国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

某重力壩考慮混凝土拉壓損傷的地震響應(yīng)分析

2020-06-14 10:16:10閆春麗郭勝山
關(guān)鍵詞:重力壩單軸壩體

閆春麗,涂 勁,郭勝山

(中國水利水電科學(xué)研究院 工程抗震研究中心,北京 100048)

1 研究背景

我國是一個(gè)多地震國家,80%的水能資源集中在西部強(qiáng)震地區(qū),因此保證高壩抗震安全是大壩建設(shè)中的重中之重[1]。自1967年印度Koyna重力壩在0.5g地震作用下大壩頸部出現(xiàn)開裂破壞以后,對(duì)強(qiáng)震作用下混凝土重力壩的非線性地震響應(yīng)分析越來越引起人們的重視[2]。2015年頒布的能源行業(yè)標(biāo)準(zhǔn)《水電工程水工建筑物抗震設(shè)計(jì)規(guī)范》[3]規(guī)定,對(duì)于工程抗震設(shè)防為甲類,或者結(jié)構(gòu)復(fù)雜或地質(zhì)條件復(fù)雜的重力壩進(jìn)行有限元法分析時(shí),應(yīng)考慮材料的非線性影響。但是,由于混凝土的抗拉強(qiáng)度通常取為其抗壓強(qiáng)度的1/10,一般認(rèn)為混凝土受拉損傷的發(fā)生先于受壓損傷,因此目前很多研究在進(jìn)行壩體材料動(dòng)態(tài)損傷非線性分析時(shí),主要考慮其受拉損傷[4-6],而忽略受壓損傷的影響。但隨著越來越多高混凝土壩的出現(xiàn),尤其是在強(qiáng)震區(qū)壩址地震動(dòng)峰值加速度越來越高的情況下,壩趾部位的靜、動(dòng)綜合壓應(yīng)力數(shù)值往往超過混凝土的抗壓強(qiáng)度,這時(shí)受壓損傷是可能出現(xiàn)的,而進(jìn)行大壩強(qiáng)震破壞機(jī)理及極限抗震能力研究時(shí),考慮混凝土受壓損傷是否對(duì)大壩的損傷破壞模式和極限抗震能力評(píng)價(jià)有所影響,有必要進(jìn)行分析和論證。本文結(jié)合某實(shí)際重力壩工程,采用有限元軟件ABAQUS,在已有的混凝土材料塑性損傷本構(gòu)模型理論基礎(chǔ)上,模擬其混凝土材料在地震荷載作用下拉壓損傷、拉壓轉(zhuǎn)換的全過程,并通過地震超載的方式使混凝土重力壩逐步達(dá)到極限狀態(tài),探討混凝土重力壩拉壓損傷演化過程和變化趨勢(shì)。

2 混凝土材料塑性損傷本構(gòu)模型

本文采用有限元軟件ABAQUS中[7-8]提供的混凝土塑性損傷本構(gòu)模型,用于模擬混凝土等準(zhǔn)脆性材料在循環(huán)荷載作用下的力學(xué)行為[9-12]。

2.1 損傷與剛度退化混凝土單軸受拉、受壓時(shí),塑性應(yīng)變可分別表示為:

式中:dt、dc分別為受拉、受壓損傷因子;E0為初始(未損傷)彈性模量;σt、σc分別為總應(yīng)變所對(duì)應(yīng)的拉、壓應(yīng)力;為受拉開裂應(yīng)變;為受壓非彈性應(yīng)變。

混凝土單軸受拉、受壓應(yīng)力-應(yīng)變關(guān)系可表示為:

式中:εt為拉應(yīng)變;εc為壓應(yīng)變。

在單軸循環(huán)荷載作用下,材料的剛度退化可表示為:

式中:E為損傷后的彈性模量;d為損傷因子;st為由受壓狀態(tài)進(jìn)入受拉狀態(tài)時(shí)的剛度恢復(fù)權(quán)函數(shù);sc為由受拉狀態(tài)進(jìn)入受壓狀態(tài)時(shí)的剛度恢復(fù)權(quán)函數(shù);wt、wc分別為受拉、受壓剛度恢復(fù)系數(shù),本文取ABAQUS默認(rèn)值,即wc=1,wt=0。

