑量依賴性地激活成熟的破骨細(xì)胞,提高骨吸收能力[9]。
在絕經(jīng)后骨質(zhì)疏松患者中,骨組織缺乏雌激素的保護(hù),從而導(dǎo)致骨量的進(jìn)一步丟失,導(dǎo)致骨質(zhì)疏松的發(fā)生。雌激素被視為機(jī)體的一種抗氧化劑,并發(fā)現(xiàn)其能提高骨細(xì)胞的抗氧化能力。此外,研究發(fā)現(xiàn)絕經(jīng)后婦女血清中炎性因子濃度及氧化應(yīng)激標(biāo)志物高于絕經(jīng)前,可以說明絕經(jīng)后機(jī)體處于一個高氧化應(yīng)激水平[10]。部分學(xué)者將以雌激素為中心介導(dǎo)的骨質(zhì)疏松觀念,逐步向以氧化應(yīng)激為中心開始轉(zhuǎn)變[11]。由此可見,絕經(jīng)后骨質(zhì)疏松與氧化應(yīng)激之間存在一些必然的聯(lián)系。
3 絕經(jīng)后骨質(zhì)疏松與氧化應(yīng)激的相關(guān)因素
3.1 腫瘤壞死因子(TNF-α)
腫瘤壞死因子主要由單核巨噬細(xì)胞、活化的T細(xì)胞、自然殺傷細(xì)胞等產(chǎn)生。TNF-α是抑制骨形成、誘發(fā)骨質(zhì)疏松的主要炎癥因子,與雌激素的缺乏密切相關(guān)[12]。Tural等[13]研究表明絕經(jīng)后診斷為骨質(zhì)疏松的女性患者服用選擇性雌激素受體調(diào)節(jié)劑雷洛昔芬鹽酸鹽12周后,相較于服用安慰劑的女性,其骨密度有明顯的提升,治療組患者血液炎性因子水平相較于對照組明顯降低。Sang等[14]發(fā)現(xiàn)TNF-α能增強(qiáng)不同組織細(xì)胞的ROS活性,提示TNF-α與ROS在骨質(zhì)疏松癥中起著協(xié)同作用。叉頭框蛋白1(FoxO1)轉(zhuǎn)錄因子家族在細(xì)胞周期中調(diào)控基因的表達(dá)、抗氧化應(yīng)激、修復(fù)DNA損傷過程中起著重要作用[15]。Liao[16]等發(fā)現(xiàn)OVX小鼠中的TNF-α水平較假手術(shù)組升高,TNF-α可降低骨小梁區(qū)和骨髓中FOXO1蛋白的積累,從而降低了FOXO1在骨髓間充質(zhì)干細(xì)胞(BMSCs)介導(dǎo)的抗氧化防御系統(tǒng),最終導(dǎo)致BMSCs細(xì)胞損傷,抑制骨細(xì)胞的分化成熟。并用Wstern blot實驗方法進(jìn)行檢測,發(fā)現(xiàn)當(dāng)小鼠體內(nèi)TNF-α濃度上升越高時,F(xiàn)OXO1蛋白的量降低越明顯,并呈現(xiàn)一定的濃度依賴性。當(dāng)小鼠FOXO1基因被敲除后,ROS對BMSCs分化的影響加重,再次證明FOXO1基因在骨質(zhì)疏松中的抗氧化應(yīng)激存在著重要作用。TNF-α還能通過調(diào)節(jié)microRNA-705的轉(zhuǎn)錄來發(fā)揮作用,形成一個持續(xù)的夸大氧化損傷的前反饋回路[16]。
此外,該實驗中還發(fā)現(xiàn)在OVX小鼠動物實驗中,OVX小鼠中BMSCs較假手術(shù)組BMSCs更容易受到外源性H2O2的損傷。
3.2 氧化應(yīng)激介導(dǎo)的相關(guān)信號通路
