張緹
摘 要:在未來三十年內(nèi),城市熱島現(xiàn)象將會(huì)日益嚴(yán)峻,建筑節(jié)能型新材料的開發(fā),將成為未來幾年的重要課題。在城市建筑物外部鋪貼具有高近紅外反射率的無機(jī)材料,將在節(jié)能降耗方面發(fā)揮重要作用。本文對建筑節(jié)能型熱反射陶瓷色料的近期研究進(jìn)行了闡述,對其制備技術(shù)及市場前景提出了展望。
關(guān)鍵詞:建筑節(jié)能;熱反射陶瓷色料;離子摻雜型;包裹型;日光反射率;近紅外反射率
1 前 言
近年,隨著全球經(jīng)濟(jì)和人口發(fā)展,“城市熱島”效應(yīng)[1]日益嚴(yán)重。在太陽輻射中,有52%都集中在近紅外區(qū)域(700~2500nm)。減少城市建筑物表面熱量的最有效方法之一,是將吸收近紅外輻射較少的熱反射陶瓷色料作為隔熱建筑材料。熱反射陶瓷色料反射了太陽光譜的紅外區(qū)域,可在炎熱的夏季有效降低建筑物表面溫度,降低城市建筑制冷能耗,因此,在國內(nèi)外得到了廣泛的研究與應(yīng)用。
陶瓷色料的熱反射性能與其顏色密切相關(guān)。白色陶瓷色料(如TiO2 [3]、ZnO [4]等)有著極佳的熱反射性能。但是,仍需要開發(fā)出多種顏色各異的近紅外熱反射陶瓷色料,可同時(shí)滿足美觀、防眩光和抗污特性,來滿足人們對于產(chǎn)品功能性和實(shí)用美觀的諸多需求。
2 離子摻雜型熱反射陶瓷色料
對于陶瓷色料而言,離子摻雜有助于形成雜質(zhì)缺陷,減小材料的光學(xué)帶隙。因此,元素?fù)诫s可用于制備多種有色陶瓷色料[5]。目前,離子摻雜型熱反射陶瓷色料的研究主要有以下幾種:
(1)黃色熱反射陶瓷色料:Jose等人[6]采用溶膠-凝膠水熱法,在150℃下反應(yīng)24h合成了一系列Bi摻雜CeO2黃色熱反射陶瓷色料,日光反射率高達(dá)87%。CeO2的著色機(jī)制基于半導(dǎo)體CeO2中從O 2p(價(jià)帶)到Ce 4f(導(dǎo)帶)的電荷轉(zhuǎn)移帶,因此,在CeO2中摻入Bi3+后,可在CeO2的帶隙內(nèi)形成額外能級(jí),從而減小CeO2的帶隙。Radhika等人[7]采用溶膠-凝膠法合成了Mo摻雜Gd1Ce1-xO3.5+y黃色熱反射陶瓷色料,日光反射率高達(dá)91%。Mo摻雜Gd1Ce1-xO3.5+y黃色熱反射陶瓷色料無有毒金屬離子,且具有優(yōu)異的化學(xué)和熱穩(wěn)定性,可用于兒童玩具塑料著色、浴室瓷磚表面等與人體皮膚直接接觸的產(chǎn)品中。
(2)橙色熱反射陶瓷色料:Shi等人[8]通過共沉淀法合成了Fe摻雜AlPO4熱反射陶瓷色料,在摻入Fe3+后,色料顏色由白色變?yōu)辄S橙色,近紅外反射率從98.03%降至72.56%。Jovaní等人[9]采用溶膠-凝膠法制備出了Pr、Fe共摻雜Y2Zr2O7紅橙色熱反射陶瓷色料(Y2-xPrxZr2-yFeyO7-δ),近紅外反射率為80%。
(3)棕色熱反射陶瓷色料:Zou等人[10]合成了Cr摻雜CaTiO3棕色熱反射陶瓷色料,該色料為鈣鈦礦結(jié)構(gòu),Cr摻雜量為1%時(shí)色料的日光反射率為58%,這種棕色熱反射陶瓷色料可有效地降低陶瓷表面的溫度8.9℃。Alkallas等人[11]合成了Cr摻雜ZnO棕色熱反射陶瓷色料,Cr摻雜量為0.5%的色料日光反射率為53.1%。Jovaní等人[12]采用Tb、Fe共摻雜Y2Zr2O7制備出了紅棕色熱反射陶瓷色料(Y2-xTbxZr2-yFeyO7-δ),其紅度值a*優(yōu)于工業(yè)珊瑚紅色料的紅度值。
(4)綠色熱反射陶瓷色料:Ding等人[13]采用水熱法合成了Cr摻雜BiPO4綠色熱反射陶瓷色料,BiPO4成本低、無毒、電子和空穴分離效率高,日光反射性能優(yōu)異(日光反射率>86%)。
(5)藍(lán)色熱反射陶瓷色料:Ianos等人[14]通過溶液燃燒法制備了Co摻雜ZnAl2O4基顏料藍(lán)色熱反射陶瓷色料,日光反射率為63%。
3 包裹型熱反射陶瓷色料
一般來說,包裹型陶瓷色料具有高溫穩(wěn)定性和化學(xué)穩(wěn)定性,通過采用具有高折射率的材料對陶瓷色料進(jìn)行包裹,可達(dá)到不影響其色彩性質(zhì)并提高熱穩(wěn)定性的效果。近期研究發(fā)現(xiàn),包裹型熱反射陶瓷色料具有高散射性能,隔熱效果顯著且成本更加低廉[15]。目前,包裹型熱反射陶瓷色料的研究主要有以下幾種:
(1)核-殼結(jié)構(gòu):核-殼結(jié)構(gòu)的色料顆粒,是具有定制特性的高功能材料。與單組分色料或相同尺寸的納米色料顆粒相比,它們的性質(zhì)可以通過改變構(gòu)成材料或核殼比來改變[16]。Sadeghi-Niaraki等人[17]合成了(Fe,Cr)2O3@TiO2核-殼納米復(fù)合結(jié)構(gòu)的包裹型熱反射陶瓷色料,其中Fe和Cr離子位于核中,Ti離子位于殼中。這種核-殼結(jié)構(gòu)陶瓷色料近紅外反射率高達(dá)57.8%,由于其易于合成、顏色多樣和高日光反射率的性質(zhì),(Fe,Cr)2O3@TiO2核-殼結(jié)構(gòu)熱反射陶瓷色料可用于建筑節(jié)能。Sharma等人[18]采用飛灰為核體材料,在上面沉積了納米TiO2顆粒殼層,得到飛灰@TiO2核-殼結(jié)構(gòu)熱反射陶瓷色料。與商業(yè)TiO2色料相比,飛灰@TiO2核-殼結(jié)構(gòu)色料制備出的瓷磚表面具有更低的熱擴(kuò)散率。
(2)以云母為基底:二氧化鈦包裹云母復(fù)合色料[19],是將TiO2沉積在云母片上,具有高日光反射率,以及優(yōu)異光澤和彩虹色效果。Gao等人[20]通過簡單溶液法合成了云母@Fe2TiO5核-殼結(jié)構(gòu)的黃色熱反射陶瓷色料,近紅外反射率高達(dá)80.3%。在隔熱測試中,涂有云母@Fe2TiO5核-殼結(jié)構(gòu)復(fù)合色料的涂層將加熱箱的內(nèi)部溫度降低了3℃。Zhang等人[21]通過溶膠-凝膠法合成了具有式云母@γ-Ce2-xYxS3系列包裹型復(fù)合色料,色料熱分解溫度可以達(dá)到500℃,近紅外反射率為93.25%~93.80%。
(3)以空心玻璃微珠為基底:空心玻璃微珠(Hollow Glass Microspheres,HGM)是一種中空結(jié)構(gòu)的硅酸鹽材料,具有比粘土、方解石和沸石的更低的熱導(dǎo)率[4]。因此,在HGM表面上包裹熱反射納米陶瓷色料,有助于降低熱反射陶瓷色料的成本和色料導(dǎo)熱性。Gao[22, 23]等人將熱反射陶瓷色料沉積在中空玻璃微球上,制備出了HGM@BiOBr1-xIx [22]和HGM@BiOCl1-xIx [23]熱反射陶瓷色料,色料顏色為白色至棕紅,近紅外反射率為94.7%~95.2%。Zeng等人[24]采用混合漿料燒結(jié)法,制備出了HGM@TiNiY熱反射復(fù)合陶瓷色料,通過將TiNiY色料包裹在空心玻璃微珠上,提高了其日光反射率,且節(jié)省了約87%的TiNiY色料用量。
4 結(jié) 語
在未來三十年內(nèi),城市熱島現(xiàn)象將會(huì)日益嚴(yán)峻。建筑節(jié)能型新材料的開發(fā),將成為未來幾年的重要課題。熱反射陶瓷色料的使用可達(dá)到節(jié)約能源的效果,因此,熱反射陶瓷色料具有極大的應(yīng)用空間和廣闊的市場前景。
參考文獻(xiàn)
[1] Allen L., Lindberg F., Grimmond C. S. B. Global to city scale urban anthropogenic heat flux: model and variability[J]. International Journal of Climatology, 2011, 31(13): 1990-2005.
[2] Pisello A. L. State of the art on the development of cool coatings for buildings and cities[J]. Solar Energy, 2017, 144: 660-680.
[3] Gao Q., Wu X., Ma Y., et al. Effect of Sn4+ doping on the photoactivity inhibition and near infrared reflectance property of mica-titania pigments for a solar reflective coating[J]. Ceramics International, 2016, 42(15): 17148-17153.