在多軸循環(huán)荷載條件下,剛度退化機(jī)制較為復(fù)雜。假定混凝土的彈性剛度退化是各向同性的,且可以用單標(biāo)量d來表示,計(jì)算中引入權(quán)重因子表征等效損傷變量,進(jìn)行多軸到單軸的轉(zhuǎn)換,則可進(jìn)行多軸應(yīng)力條件下的損傷分析。

多軸應(yīng)力-應(yīng)變關(guān)系可表示如下:

等效塑性應(yīng)變率可通過下列式子表達(dá):

2.2 屈服準(zhǔn)則屈服面函數(shù)可表示如下:

其中:

2.3 流動(dòng)法則塑性損傷模型中非關(guān)聯(lián)流動(dòng)法則可表示如下:

流動(dòng)勢(shì)函數(shù)G取Drucker-Prager雙曲函數(shù)形式:

式中:ψ為混凝土屈服面在強(qiáng)化過程中的膨脹角,由高壓應(yīng)力約束條件下 pˉ-qˉ關(guān)系測(cè)量獲得;?為離心率參數(shù);σt0為單軸抗拉強(qiáng)度。本文參考《Abaqus Example Problems Guide》給出的混凝土重力壩算例中參數(shù)的取值,取?=0,ψ=36.31°。

2.4 本構(gòu)模型小結(jié)在循環(huán)荷載的作用下,計(jì)算中通過應(yīng)力狀態(tài)是否超過式(13)屈服面函數(shù)來判斷混凝土是否進(jìn)入塑性狀態(tài),當(dāng)材料開始進(jìn)入塑性狀態(tài),通過流動(dòng)法則式(14)計(jì)算其塑性應(yīng)變?cè)隽繌埩?,再進(jìn)行多軸到單軸的轉(zhuǎn)化后得到等效拉、壓塑性應(yīng)變,并確定損傷因子來反映剛度退化,采用式(9)模擬損傷后的應(yīng)力應(yīng)變關(guān)系。

3 計(jì)算條件及計(jì)算模型

本文以某混凝土重力壩為算例,采用上述建議的混凝土塑性損傷模型,通過地震超載的方式使混凝土重力壩逐步達(dá)到極限狀態(tài)[13],探討混凝土重力壩拉壓損傷演化過程和變化趨勢(shì),重點(diǎn)研究考慮混凝土受壓損傷對(duì)重力壩極限抗震能力分析的影響。

某混凝土重力壩壩高185 m,壩頂寬度為16 m,壩底寬度為165.5 m。地基模擬范圍沿深度方向和上、下游方向均取2倍壩高;壩體單元尺寸在2 m左右,壩體-地基系統(tǒng)總節(jié)點(diǎn)數(shù)7135,單元數(shù)6988。計(jì)算模型以黏彈性人工邊界模擬無限地基輻射阻尼作用。

圖1 非溢流壩段剖面及混凝土分區(qū)(單位:m)

圖2 壩體有限元模型

建基面高程1970.0 m,壩頂高程2155.0 m,上游正常蓄水位2150.0 m,下游水位2019.25 m,淤沙高程2023.7 m,淤沙浮容重8 kN/m3,淤砂內(nèi)摩擦角12°,混凝土容重24 kN/m3,水的容重9.8 kN/m3,巖石的密度2777kg/m3。計(jì)算所用的混凝土及巖體材料的物理參數(shù)如圖1和表1所示[14]。壩體的有限元單元網(wǎng)格尺寸約2 m,如圖2所示。

