望香凝 王朝立 顏飛
摘要:為了穩(wěn)定控制無人機(jī)的位置和姿態(tài)角,提出了一種結(jié)合滑模控制和狀態(tài)反饋控制的非線性控制器。本次研究中,建立了四旋翼無人機(jī)的運(yùn)動學(xué)模型,提出的一種可變參數(shù)的滑模控制和狀態(tài)反饋控制方法,控制器設(shè)計(jì)分為2個(gè)階段:設(shè)計(jì)姿態(tài)子系統(tǒng)時(shí)變滑模控制器,首先保證3個(gè)姿態(tài)角的快速收斂性能能滿足第二階段的設(shè)計(jì)要求;在完成第一階段控制器的設(shè)計(jì)的基礎(chǔ)上,保證位置姿態(tài)三軸上的實(shí)時(shí)跟蹤性能,使得在有限時(shí)間里都到達(dá)期望的位置。本論文中介紹了現(xiàn)有的標(biāo)準(zhǔn)滑模控制方法和基于齊次系統(tǒng)方法的狀態(tài)反饋法及相應(yīng)的控制器,并且進(jìn)行了對比分析實(shí)驗(yàn)。仿真結(jié)果表明了所設(shè)計(jì)的非線性控制器不僅可以有效地跟蹤時(shí)變目標(biāo)值,而且收斂性能更好。
關(guān)鍵詞: 無人機(jī)姿態(tài); 有限時(shí)間; 可變參數(shù); 滑??刂? 狀態(tài)反饋控制
【Abstract】 In order to stably control the position and attitude angle of the drone, a nonlinear controller combining sliding mode control and state feedback control is proposed. In this study, the kinematics model of the quadrotor UAV is established, and a variable parameter sliding mode control and state feedback control method is proposed. The controller design is divided into two stages: the design of the attitude subsystem becomes slippery. The membrane controller first ensures that the fast convergence performance of the three attitude angles can meet the design requirements of the second stage; on the basis of completing the design of the first stage controller, the real-time tracking performance on the three axes of the position and attitude is guaranteed to reach the desired position in a limited time. In this paper, the existing standard sliding mode control method and state feedback method based on homogeneous system method and corresponding controller are introduced, and comparative analysis experiments are carried out. The simulation results show that the designed nonlinear controller can not only effectively track the time-varying target value, but also has better convergence performance.
【Key words】 ?drone attitude; finite time; variable parameter; sliding mode control; state feedback control
0 引 言
