張維 王健 范博淵 李夢(mèng)穎 樊婷婷 李銳莉 程艷
摘 要 目的:研究8-O-乙酰山梔子苷甲酸(8-OaS)對(duì)慢性炎性痛模型大鼠的鎮(zhèn)痛作用機(jī)制。方法:將30只雄性SD大鼠分為假手術(shù)組(生理鹽水)、模型組(生理鹽水)和8-OaS低、中、高劑量組(3、10、30 μg/kg),每組6只。除假手術(shù)組外,其余各組大鼠足底注射弗氏完全佐劑復(fù)制慢性炎性痛模型。造模成功后,各組大鼠鞘內(nèi)給予相應(yīng)藥物,每天1次,連續(xù)給藥7 d后,采用Von-Frey細(xì)絲檢測(cè)各組大鼠足底疼痛閾值,計(jì)算各組大鼠疼痛閾值曲線下面積和8-OaS的半數(shù)有效劑量(ED50)。另取36只雄性SD大鼠分為假手術(shù)組(生理鹽水)、模型組(生理鹽水)和8-OaS組(給藥劑量為ED50),同法造模及給藥,然后采用免疫熒光組織染色法觀察各組大鼠脊髓背角內(nèi)離子鈣結(jié)合銜接分子1(Iba-1)、磷酸化p38絲裂原激活的蛋白激酶(p-p38 MAPK)的陽(yáng)性表達(dá)情況,采用Western blotting法檢測(cè)各組大鼠脊髓背角內(nèi)Iba-1、p-p38 MAPK、白細(xì)胞介素1β(IL-1β)、IL-6及腫瘤壞死因子α(TNF-α)的蛋白表達(dá)水平。結(jié)果:與假手術(shù)組比較,模型組大鼠足底疼痛閾值和曲線下面積均顯著降低(P<0.01);與模型組比較,8-OaS低劑量組大鼠給藥5、6、7 d后足底疼痛閾值顯著升高(P<0.05),8-OaS中、高劑量組大鼠足底疼痛閾值和曲線下面積均顯著升高(P<0.05或P<0.01);8-OaS各劑量組上述指標(biāo)大部分有顯著差異(P<0.05或P<0.01);8-OaS的ED50為18.87 μg/kg。免疫熒光組織染色和Western blotting法結(jié)果顯示,p-p38 MAPK主要表達(dá)在Iba-1陽(yáng)性表達(dá)的細(xì)胞上;與假手術(shù)組比較,模型組大鼠脊髓背角內(nèi)Iba-1、p-p38 MAPK的熒光密度和Iba-1、p-p38 MAPK、IL-6、IL-1β、TNF-α蛋白表達(dá)水平均顯著升高(P<0.05或P<0.01);與模型組比較,8-OaS組大鼠脊髓背角內(nèi)Iba-1、p-p38 MAPK的熒光密度和Iba-1、p-p38 MAPK、IL-6、IL-1β、TNF-α蛋白表達(dá)水平均顯著降低(P<0.05)。結(jié)論:鞘內(nèi)給予8-OaS可有效緩解大鼠慢性炎性痛,其機(jī)制可能與抑制p38 MAPK的磷酸化和IL-6、IL-1β、TNF-α的表達(dá)有關(guān)。
關(guān)鍵詞 8-O-乙酰山梔子苷甲酸;脊髓背角;p38絲裂原激活的蛋白激酶;炎性痛;大鼠;機(jī)制
ABSTRACT? ?OBJECTIVE: To study the mechanism of analgesic effect of 8-O-acetyl-safalinoside (8-OaS) on chronic inflammatory pain model rats. METHODS: Totally 30 male SD rats were divided into sham operation group (normal saline), model group (normal saline), 8-OaS low-dose, medium-dose and high-dose groups (3, 10, 30 μg/kg), with 6 rats in each group. Except for sham operation group, other groups were given planter injection of Freunds complete adjuvant to induce chronic inflammatory pain model. After successful modeling, the rats in each group were given