作用于大壩的各項(xiàng)靜力荷載包括有上下游靜水壓力、自重、淤沙壓力。庫水的動(dòng)態(tài)影響按Westergaard附加質(zhì)量法計(jì)入。計(jì)算采用的大壩設(shè)計(jì)地震水平向峰值加速度為0.4005g,圖3為歸一化的地震波加速度時(shí)程曲線。圖4—圖7為大壩混凝土損傷演化規(guī)律曲線,其受拉損傷演化規(guī)律曲線相關(guān)數(shù)據(jù)參考沙牌大壩碾壓混凝土芯樣試件的試驗(yàn)成果確定。受壓損傷演化規(guī)律曲線參考文獻(xiàn)[9]中CDP模型參數(shù),并進(jìn)行相應(yīng)的折算,然后根據(jù)式(2)進(jìn)行適當(dāng)?shù)恼{(diào)整所得。

表1 混凝土和巖體的力學(xué)參數(shù)

圖3 地震波加速度時(shí)程曲線

4 計(jì)算結(jié)果分析

4.1 只考慮受拉損傷計(jì)算結(jié)果圖8為只考慮受拉損傷條件下在不同超載系數(shù)下裂隙的擴(kuò)展情況。從圖8可以看出,在設(shè)計(jì)地震時(shí)壩踵和上游面折坡處出現(xiàn)損傷,壩踵處損傷因子大于0.8的宏觀開裂深度約為27.7 m。1.1倍超載時(shí)下游面折坡處也出現(xiàn)開裂,隨著超載系數(shù)的不斷加大,下游面折坡處的損傷逐漸向上游面擴(kuò)展,到1.15倍超載時(shí)形成上下游貫通的宏觀裂縫。

4.2 同時(shí)考慮拉壓損傷計(jì)算結(jié)果圖9為同時(shí)考慮拉壓損傷條件下受拉損傷在不同超載系數(shù)下裂隙的擴(kuò)展情況。由圖9可以看出,同時(shí)考慮拉壓損傷時(shí),也在1.15倍超載時(shí)形成上下游貫通的宏觀裂縫。因此,同時(shí)考慮拉壓損傷和只考慮受拉損傷的極限抗震能力相同。

圖10為同時(shí)考慮拉壓損傷條件下受壓損傷在不同超載系數(shù)下的擴(kuò)展情況。從圖10可以看出,在超載系數(shù)較小的情況下,受壓損傷主要發(fā)生在壩踵,之后上、下游折坡處也出現(xiàn)損傷并逐漸擴(kuò)展,隨著超載系數(shù)不斷增加,壩趾處也開始出現(xiàn)損傷。壩踵出現(xiàn)受拉損傷的部位同時(shí)也出現(xiàn)了受壓損傷,分析其原因?yàn)?,壩踵發(fā)生損傷部位采用的是C9025混凝土,在單軸狀態(tài)下C9025混凝土的受壓初始屈服應(yīng)力為14.8 MPa(圖5)。

圖4 C9025大壩混凝土動(dòng)態(tài)受拉損傷演化規(guī)律曲線

圖5 C9025大壩混凝土動(dòng)態(tài)受壓損傷演化規(guī)律曲線

圖6 C9020大壩混凝土動(dòng)態(tài)受拉損傷演化規(guī)律曲線

圖7 C9020大壩混凝土動(dòng)態(tài)受壓損傷演化規(guī)律曲線

圖8 只考慮受拉損傷條件下的裂縫擴(kuò)展情況

圖9 同時(shí)考慮拉壓損傷的受拉損傷分布

以超載系數(shù)1.0的計(jì)算結(jié)果為例,從圖11中可以看出受壓損傷發(fā)生在7.80179 s,從表2計(jì)算結(jié)果來看,在損傷發(fā)生時(shí)壩踵附近的最大壓應(yīng)力并沒有超過受壓初始屈服應(yīng)力,但是此時(shí)該高斯點(diǎn)處的最大主應(yīng)力為1.91397 MPa,最小主應(yīng)力值為-1.04945 MPa,由式(13)可求得屈服面函數(shù)F=3.7346>0,超出屈服面,依據(jù)流動(dòng)法則可計(jì)算其塑性應(yīng)變張量為{6.37314×10-8,- 3.06917×10-8}T,由于處在雙軸拉壓狀態(tài),用式(12)計(jì)算可得到權(quán)重因子為0.6459,再由式(10)和式(11)計(jì)算得到拉、壓等效塑性應(yīng)變分別為4.22082×10-8和1.03651×10-8,最后可求得拉、壓損傷因子分別為7.09415×10-4和7.36175×10-6。因此,受壓損傷因子不為0。同理,隨著超載系數(shù)的增加,上、下游折坡處受拉損傷部位也產(chǎn)生了受壓損傷。