近年來 ,無人機(jī)以其低成本、良好的機(jī)動性和環(huán)境適應(yīng)能力強(qiáng)等特點(diǎn), 越來越多地被應(yīng)用于航拍、測繪、電力巡檢、災(zāi)害檢測、地質(zhì)勘探等特種行業(yè),多旋翼無人機(jī)及其應(yīng)用目前也引起了越來越多的研究人員的極大興趣[1-3]。四旋翼無人機(jī)可以在任何方向飛行,垂直起飛和降落,并在理想的高度盤旋[4-6]。但也存在著一定的缺點(diǎn)和挑戰(zhàn)性,自主飛行控制系統(tǒng)設(shè)計(jì)的微型無人機(jī)對室內(nèi)和室外環(huán)境是具有挑戰(zhàn)性的。有研究人員提出了一種新的四轉(zhuǎn)子姿態(tài)穩(wěn)定反饋控制方案,設(shè)計(jì)了一種飛行控制系統(tǒng),不僅能穩(wěn)定姿態(tài),而且能精確地跟蹤一個(gè)欠驅(qū)動的四旋翼飛機(jī)的軌跡。在特定的情況下,所提出的控制器被證明是有效的[7-9]。然而,上述所有的工作都局限于姿態(tài)軌跡跟蹤控制問題,缺乏對位置控制的關(guān)注。提出了反饋線性化控制器,發(fā)現(xiàn)其對噪聲的敏感性和不確定性建模,從而有針對性地提出了滑??刂破鳎?,四轉(zhuǎn)子動力學(xué)是一個(gè)簡化的過程,忽略了態(tài)度和位置之間的耦合[10];有研究人員提出了一些神經(jīng)動力學(xué)方法(如張動力學(xué)(ZD)和梯度動力學(xué)(GD)),設(shè)計(jì)了無人機(jī)的位置和姿態(tài)角控制器[11-12]。Zhang等人[13]為了穩(wěn)定地控制無人飛行器(UAV)的位置和姿態(tài)角度,提出了一種可變參數(shù)收斂神經(jīng)動力學(xué)(VP-CND)方法,可以跟蹤時(shí)變目標(biāo)值,而且具有超指數(shù)收斂性能,但是只考慮了高度方向控制,對于系統(tǒng)的耦合問題并沒有提出有效的解決辦法[13]。
本文提出了一種控制方法,用于設(shè)計(jì)的無人機(jī)穩(wěn)定姿態(tài)控制器。系統(tǒng)的穩(wěn)定性是針對系統(tǒng)平衡點(diǎn)而言的,研究討論的是系統(tǒng)的零平衡點(diǎn)和一般平衡位置。與以前的控制器相比,提出的控制方法對于無人機(jī)位置和姿態(tài)角都能有效控制,可以在有限時(shí)間里高效地完成時(shí)變跟蹤任務(wù),用一種新的控制方式解除了系統(tǒng)的耦合,而且也考慮到了整個(gè)系統(tǒng)的魯棒性。所設(shè)計(jì)的無人機(jī)姿態(tài)控制器相比之前的標(biāo)準(zhǔn)SMC控制器或VP-CND控制器更加有效,既解決了系統(tǒng)的耦合問題,也保證了收斂性能。
1 無人機(jī)動力學(xué)建模
1.1 無人機(jī)坐標(biāo)軸
本次研究得到的姿態(tài)角收斂誤差及速度收斂誤差如圖2所示,不同p值下的姿態(tài)角收斂誤差及角速度收斂誤差如圖3所示。
根據(jù)圖2、圖3可以看出,所設(shè)計(jì)的可變參數(shù)滑模控制器對比標(biāo)準(zhǔn)滑??刂品椒?,收斂速度更快,可以在2 s以內(nèi)收斂到目標(biāo)曲線。并且所設(shè)計(jì)的控制器性能會隨著p值增大而改善,p=5時(shí),收斂速度和誤差明顯是優(yōu)于p=2和p=3的。
研究后可得,x(t)、y(t)和z(t)的收斂誤差及速度收斂誤差曲線具體見圖4~6。由圖4~圖6可以得到,對比基本滑??刂品椒?,位置姿態(tài)控制器所采用的狀態(tài)反饋控制方法收斂速度是遠(yuǎn)遠(yuǎn)快于標(biāo)準(zhǔn)SMC控制器,而且標(biāo)準(zhǔn)滑??刂品椒ㄔ谡麄€(gè)過程中的抖動是比較嚴(yán)重的,狀態(tài)反饋控制器在穩(wěn)定到目標(biāo)值后,抖動明顯改善。
4 結(jié)束語
本文提出了一種基于變參數(shù)滑模動力學(xué)方法和狀態(tài)反饋方法的多旋翼無人機(jī)控制方法。通過Lyapunov穩(wěn)定性理論,給出了整個(gè)系統(tǒng)的穩(wěn)定性分析。仿真對比表明,所設(shè)計(jì)的控制方法具有較好的魯棒性和跟蹤性能。仿真結(jié)果也驗(yàn)證了該方法的有效性。論文提出的控制器能較好地完成時(shí)變追蹤任務(wù),是與標(biāo)準(zhǔn)滑??刂破飨啾仁諗克俣雀?、更穩(wěn)定的控制器。對于未來的工作,仍有如下方面亟待完善:首先,由于該方法是基于無人機(jī)的理論模型,所提出的控制器只有在完全狀態(tài)的測量值可用于反饋以及初值確定的情況下才可實(shí)現(xiàn)。在實(shí)際操作中,這不是四旋翼飛行器在受控環(huán)境之外飛行的典型情況,所以對于應(yīng)用到實(shí)際上還需要做進(jìn)一步的研究,
參考文獻(xiàn)
[1]POKSAWATP, WANG Liuping, MOHAMED A. Gain scheduled attitude control of fixed-wing UAV with automatic controller tuning[J]. IEEE Transactions on Control Systems Technology, 2018,26(4):1192.
[2]BERTRAN E, SNCHEZ-CERD ?A. On the tradeoff between electrical power consumption and flight performance in fixed-wing UAV autopilots[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11):8832.