corresponding drugs intrathecally, once a day, for 7 consecutive days. Then Von-Frey filaments were used to detect the planter pain threshold of the rats in each group; the area under the planter pain threshold curve of each group and the half effective dose (ED50) of 8-OaS were calculated. Another 36 male SD rats were divided into sham operation group (normal saline), model group (normal saline) and 8-OaS group (dose of ED50), and the modeling method and administration route were the same as above. Immunofluorescence histochemical staining was used to observe the positive expression of? ionized calcium binding adapter molecule 1 (Iba-1) and signal molecule phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK); Western blotting assay was used to determine the expression of Iba-1, p-p38 MAPK, IL-1β, IL-6 and TNF-α in spinal dorsal horn of rats. RESULTS: Compared with sham operation group, plantar pain threshold and area under the curve in model group were reduced significantly (P<0.01). Compared with model group, plantar pain threshold increased significantly after 5, 6, 7 days of administration in 8-OaS low-dose group (P<0.05), plantar pain threshold and area under the curve in 8-OaS medium-dose and high-dose groups were increased significantly (P<0.05 or P<0.01). Most of above indexes in each dose group of 8-OaS were signifficantly different, and ED50 of 8-OaS was 18.87 μg/kg. Results of immunohistochemistry staining and Western blotting showed that p-p38 MAPK was mainly expressed in Iba-1 positive cells. Compared with sham operation group, the fluorescence density of Iba-1 and p-p38 MAPK in spinal dorsal horn, the expression of Iba-1, p-p38 MAPK, IL-6, IL-1β and TNF-α were significantly increased in model group (P<0.05 or P<0.01). Compared with model group, the fluorescence density of Iba-1 