[4] Lu D., Gao Q., Wu X., et al. ZnO nanostructures decorated hollow glass microspheres as near infrared reflective pigment[J]. Ceramics International, 2017, 43(12): 9164-9170.
[5] Zhang T., Wang Y., Pan Z. Synthesis and characterization of Cu-/In-co-doped ZnSxSe1-x with tunable band-gaps as high near-infrared reflective color pigments[J]. Ceramics International, 2018, 44(15): 18851-18862.
[6] Jose S., Narendranath S. B., Joshy D., et al. Low temperature synthesis of NIR reflecting bismuth doped cerium oxide yellow nano-pigments[J]. Materials Letters, 2018, 233: 82-85.
[7] Radhika S. P., Sreeram K. J., Unni Nair B. Mo-doped cerium gadolinium oxide as environmentally sustainable yellow pigments[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(5): 1251-1256.
[8] Shi Y., Zhong M., Zhang Z., et al. Crystal structure and near-infrared reflective properties of Fe3+ doped AlPO4 pigments[J]. Ceramics International, 2017, 43(8): 5979-5983.
[9] Jovaní M., Fortu?o-Morte M., Beltrán-Mir H., et al. Environmental-friendly red-orange ceramic pigment based on Pr and Fe co-doped Y2Zr2O7[J]. Journal of the European Ceramic Society, 2018, 38(4): 2210-2217.
[10] Zou J., Zhang T., He X. Dark brown Cr doped CaTiO3 pigments with high NIR reflectance[J]. Materials Letters, 2019, 248: 173-176.
[11] Alkallas F. H., Elshokrofy K. M., Mansour S. A. Structural and diffuse reflectance study of Cr-doped ZnO nanorod-pigments prepared via facile thermal decomposition technique[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29(3): 792-798.
[12] Jovaní M., Sanz A., Beltrán-Mir H., et al. New red-shade environmental-friendly multifunctional pigment based on Tb and Fe doped Y2Zr2O7 for ceramic applications and cool roof coatings[J]. Dyes and Pigments, 2016, 133: 33-40.
[13] Ding C., Han A., Ye M., et al. Synthesis and characterization of a series of new green solar heat-reflective pigments: Cr-doped BiPO4 and its effect on the aging resistance of PMMA (Poly(methyl methacrylate))[J]. Solar Energy Materials and Solar Cells, 2019, 191: 427-436.
[14] Ianos R., Muntean E., Pacurariu C., et al. Combustion synthesis of a blue Co-doped zinc aluminate near-infrared reflective pigment[J]. Dyes and Pigments, 2017, 142: 24-31.
[15] Zhang T., Wang Y., Pan Z. Preparation of hollow glass microspheres@ZnSxSe1-x or copper-/indium-co-doped ZnSxSe1-x composite color pigments with enhanced near-infrared reflectance[J]. Solar Energy, 2019, 184: 570-583.
[16] Sharma R., Tiwari S. Design of fly ash based core shell composites as heat reflective coatings for sustainable buildings[M]. Cham: Springer International Publishing, 2017: 169-175.
[17] Sadeghi-Niaraki S., Ghasemi B., adeh A. H., et al. Preparation of (Fe,Cr)2O3@TiO2 cool pigments for energy saving applications[J]. Journal of Alloys and Compounds, 2019, 779: 367-379.
[18] Sharma R., Tiwari S., Tiwari S. K. Highly reflective nanostructured titania shell: A sustainable pigment for cool coatings[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2004-2010.
[19] Gao Q., Wu X., Fan Y. Solar spectral optical properties of rutile TiO2 coated mica–titania pigments[J]. Dyes and Pigments, 2014, 109: 90-95.
[20] Gao Q., Wu X., Fan Y., et al. Color performance and near infrared reflectance property of novel yellow pigment based on Fe2TiO5 nanorods decorated mica composites[J]. Dyes and Pigments, 2017, 146: 537-542.
[21] Zhang S., Ye M., Chen S., et al. Synthesis and characterization of mica/γ-Ce2-xYxS3 composite red pigments with UV absorption and high NIR reflectance[J]. Ceramics International, 2016, 42(14): 16023-16030.
[22] Gao Q., Wu X., Lu D., et al. Optical property and thermal performance of hollow glass microsphere/BiOBr1-xIx composites as a novel colored near infrared reflective pigment[J]. Dyes and Pigments, 2018, 154: 21-29.
[23] Gao Q., Wu X., Fan Y., et al. Novel near infrared reflective pigments based on hollow glass microsphere/BiOCl1-xIx composites: Optical property and superhydrophobicity[J]. Solar Energy Materials and Solar Cells, 2018, 180: 138-147.
[24] Zeng G., Yang J., Hong R., et al. Preparation and thermal reflectivity of nickel antimony titanium yellow rutile coated hollow glass microspheres composite pigment[J]. Ceramics International, 2018, 44(8): 8788-8794.