同時(shí),從圖10中可以看到,壩趾處的受壓損傷隨地震超載倍數(shù)增加擴(kuò)展很小。由混凝土單軸受壓損傷應(yīng)力-應(yīng)變演化規(guī)律可以得出,當(dāng)應(yīng)力值超過初始屈服應(yīng)力以后開始出現(xiàn)損傷,進(jìn)入強(qiáng)化段,當(dāng)應(yīng)力值超過極限應(yīng)力以后進(jìn)入軟化段,材料的承載能力下降,損傷進(jìn)入快速擴(kuò)展階段。因此,由圖12(本文采用的混凝土受壓應(yīng)力-應(yīng)變曲線)可以看出,單軸狀態(tài)下在壓應(yīng)變?yōu)?.218×10-3時(shí)到達(dá)極限應(yīng)力,此時(shí)所對(duì)應(yīng)的損傷因子為0.3412,由式(2)可求得對(duì)應(yīng)的塑性應(yīng)變?yōu)?.95×10-4。本文的模型壩趾部位的受壓損傷是在雙軸受壓狀態(tài)下出現(xiàn)的,從表3的計(jì)算結(jié)果來看,即使在1.6倍超載時(shí),壩趾附近積分點(diǎn)處在時(shí)程內(nèi)的最大壓應(yīng)變和等效塑性應(yīng)變值都小于受壓極限狀態(tài)的對(duì)應(yīng)值,時(shí)程內(nèi)的最大受壓損傷因子也小于極限壓應(yīng)力時(shí)所對(duì)應(yīng)的受壓損傷因子值,因此,壩趾處的混凝土材料還處在強(qiáng)化階段,承載能力并未降低,所以損傷擴(kuò)展很小。

表2 超載系數(shù)為1.0時(shí)在7.80179s時(shí)壩踵積分點(diǎn)處相關(guān)變量

表3 壩趾積分點(diǎn)處在不同超載系數(shù)下的時(shí)程內(nèi)最大相關(guān)變量值

圖10 同時(shí)考慮拉壓損傷的受壓損傷分布

圖11 超載系數(shù)為1.0時(shí)壩踵積分點(diǎn)處的受壓損傷時(shí)程曲線

圖12 C9025混凝土受壓應(yīng)力-應(yīng)變曲線

圖13 同時(shí)考慮拉壓損傷的3倍超載時(shí)受壓損傷分布

如圖13所示,當(dāng)3倍超載時(shí),壩趾附近積分點(diǎn)處在時(shí)程內(nèi)的最大壓應(yīng)變?yōu)?.50895×10-3,超過單軸狀態(tài)受壓極限應(yīng)力對(duì)應(yīng)的壓應(yīng)變。時(shí)程內(nèi)最大等效塑性應(yīng)變?yōu)?.57289×10-4,時(shí)程內(nèi)最大的受壓損傷因子為0.18175,仍未超過受壓極限應(yīng)力所對(duì)應(yīng)的值,但相比1.6倍超載時(shí),壩趾處的受壓損傷區(qū)有所擴(kuò)展,但范圍仍有限。由此可見,重力壩在強(qiáng)震作用下其壩趾壓應(yīng)力集中區(qū)雖可能進(jìn)入受壓損傷狀態(tài),但由于混凝土的受壓本構(gòu)關(guān)系不同于受拉時(shí)的準(zhǔn)脆性特征,體現(xiàn)出一定的具有強(qiáng)化性質(zhì)的延性材料特點(diǎn),在其壓應(yīng)變?cè)谶_(dá)到進(jìn)入軟化段的數(shù)值之前,壩體其他部位的受拉損傷已經(jīng)發(fā)展到相當(dāng)嚴(yán)重的程度,由此看來,重力壩壩體的強(qiáng)震損傷極限狀態(tài)還是由受拉損傷控制的。