and p-p38 MAPK in spinal dorsal horn, the expression of Iba-1, p-p38 MAPK, IL-6, IL-1β and TNF-α were decreased significantly in 8-OaS group (P<0.05). CONCLUSIONS: Intrathecal administration of 8-OaS can effectively alleviate chronic inflammatory pain in rats. The mechanism may be related to the inhibition of the phosphorylation of p38 MAPK and the expression of IL-6, IL-1β and TNF-α.
KEYWORDS? ?8-O-acetyl-safalinoside; Spinal dorsal horn; p38 mitogen-activated protein kinase; Inflammatory pain; Rat; Mechanism
炎性痛是臨床疾病的常見(jiàn)并發(fā)癥,如慢性胰腺炎、腰椎間盤突出癥及慢性炎性損傷均可誘發(fā)炎性痛[1-2]。近年來(lái),隨著人們生活節(jié)奏加快和生活習(xí)慣改變,慢性病發(fā)生率逐年升高,伴隨而來(lái)的慢性炎性痛的發(fā)生率也逐漸升高,嚴(yán)重影響患者的生活質(zhì)量和精神狀態(tài)[3]。當(dāng)前對(duì)于慢性炎性痛的發(fā)生機(jī)制尚不明確,臨床上治療以藥物鎮(zhèn)痛為主、物理手段為輔的方式,但藥物的副作用較大,如嗎啡類鎮(zhèn)痛藥物具有成癮性[4],故對(duì)于慢性炎性痛發(fā)生機(jī)制的探索和治療藥物的更新顯得尤為關(guān)鍵。
小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)內(nèi)的巨噬細(xì)胞,離子鈣結(jié)合銜接分子1(Iba-1)是其特異性標(biāo)記分子,相關(guān)研究表明,在L5脊神經(jīng)結(jié)扎模型大鼠體內(nèi),Iba-1約在術(shù)后3 d表達(dá)增加,表明小膠質(zhì)細(xì)胞被激活,進(jìn)而增加如白細(xì)胞介素1β(IL-1β)、IL-6及腫瘤壞死因子α(TNF-α)等炎癥介質(zhì)的產(chǎn)生,促進(jìn)脊髓背角內(nèi)星形膠質(zhì)細(xì)胞的活化,加重脊髓背角內(nèi)的炎癥反應(yīng)[5]。8-O-乙酰山梔子苷甲酸(8-OaS)是從中藥獨(dú)一味中提取的單體成分,相關(guān)研究表明,其可通過(guò)抑制星形膠質(zhì)細(xì)胞內(nèi)TNF-α/細(xì)胞外調(diào)節(jié)蛋白激酶(ERK)信號(hào)通路的活化并特異性降低組蛋白去乙?;?的表達(dá),從而發(fā)揮鎮(zhèn)痛作用[6-7]。另有研究表明,p38絲裂原激活的蛋白激酶(p38 MAPK)的磷酸化主要發(fā)生于脊髓背角小膠質(zhì)細(xì)胞內(nèi)[8],且在慢性炎性痛的發(fā)展窗口期會(huì)伴隨小膠質(zhì)細(xì)胞的激活而表達(dá)增加?;诖耍狙芯坎捎闷は伦⑸涓ナ贤耆魟?fù)制大鼠慢性炎性痛模型,重點(diǎn)研究8-OaS對(duì)慢性炎性痛模型大鼠脊髓背角內(nèi)小膠質(zhì)細(xì)胞激活的抑制作用,以及對(duì)磷酸化p38 MAPK(p-p38 MAPK)和相關(guān)炎癥因子表達(dá)的影響,以期明確8-OaS對(duì)慢性炎性痛的鎮(zhèn)痛作用機(jī)制,并為其治療慢性炎性痛提供實(shí)驗(yàn)依據(jù)。
1 材料
1.1 儀器