過氧化物酶體增殖物激活受體γ(PPARγ)屬于配體激活轉(zhuǎn)錄因子的核激素受體超家族,已知其作為脂肪細(xì)胞分化的主要轉(zhuǎn)錄調(diào)節(jié)因子,能抑制成骨細(xì)胞分化。最近的研究證明,成骨分化的誘導(dǎo)劑,如骨形成蛋白(BMP)和β-catenin蛋白,能通過多種機(jī)制抑制BMSCs向脂肪細(xì)胞分化,發(fā)現(xiàn)該過程可能與PPARγ反式的激活相關(guān)[17],當(dāng)機(jī)體氧化應(yīng)激水平較高時,使得PPARγ受體被激活,刺激BMSCs向脂肪細(xì)胞分化,從而使BMSCs分化為成骨細(xì)胞的能力減弱,造成骨質(zhì)疏松的發(fā)生。在經(jīng)典的Wnt/β-catenin通路中,發(fā)現(xiàn)β-catenin蛋白能抑制PPARγ mRNA的表達(dá),使得PPARγ減少,從而減少BMSCs向脂肪細(xì)胞的分化,使得骨髓向成骨細(xì)胞分化能力增強(qiáng)[17]。microRNAs(miRNAs)在脂肪形成和成骨細(xì)胞生成中的作用正引起越來越多的關(guān)注,該領(lǐng)域的研究已經(jīng)揭示了miRNAs和Wnt信號通路與轉(zhuǎn)錄因子Runx2和PPARγ的整合相關(guān)[18]。
LI等[19]發(fā)現(xiàn),成骨前體細(xì)胞MC3T3-E細(xì)胞,經(jīng)地塞米松處理后,發(fā)現(xiàn)該細(xì)胞中ROS水平顯著增高,從而導(dǎo)致了成骨細(xì)胞的凋亡增加,繼而導(dǎo)致骨質(zhì)疏松的發(fā)生。有研究指出ROS的主要產(chǎn)生者很可能是NADPH氧化酶的一個亞型[20]。迄今,已經(jīng)確認(rèn)了五種氮氧化物亞型(Nox1、Nxo2、Nox3、Nox4、Nox5),其中Nox1、Nox2和Nox3在成骨細(xì)胞中表達(dá)豐富[21]。該研究還發(fā)現(xiàn)經(jīng)地塞米松處理后的成骨前體細(xì)胞MC3T3-E細(xì)胞、Nox4的表達(dá)也得到了上調(diào),發(fā)現(xiàn)當(dāng)用siRNA敲除Nox4因后,能顯著降低ROS的產(chǎn)生和成骨細(xì)胞的損傷。說明Nox4在地塞米松誘導(dǎo)的成骨細(xì)胞凋亡中發(fā)揮著重要作用。有研究者發(fā)現(xiàn)當(dāng)Nox1沉默時會極大地減少氧自由基的產(chǎn)生和骨裂變的發(fā)生,提示Nox1是RANKL興奮中氧自由基產(chǎn)生的主要來源[22]。
除此之外,研究者還發(fā)現(xiàn)異常增加的ROS的水平,除了損傷破骨細(xì)胞基質(zhì)蛋白酶和半胱氨酸蛋白酶外,可能還損壞巰基和蛋白質(zhì)的氨基,導(dǎo)致蛋白質(zhì)變性交聯(lián),破壞膠原蛋白、纖維蛋白,從而破壞骨組織的細(xì)胞外基質(zhì),導(dǎo)致骨脆性增加[23]。
4 抗氧化防治骨質(zhì)疏松的現(xiàn)況研究
研究發(fā)現(xiàn)無論是衰老導(dǎo)致的骨質(zhì)疏松癥,還是絕經(jīng)后雌激素缺乏導(dǎo)致的骨質(zhì)疏松癥,兩者均可能與氧化應(yīng)激密切相關(guān)[24]。Chavan等[5]在對絕經(jīng)后骨質(zhì)疏松患者進(jìn)行對比研究中發(fā)現(xiàn),給予絕經(jīng)后骨質(zhì)疏松癥患者每天補充適當(dāng)?shù)目寡趸瘎┚S生素C和維生素E,堅持90 d后發(fā)現(xiàn),患者的骨量得到改善。吡咯喹啉醌(PQQ)是一種活性氧清除劑,Huang等[25]在動物實驗中發(fā)現(xiàn),給Bmi-1基因敲除小鼠飼喂添加PQQ的飼料,野生型小鼠飼喂普通飼料(WT)作為對照。經(jīng)過影像學(xué)、組織病理學(xué)和分子生物學(xué)方法比較了動物骨骼表型的差異。結(jié)果顯示,與WT組小鼠相比,添加PQQ小鼠脛骨形態(tài)增加,X射線透過率降低,骨密度、皮質(zhì)骨厚度、生長板寬度和骨小梁質(zhì)量均增加。由此可見,適當(dāng)?shù)难a充抗氧化劑,能有效改善骨質(zhì)疏松患者的骨量。相關(guān)研究發(fā)現(xiàn),植物提取物中的白黎蘆醇、茶多酚、植物雌激素黃酮用于動物實驗及細(xì)胞實驗中,發(fā)現(xiàn)其具有抗骨質(zhì)疏松的作用[25]。