4.3 比較分析基于上述計(jì)算結(jié)果,以大壩頭部受拉損傷是否貫穿為依據(jù),同時(shí)考慮拉壓損傷的極限抗震能力和只考慮受拉損傷時(shí)的極限抗震能力相同,均為在1.1倍超載時(shí)大壩頭部沒有貫通,在1.15倍超載時(shí)貫通,因此大壩的極限抗震能力可取為設(shè)計(jì)地震的1.1倍。由此看來,是否同時(shí)考慮拉壓損傷對(duì)重力壩極限抗震能力的判斷影響不大,雖然損傷的發(fā)展形態(tài)在局部略有差異,但最終頭部受拉損傷貫通的超載倍數(shù)相同。

5 結(jié)論

本文建立了考慮混凝土拉壓損傷的重力壩-地基有限元模型,采用地震超載的方式開展了某重力壩在混凝土拉、壓損傷的出現(xiàn)和發(fā)展規(guī)律以及其極限抗震承載能力的研究,其結(jié)論為:(1)同時(shí)考慮拉壓損傷時(shí),受拉損傷部位也有可能產(chǎn)生受壓損傷,即雙軸拉壓狀態(tài)下,拉、壓損傷可能同時(shí)出現(xiàn)。(2)重力壩在強(qiáng)震作用下其壩趾壓應(yīng)力集中區(qū)雖可能進(jìn)入受壓損傷狀態(tài),但由于混凝土的受壓本構(gòu)關(guān)系體現(xiàn)出一定的具有強(qiáng)化性質(zhì)的延性材料特點(diǎn),在其受壓區(qū)壓應(yīng)變達(dá)到進(jìn)入軟化段的數(shù)值之前,壩體其他部位的受拉損傷已經(jīng)發(fā)展到相當(dāng)嚴(yán)重的程度,由此看來,重力壩壩體的強(qiáng)震損傷極限狀態(tài)主要是由受拉損傷控制的。(3)以頭部損傷貫穿為判據(jù),同時(shí)考慮拉壓損傷的極限抗震能力和只考慮受拉損傷時(shí)的極限抗震能力基本相同。

猜你喜歡
重力壩單軸壩體
土石壩壩體失穩(wěn)破壞降水閾值的確定方法
周寧縣滴水巖水庫大壩壩體防滲加固處理
單軸壓縮條件下巖石峰后第Ⅱ種類型應(yīng)力——應(yīng)變曲線的新解釋
考慮各向異性滲流的重力壩深層抗滑穩(wěn)定分析
CFRP-鋼復(fù)合板的單軸拉伸力學(xué)性能
單軸應(yīng)變Si NMOS電流模型研究
水庫砌石拱壩安全復(fù)核及壩體補(bǔ)強(qiáng)加固防滲處理
豐滿混凝土重力壩防滲降壓灌漿處理工藝探討
斜單軸跟蹤式光伏組件的安裝傾角優(yōu)化設(shè)計(jì)
潰壩涌浪及其對(duì)重力壩影響的數(shù)值模擬
阿拉善左旗| 通榆县| 来宾市| 庄浪县| 商洛市| 榕江县| 钦州市| 项城市| 绥德县| 安岳县| 赤壁市| 崇文区| 商水县| 连山| 九龙县| 兰溪市| 南木林县| 莆田市| 龙门县| 长白| 霍邱县| 九龙坡区| 吉林市| 炎陵县| 武隆县| 鱼台县| 琼结县| 镇安县| 图木舒克市| 新平| 嘉黎县| 河南省| 云和县| 石棉县| 介休市| 皮山县| 靖边县| 黑龙江省| 葫芦岛市| 南丹县| 新宾|