CM1950型冷凍切片機(jī)(德國(guó)Leica公司);TL36- TYZD型搖床(北京中西遠(yuǎn)大科技有限公司);Microfuge 20R型低溫離心機(jī)(美國(guó)Beckman公司);BX-60型共聚焦激光顯微鏡(日本Olympus株式會(huì)社);Tissuelyser-192型組織研磨儀(上海凈信實(shí)業(yè)發(fā)展有限公司);ChemiDocTM MP System 全能型成像系統(tǒng)(美國(guó)Bio-Rad公司);Von-Frey細(xì)絲(上海玉研科學(xué)儀器有限公司)。
1.2 藥品與試劑
8-OaS(批號(hào):766720,純度:≥97%)、弗氏完全佐劑(批號(hào):344289)、小鼠抗β-肌動(dòng)蛋白(β-actin)抗體(批號(hào):A1978)均購(gòu)自美國(guó)Sigma公司;小鼠抗Iba-1單克隆抗體(批號(hào):ab15690)、兔抗TNF-α多克隆抗體(批號(hào):ab92324)均購(gòu)自美國(guó)Abcam公司;兔抗p38 MAPK單克隆抗體(批號(hào):4511s)、兔抗p-p38 MAPK單克隆抗體(批號(hào):8690s)均購(gòu)自美國(guó)Cell Signaling Technology公司;小鼠抗IL-6多克隆抗體(批號(hào):sc-57315)、小鼠抗IL-β多克隆抗體(批號(hào):sc-12742)均購(gòu)自美國(guó)Santa Cruz生物科技有限公司;Alexa Fluor? 594標(biāo)記的驢抗小鼠免疫球蛋白G(IgG)(批號(hào):211-165-109)、Alexa Fluor? 488標(biāo)記的驢抗兔IgG(批號(hào):211-545-109)均購(gòu)自美國(guó)Jackson Immuno-Research公司;辣根過(guò)氧化物酶(HRP)標(biāo)記的驢抗小鼠IgG(批號(hào):ZDR-5307)、HRP標(biāo)記的驢抗兔IgG(批號(hào):ZDR-5308)均購(gòu)自北京中杉金橋生物技術(shù)有限公司;10% 十二烷基硫酸鈉(SDS)-聚丙烯酰胺凝膠(PAGE)(美國(guó)Bio-Rad公司);聚偏氟乙烯(PVDF)膜(美國(guó)Millipore公司);組織裂解液(北京百奧萊博科技有限公司);ECL化學(xué)發(fā)光液(北京拜爾迪診斷技術(shù)有限公司);其他試劑均為實(shí)驗(yàn)室常用試劑;水為純凈水。
1.3 動(dòng)物
健康的雄性SD大鼠,體質(zhì)量200~220 g,購(gòu)自空軍軍醫(yī)大學(xué)動(dòng)物實(shí)驗(yàn)中心,實(shí)驗(yàn)動(dòng)物生產(chǎn)許可證號(hào):SCXK(軍)2019-001。所有大鼠均飼養(yǎng)于22~25 ℃的恒溫環(huán)境中,白晝黑夜更替,正常飲食飲水。本實(shí)驗(yàn)在空軍軍醫(yī)大學(xué)動(dòng)物研究倫理委員會(huì)批準(zhǔn)下進(jìn)行。
2 方法與結(jié)果
2.1 分組、造模與給藥
參考相關(guān)文獻(xiàn)方法[5],將所有大鼠置于行為檢測(cè)室適應(yīng)15 min后,再置于鏤空的行為檢測(cè)鋼絲網(wǎng)上適應(yīng)5 min,然后序貫采用1.4、2.0、4.0、6.0、8.0、10.0、15.0、26.0 g的 Von Frey細(xì)絲垂直檢測(cè)各組大鼠足底疼痛閾值,若出現(xiàn)縮足、舔足、抬足等行為,則表明該Von Frey細(xì)絲對(duì)應(yīng)規(guī)格為此時(shí)大鼠足底疼痛閾值。獲取大鼠疼痛閾值數(shù)據(jù)后,剔除疼痛閾值異常(疼痛閾值過(guò)高或過(guò)低)的大鼠后分成兩批,第一批分為假手術(shù)組(生理鹽水)、模型組(生理鹽水)和8-OaS低、中、高劑量組(3、10、30 μg/kg,給藥劑量參考本課題組前期研究[7],臨用時(shí)用生理鹽水配制成藥液),每組6只,進(jìn)行疼痛閾值檢測(cè),并計(jì)算8-OaS的半數(shù)有效劑量(ED50)值。第二批分為假手術(shù)組(生理鹽水)、模型組(生理鹽水)、8-OaS組(給藥劑量為ED50),每組12只,并采用免疫熒光組織染色法和Western blotting法進(jìn)行后續(xù)試驗(yàn)。