絕經(jīng)后骨質(zhì)疏松是我國老年女性的多發(fā)病、常見病。而骨質(zhì)疏松發(fā)病機(jī)制較復(fù)雜,針對氧化應(yīng)激與骨質(zhì)疏松的關(guān)系,許多學(xué)者做了大量研究,發(fā)現(xiàn)氧化應(yīng)激能導(dǎo)致成骨細(xì)胞的凋亡增加,導(dǎo)致成骨細(xì)胞的分化能力減弱,以及雌激素的護(hù)骨作用降低。臨床中有大量中藥材有抗氧化、抗衰老、抗腫瘤的作用。相信立足于植物抗氧化的研究,能對未來骨質(zhì)疏松的防治有一定的貢獻(xiàn),相信在未來提純抗氧化藥物單體,可延緩骨質(zhì)疏松的發(fā)生,也可用局部注射在骨折斷端促進(jìn)骨折的愈合,也可與生物材料一起填充于大段骨缺損處,促進(jìn)成骨,還能與干細(xì)胞聯(lián)合使用,促進(jìn)干細(xì)胞成骨細(xì)胞的分化能力,為臨床科研做貢獻(xiàn)。
參考文獻(xiàn)
[1]杜娟.雌激素和氧化應(yīng)激通過過氧化物還原酶1型調(diào)控成骨細(xì)胞功能及相關(guān)通路的研究[D].濟(jì)南:山東大學(xué),2018:3-7.
[2] Lin X,Xiong D,Peng Y Q,et al.Epidemiology and management of osteoporosis in the Peoples Republic of China:current perspectives[J].Clin Interv Aging,2015,25(10):1017-1033.
[3] Duranti G,Ceci R,Patrizio F,et al.Chronic consumption of quercetin reduces erythrocytes oxidative damage:Evaluation atresting and after eccentric exercise in humans[J].Nutrition Research,2018(50):73-81.
[4]孫振雙,耿元卿,張麗君,等.氧化應(yīng)激介導(dǎo)絕經(jīng)后骨質(zhì)疏松發(fā)病機(jī)制的研究進(jìn)展[J].中國骨質(zhì)疏松雜志,2016,22(8):130-134.
[5] Chavan S N,More U,Mulgund S,et al.Effect of supplementation of vitamin C and E on oxidative stress in osteoporosis[J].Indian Journal of Clinical Biochemistry,2007,22(2):101-105.
[6] Li H,Huang C,Zhu J,et al.Lutein Suppresses Oxidative Stress and Inflammation by Nrf2 Activation in an Osteoporosis Rat Model[J].Medical Science Monitor,2018(24):5071-5075.
[7] Ibáez L,F(xiàn)errándiz M L,Brines R,et al.Effects of Nrf2 deficiency on bone microarchitecture in an experimental model ofosteoporosis[J].Oxid Med Cell Longev,2014(5):390-392.