[3]MARINA H G D, PEREDA F J, GIRON-SIERRA J M, et al. UAV attitude estimation using unscented Kalman filter and TRIAD[J].IEEE Transactions on Industrial Electronics, 2012,59(11):4465.
[4]TOLEDO J, ACOSTA L,SIGUT M, et al. Stabilization and altitude tracking of a four-rotor microhelicopter using the lifting operators[J]. IET Control Theory and Applications,2009, 3(4):452.
[5]POUNDS P E I, DOLLAR A M. Stability of helicopters in compliant contact under PD-PID control[J]. IEEE Transactions on Robotics, 2014,30(6): 1472.
[6]CHEN Fuyang, LEI Wen, ZHANG Kangkang, et al. A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer[J]. Nonlinear Dynamics, 2016, 85(2):1281.
[7]LEE D, KIM H J, SASTRY S. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter[J]. International Journal of control, Automation and systems, 2009, 7(3):419.
[8]ZUO Zongyu, MALLIKARJUNAN S. L1 adaptive backstepping for robust trajectory tracking of UAVs[J]. IEEE Transactions on Industrial Electronics,2017,64(4):2944.
[9]ZHANG Zhijun, YU Jianli, LI Yuanqing, et al. A new neural-dynamic control method of position and angular stabilization for autonomous quadrotor UAVs[C]//IEEE International Conference on Fuzzy Systems. Vancouver, BC, Canada:IEEE,2016:850.
[10]LIAO Bolin, FANG Ying, ?ZHANG Yinyan, et al. Spot hover control of helicopter and swing control of helicopter sling load by using zhang-gradient method[C]//2015 34th Chinese Control Conference (CCC).Hangzhou, China:IEEE,2015: 506.
[11]LI Shihua, DING Shihong,TIAN Yuping. A finite-time state feedback stabilization for a class of second order nonlinear systems[J].Acta Automaticav Sinica, 2007,33(1):101.
[12]ZHANG Yunong, YIN Yonghua, WU Huarong, et al. Zhang dynamics and gradient dynamics with tracking-control application[C]//Proceedings of the 2012 Fifth International Symposium on Computational Intelligence and Design - Volume 01. Hangzhou, China:IEEE,2013,1: 235.
[13]ZHANG Zhijun, ZHENG Lunan, GUO Qi. A varying-parameter convergent neural dynamic controller of multi-rotor UAVs for tracking time-varying tasks[J]. IEEE Transactions on Vehicular Technology, 2018,67(6):4793.
[15] WOOLFE A, GOODSON M, GOODE D K, et al. Highly conserved non-coding sequences are associated with vertebrate development[J]. PLoS biology, 2005, 3(1): 116.
[16]PENNACCHIO L A, AHITUV N, MOSES A M, et al. In vivo enhancer analysis of human conserved non-coding sequences[J]. Nature, 2006, 444(7118): 499.
[17]VISEL A, PRABHAKAR S, AKIYAMA J A, et al. Ultraconservation identifies a small subset of extremely constrained developmental enhancers[J]. Nature Genetics, 2008, 40(2): 158.
[18]WASSERMAN W W, FICKETT J W. Identification of regulatory regions which confer muscle-specific gene expression[J]. Journal of Molecular Biology, 1998, 278(1): 167.
[19]CHEN Xi, XU Han, YUAN Ping, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells[J]. Cell, 2008, 133(6): 1106.
[20]ZINZEN R P, GIRARDOT C, GAGNEUR J, et al. Combinatorial binding predicts spatio-temporal cis-regulatory activity[J]. Nature, 2009, 462(7269): 65.
[21]VISEL A, BLOW M J, LI Zirong, et al. ChIP-seq accurately predicts tissue-specific activity of enhancers[J]. Nature, 2009, 457(7231): 854.
[22]MAY D, BLOW M J, KAPLAN T, et al. Large-scale discovery of enhancers from human heart tissue[J]. Nature Genetics, 2011, 44(1): 89.
[23]DORSCHNER M O, HAWRYLYCZ M, HUMBERT R, et al. High-throughput localization of functional elements by quantitative chromatin profiling[J]. Nature Methods, 2004, 1(3): 219.
[24]GIRESI P G, KIM J, MCDANIELL R M, et al. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin[J]. Genome Research, 2007, 17(6): 877.