除假手術(shù)組大鼠同法注射等體積的生理鹽水外,其余各組大鼠左側(cè)足底注射50 μL弗氏完全佐劑,復(fù)制慢性炎性痛模型大鼠。造模成功后將大鼠進(jìn)行鞘內(nèi)置管:先腹腔注射7%水合氯醛(0.4 mL/kg)麻醉,然后置于動(dòng)物手術(shù)臺(tái)上,取L2~S1節(jié)段備皮消毒;然后沿后背正中線垂直切開(kāi)皮膚,依次分離筋膜和肌肉,暴露L5脊椎和L4、L5脊椎間隙,首尾牽拉暴露硬脊膜,采用消毒玻璃細(xì)針于硬脊膜處開(kāi)一點(diǎn)狀入口,取預(yù)先注入2%利多卡因的PE管置入硬脊膜,并停止?fàn)坷璍4和L5脊椎,將多余的PE管沿皮下從項(xiàng)部穿出并固定,再以紅霉素軟膏均勻涂抹傷口,待大鼠恢復(fù)正常活動(dòng)時(shí),向PE管內(nèi)注入10 μL生理鹽水或8-OaS藥液,管口外端用火封閉,當(dāng)大鼠雙下肢行動(dòng)不便時(shí)則證明PE管置管成功[5]。每日向大鼠鞘內(nèi)PE管內(nèi)注入10 μL生理鹽水或8-OaS藥液1次,連續(xù)給藥7 d。
2.2 大鼠足底疼痛閾值檢測(cè)
將“2.1”項(xiàng)下第一批大鼠于給藥后連續(xù)檢測(cè)7 d,每天于同一時(shí)間進(jìn)行檢測(cè);若大鼠用15.0 g或26.0 g Von Frey細(xì)絲檢測(cè)時(shí),其行為仍未改變,則停止檢測(cè)。記錄各組大鼠足底疼痛閾值,并用GraphPad Prism 5軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)學(xué)分析,數(shù)據(jù)以x±s表示,多組間比較采用單因素方差分析,組間兩兩比較采用t檢驗(yàn),P<0.05表示差異有統(tǒng)計(jì)學(xué)意義;采用量效曲線計(jì)算各組大鼠足底疼痛閾值曲線下面積和8-OaS的ED50。各組大鼠足底疼痛閾值測(cè)定結(jié)果見(jiàn)表1,各組大鼠疼痛閾值曲線下面積測(cè)定結(jié)果見(jiàn)圖1。
由表1和圖1可知,與假手術(shù)組比較,模型組大鼠足底疼痛閾值和曲線下面積均顯著降低(P<0.01);與模型組比較,8-OaS低劑量組大鼠在給藥5、6、7 d后足底疼痛閾值顯著升高(P<0.05或P<0.01),8-OaS中、高劑量組大鼠在給藥1~7 d后足底疼痛閾值和曲線下面積均顯著升高(P<0.01);與8-OaS低劑量組比較,8-OaS中、高劑量組大鼠在給藥2~7 d后足底疼痛閾值和曲線下面積均顯著降低(P<0.01);與8-OaS中劑量組比較,8-OaS高劑量組大鼠給藥1~7 d后足底疼痛閾值和曲線下面積均顯著升高(P<0.01)。經(jīng)量效曲線計(jì)算得8-OaS的ED50為18.87 μg/kg。
2.3 各組大鼠脊髓背角內(nèi)Iba-1、p-p38 MAPK的表達(dá)情況檢測(cè)
采用免疫熒光組織染色法檢測(cè)。第二批大鼠末次給藥后,各組取6只大鼠腹腔注射7%水合氯醛(0.4? ?mL/kg)麻醉,迅速開(kāi)胸,沿心尖位置扎入灌注針,打開(kāi)灌注閥門用0.01 mol/L的PBS迅速?zèng)_出大鼠體內(nèi)血液,待其肝臟發(fā)白時(shí)加入4%多聚甲醛固定。取出固定好的大鼠脊髓L4~L6節(jié)段,繼續(xù)固定2 h后取出,置于30%蔗糖溶液中脫水48 h,在冷凍切片機(jī)中切成25 μm薄片,再用PBS漂洗10 min×3次,以5%山羊血清封閉2 h;加入單克隆小鼠抗Iba-1抗體和單克隆兔抗p-p38 MAPK抗體,于4 ℃孵育48 h;用PBS漂洗10 min×3次,滴加Alexa Flour? 594標(biāo)記的驢抗小鼠IgG和 Alexa Flour? 488標(biāo)記的驢抗兔IgG,置于室溫孵育4 h;用PBS漂洗10 min×3次,在暗光條件下將切片轉(zhuǎn)移至載玻片上,并置于暗盒中,待表面水分自然晾干后使用熒光封片劑封片。采用多通道共聚焦顯微鏡觀察切片中表達(dá)Iba-1、p-p38 MAPK的陽(yáng)性細(xì)胞,以出現(xiàn)紅色和綠色顆粒為其陽(yáng)性表達(dá),黃色為兩者雙重標(biāo)記的陽(yáng)性表達(dá);采用Image Pro Plus 6.0軟件分析黃色區(qū)域的熒光密度,熒光密度越大則蛋白表達(dá)越強(qiáng)。各組大鼠脊髓背角內(nèi)Iba-1和p-p38 MAPK蛋白表達(dá)的免疫熒光組織染色圖見(jiàn)圖2,熒光密度測(cè)定結(jié)果見(jiàn)表2。