[8] Bai X C,Lu D,Liu A L,et al.Reactive Oxygen Species Stimulates Receptor Activator of NF-kappa B Ligand Expression in Osteoblast[J].Journal of Biological Chemistry,2005,280(17):17497-17506.
[9] Kaminski A,Dziekan K,Wolski H,et al.The importance of gene polymorphisms in RANKL/RANK/OPG pathway in etiology ofpostmenopausal osteoporosis[J].Pharmacological Reports,2015(67):24
[10] McLean R R.Pro inflammatory cytokines and osteoporosis[J].Curr Osteoporos Rep,2009,7(4):134-139.
[11] Manolagas S C.From Estrogen-Centric to Aging and Oxidative Stress:A Revised Perspective of the Pathogenesis of Osteoporosis[J].Endocrine Reviews,2010,31(3):266-300.
[12] Roggia C,Gao Y,Cenci S,et al.Up-regulation of TNF-producing T cells in the bone marrow:a key mechanism by which estrogen deficiency induces bone loss in vivo[J].Proc Natl Acad Sci USA,2001(98):13960-13965.
[13] Tural S,Alayli G,Kara N,et al.Association between osteoporosis and polymorphisms of the IL-10 and TGF-beta genes in Turkish postmenopausal women[J].Human Immunol,2013,74(9):1179-1183.
[14] Sang C,Zhang Y,Chen F,et al.Tumor necrosis factor alpha suppresses osteogenic differentiation of MSCs by inhibiting semaphorin 3B via Wnt/β?catenin signaling in estrogen-deficiency induced osteoporosis[J].Bone,2016(84):78-87.
[15] Kops G J,Dansen T B,Polderman P,et al.Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress[J].Nature,2002,419(6904):316-321.
[16] Liao L,Su X,Yang X,et al.TNF‐α Inhibits FoxO1 by Upregulating miR‐705 to Aggravate Oxidative Damage in Bone Marrow-Derived Mesenchymal Stem Cells during Osteoporosis[J].Stem Cells,2016,34(4):1054-1067.
[17] Xu Y,F(xiàn)ang L,Tang X,et al.Cross-Talking Between PPAR and WNT Signaling and its Regulation in Mesenchymal Stem Cell Differentiation[J].Current Stem Cell Research & Therapy,2016,11(3):1078-1090
[18] Xiao J,Rao P,Zhang D,et al.PPAR?? and Wnt Signaling in Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells[J].Current Stem Cell Research & Therapy,2016,11(3):325-346.
[19] Li J,He C R,Tong W W,et al.Tanshinone IIA blocks dexamethasone-induced apoptosis in osteoblasts through inhibiting Nox4-derived ROS production[J].Int J Clin Exp Pathol,2015(8):13695-13706.
[20] Lee N K,Choi H K,Kim D K,et al.GTPase regulates osteoclast differentiation through TR ANCE-induced NFkappa B activation[J].Mol Cell Biochem,2006,281(1-2):55-61.
[21] Kanazawa I,Yamaguchi T,Yamauchi M,et al.Rosuvastatin increased serum osteocalcin levels independent of its serum cholesterol-lowering effect in patients with type 2 diabetes and hypercholesterolemia[J].Int Med,2009(48):1869-1873.
[22] Lee N K,Choi Y G,Baik J Y,et al.A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation[J].Blood,2005,106(3):852-859.
[23] Ambrogini E,Almeida M,Martin-Millan M,et al.FoxO-mediated defense against oxidative stress in osteoblasts is indispensablefor skeletal homeostasis in mice[J].Cell Metab,2010(11):136-146.
[24] Pansini F,Mollica G,Bergamini C M.Management of the menopausal disturbances and oxidative stress[J].Curr Pharm Des,2005,11(16):2063-2073.
[25] Huang Y,Chen N,Miao D.Effect and mechanism of pyrroloquinoline quinone on anti-osteoporosis in Bmi-1 knockout mice-Anti-oxidant effect of pyrroloquinoline quinone[J].American Journal of Translational Research,2017,9(10):4361.
(收稿日期:2020-02-07) (本文編輯:桑茹南)