由圖2和表2可知,p-p38 MAPK表達(dá)陽(yáng)性的細(xì)胞主要與Iba-1表達(dá)陽(yáng)性的細(xì)胞(即小膠質(zhì)細(xì)胞)重合。與假手術(shù)組比較,模型組大鼠脊髓背角內(nèi)Iba-1和p-p38 MAPK蛋白表達(dá)的熒光密度顯著升高(P<0.01),表明小膠質(zhì)細(xì)胞被激活;與模型組比較,8-OaS組大鼠脊髓背角內(nèi)Iba-1和p-p38 MAPK蛋白表達(dá)的熒光密度顯著降低(P<0.05),表明8-OaS可抑制小膠質(zhì)細(xì)胞的活化。
2.4 各組大鼠脊髓背角內(nèi)相關(guān)蛋白的表達(dá)水平檢測(cè)
采用Western blotting法檢測(cè)。第二批大鼠末次給藥后,各組取剩余6只大鼠腹腔注射7%水合氯醛(0.4 mL/kg)麻醉,迅速開(kāi)胸,沿心尖位置扎入灌注針,打開(kāi)灌注閥門用0.01 mol/L的PBS迅速?zèng)_出大鼠體內(nèi)血液。待其肝臟發(fā)白時(shí),于冰上迅速取出脊髓L4~L6節(jié)段,迅速分離脊髓背角,置于事先溶解有蛋白酶抑制劑和磷酸酶抑制劑的強(qiáng)效裂解液中,靜置10 min后采用超聲組織裂解儀將組織裂解,以3 000 r/min離心5 min,取上清液進(jìn)行蛋白定量。取蛋白進(jìn)行變性處理,然后進(jìn)行SDS- PAGE電泳分離目的蛋白條帶,以PVDF轉(zhuǎn)膜后采用5%脫脂奶粉封閉10 min,再依次加入小鼠抗Iba-1單克隆抗體、兔抗p38 MAPK單克隆抗體、兔抗p-p38 MAPK單克隆抗體、小鼠抗IL-6多克隆抗體、小鼠抗IL-β多克隆抗體、兔抗TNF-α多克隆抗體及小鼠抗β-actin抗體(稀釋比例為1 ∶ 500),封袋后搖床振蕩4 h;用TBST漂洗10 min×3次,對(duì)應(yīng)加入HRP標(biāo)記的驢抗小鼠IgG和HRP標(biāo)記的驢抗兔IgG(稀釋比例為1 ∶ 1 000),室溫振蕩1 h;用TBST漂洗10 min×3次,加入ECL液進(jìn)行反應(yīng)。采用全能型成像系統(tǒng)掃描條帶,以β-actin或p38 MAPK為內(nèi)參,采用Image Pro Plus 6.0軟件分析各條帶相對(duì)灰度值,用來(lái)表示目標(biāo)蛋白的表達(dá)水平。各組大鼠脊髓背角內(nèi)Iba-1、p-p38 MAPK、IL-6、IL-1β及TNF-α蛋白表達(dá)的電泳圖見(jiàn)圖3,蛋白表達(dá)水平測(cè)定結(jié)果見(jiàn)表3。
由圖3和表3可知,與假手術(shù)組比較,模型組大鼠脊髓背角內(nèi)Iba-1、p-p38 MAPK、IL-6、IL-1β、TNF-α蛋白表達(dá)水平均顯著升高(P<0.05);與模型組比較,8-OaS組大鼠脊髓背角內(nèi)Iba-1、p-p38 MAPK、IL-6、IL-1β、TNF-α蛋白表達(dá)水平均顯著降低(P<0.05)。
3 討論
慢性炎性痛的發(fā)生機(jī)制尚不明確,目前被學(xué)者們較為認(rèn)可的是炎癥機(jī)制和代謝機(jī)制[9-11]。其中炎癥機(jī)制主要涉及到脊髓背角內(nèi)的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞,兩者在慢性炎性痛的發(fā)生和發(fā)展過(guò)程中扮演著重要的角色。
相關(guān)研究表明,在慢性炎性痛模型大鼠中,脊髓背角內(nèi)小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞會(huì)依次被激活,小膠質(zhì)細(xì)胞猶如星形膠質(zhì)細(xì)胞激活的“閥門”,一旦開(kāi)啟便是疼痛慢性化的開(kāi)始[12-13],因此,小膠質(zhì)細(xì)胞又被稱為慢性炎性痛的“先鋒”。p-p38 MAPK信號(hào)通路是激活小膠質(zhì)細(xì)胞的重要通路,相關(guān)研究表明,慢性炎性痛模型大鼠或小鼠脊髓背角內(nèi)小膠質(zhì)細(xì)胞中的p-p38 MAPK水平顯著增加,而給予p38 MAPK抑制劑可顯著降低p-p38 MAPK的表達(dá)水平進(jìn)而抑制小膠質(zhì)細(xì)胞的活化[14-18]。在慢性炎性痛過(guò)程中,活化的小膠質(zhì)細(xì)胞會(huì)進(jìn)一步分泌大量的促炎因子如IL-6、IL-1β、TNF-α等,從而加重炎癥反應(yīng)[5]。
8-OaS是從中藥獨(dú)一味中分離的單體成分,前期研究已證實(shí)其具有一定的鎮(zhèn)痛作用[6-7]?;诖?,采用足底皮下注射完全弗氏佐劑復(fù)制大鼠慢性炎性痛模型,考察8-OaS對(duì)大鼠足底疼痛閾值的影響,以及小膠質(zhì)細(xì)胞中p-p38 MAPK的表達(dá)情況和脊髓背角內(nèi)Iba-1、p-p38 MAPK、IL-6、IL-1β及TNF-α蛋白的相對(duì)表達(dá)水平。結(jié)果顯示,鞘內(nèi)給予8-OaS可有效降低弗氏完全佐劑誘導(dǎo)的慢性炎性痛,且呈劑量依賴趨勢(shì),其ED50為18.87 μg/kg;p-p38 MAPK主要表達(dá)在Iba-1陽(yáng)性表達(dá)的細(xì)胞(即膠質(zhì)細(xì)胞)中,并且隨著小膠質(zhì)細(xì)胞的活化其表達(dá)呈升高趨勢(shì);在給予8-OaS后,可降低小膠質(zhì)細(xì)胞的活性,且可顯著降低脊髓背角內(nèi)Iba-1、p-p38MAPK、IL-6、IL-1β、TNF-α蛋白的表達(dá)水平。
綜上所述,鞘內(nèi)給予8-OaS可有效緩解大鼠慢性炎性痛,其機(jī)制可能與抑制p38 MAPK磷酸化和IL-6、IL- 1β、TNF-α的表達(dá)有關(guān)。
參考文獻(xiàn)
[ 1 ] TURUNEN A,KUULIALA A,PENTTILA A,et al. Time course of signaling profiles of blood leukocytes in acute pancreatitis and sepsis[J]. Scand J Clin Lab Invest,2020,80(2):114-123.
[ 2 ] MCWILLIAMS DF,RAHMAN S,JAMES RJE,et al. Disease activity flares and pain flares in an early rheumatoid arthritis inception cohort; characteristics,antecedents and sequelae[J]. BMC Rheumatol,2019. DOI:10.1186/s41927-019-0100-9.
[ 3 ] BARROS LL,F(xiàn)ARIAS AQ,REZAIE A. Gastrointestinal motility and absorptive disorders in patients with inflammatory bowel diseases:prevalence,diagnosis and treatment[J]. World J Gastroenterol,2019,25(31):4414- 4426.
[ 4 ] EIDSON LN,MURPHY AZ. Inflammatory mediators of opioid tolerance:implications for dependency and addiction[J]. Peptides,2019. DOI:10.1016/j.peptides.2019.01. 003.
[ 5 ] WANG J,QIAO Y,YANG RS,et al. The synergistic effect of treatment with triptolide and MK-801 in the rat neuropathic pain model[J]. Mol Pain,2017. DOI:10.1177/1744806917746564.
[ 6 ] 王健,肖小莉,崔佳,等. 8-O-乙酰山梔子苷甲酸對(duì)慢性炎性痛模型大鼠脊髓背角內(nèi)HDAC1~5表達(dá)的影響及與JAK2-STAT3信號(hào)通路的關(guān)系研究[J].中國(guó)藥房,2019,30(5):38-43.
[ 7 ] ZHANG W,BAI Y,QIAO Y,et al. 8-O-acetyl shanzhiside methylester from lamiophlomis rotata reduces neuropathic pain by inhibiting the ERK/TNF-α pathway in spinal astrocytes[J]. Front Cell Neurosci,2018. DOI:10. 3389/fncel.2018.00054.
[ 8 ] SHUAI S,HUAN X,MIN H,et al. Isotalatizidine,a C19- diterpenoid alkaloid,attenuates chronic neuropathic pain through stimulating ERK/CREB signaling pathway-mediated microglial dynorphin a expression[J]. J Neuroinflammation,2020. DOI:10.1186/s12974-019-1696-9.
[ 9 ] WANG A,TIE M,GUO D,et al. A novel mechanism of BAM8-22 inhibiting microglia activation:represses CX3CR1 expression via upregulating miR-184[J]. J Mol Neurosci,2019. DOI:10.1007/s12031-019-01455-0.
[10] YAZDZNI J,KHIAVI RK,GHAVIMI MA,et al. Calcitonin as an analgesic agent:review of mechanisms of action and clinical applications[J]. Rev Bras Anestesiol,2019. DOI:10.1016/j.bjan.2019.08.004.
[11] HE JH,YU L,WANG ZY,et al. Inhibition of monocarboxylate transporter 1 in spinal cord horn significantly reverses chronic inflammatory pain[J]. J Pain Res,2019,12(5):2981-2990.
[12] SHINODA M,KUBO A,HAYASHI Y,et al. Peripheral and central mechanisms of persistent orofacial pain [J]. Front Neurosci,2019. DOI:10.3389/fnins.2019.01227.
[13] DU HX,CHEN XG,ZHANG L,et al. Microglial activation and neurobiological alterations in experimental autoimmune prostatitis-induced depressive-like behavior in mice[J]. Neuropsychiatr Dis Treat,2019,15(6):2231- 2245.
[14] QIN B,LI Y,LIU X,et al. Notch activation enhances microglial CX3CR1/P38 MAPK pathway in rats model of vincristine-induced peripheral neuropathy[J]. Neurosci Lett,2019. DOI:10.1016/j.neulet.2019.134624.
[15] PAIGE C,MARUTHY GB,MEJIA G,et al. Spinal inhibition of P2XR or p38 signaling disrupts hyperalgesic priming in male,but not female,mice[J]. Neuroscience,2018,385(10):133-142.
[16] FUJITA M,TAMANO R,YONEDA S,et al. Ibudilast produces anti-allodynic effects at the persistent phase of peripheral or central neuropathic pain in rats:different inhibitory mechanism on spinal microglia from minocycline and propentofylline[J]. Eur J Pharmacol,2018,833(15):263-274.
[17] CHENG H,ZHANG Y,LU W,et al. Caffeic acid phenethyl ester attenuates neuropathic pain by suppressing the p38/NF-κB signal pathway in microglia[J]. J Pain Res,2018,11(1):2709-2719.
[18] JIN GL,HE SD,LIN SM,et al. Koumine attenuates neuroglia activation and inflammatory response to neuropathic pain[J]. Neural Plast,2018. DOI:10.1155/2018/9347696.
(收稿日期:2020-03-27 修回日期:2020-04-16)
(編輯:唐曉蓮)