石蘭英 牟長城 孫曉新
摘要:探明小興安嶺修氏苔草(Carex schmidtii)沼澤和油樺-修氏苔草(Betula ovalifolia-Carex schmidtii)灌木沼澤N2O排放通量日變化動態(tài),可為山地沼澤N2O排放季節(jié)動態(tài)及總量估算提供基礎(chǔ)數(shù)據(jù)。因此,于生長季初期(2008年6月4~5日)、中期(2007年8月4~5日)和末期(2007年9月24~25日),在小興安嶺苔草和灌木沼澤中,采用靜態(tài)暗箱—氣相色譜法,在晴天觀測了N2O排放通量。兩種沼澤N2O排放通量日變化在生長季中期呈現(xiàn)晝高夜低規(guī)律,末期和初期的日排放規(guī)律性不顯著。生長季中期和初期,苔草沼澤N2O日排放通量最高值出現(xiàn)在9:00,末期最高值出現(xiàn)在3:00;生長季初期和末期的最低值出現(xiàn)在21:00,中期最低值出現(xiàn)在18:00。生長季初期、中期和末期,灌木沼澤N2O日排放通量最高值分別出現(xiàn)在9:00、15:00和6:00;最低值分別出現(xiàn)在3:00、21:00和18:00。兩種沼澤生長季初期為N2O的吸收匯,中期和末期為弱排放源。灌木沼澤的N2O日排放通量明顯高于苔草沼澤。生長季初期和末期,兩種沼澤N2O日排放通量與溫度呈負相關(guān),中期呈正相關(guān)。其中,苔草沼澤N2O日排放通量與10 cm土溫呈現(xiàn)顯著負相關(guān),灌木沼澤與15 cm土溫呈現(xiàn)顯著負相關(guān)。苔草沼澤N2O日排放通量與地表溫度呈現(xiàn)顯著正相關(guān),灌木沼澤與40 cm土溫呈現(xiàn)顯著正相關(guān)。據(jù)此,小興安嶺苔草沼澤和灌木沼澤為N2O排放弱源或吸收匯,溫度、水位和植被類型是N2O日排放通量的主要影響因素。
關(guān)鍵詞:N2O排放通量;日變化;修氏苔草沼澤;油樺—修氏苔草灌木沼澤;溫度;小興安嶺
Abstract: In order to provide basic data for seasonal dynamics and total amount estimation of N2O emission from mountain marshes, this study was performed to understand the diurnal variation of N2O emission fluxes from Carex schmidtii marsh and Betula ovalifolia-Carex schmidtii shrub swamp in Xiaoxing'an Mountains. An experiment was conducted to observe the diurnal variation of N2O fluxes in marsh and shrub swamp in Xiaoxing'an Mountains using the static opaque chamber and gas chromatography techniques on August 4-5 of 2007, September 24-25 of 2007, and June 4-5 of 2008. The results showed that the diurnal variation of N2O emission flux in two kinds of marshes showed a diurnal high-night low pattern on August 4-5 of 2007, the daily emission regularity is not significant on September 24-25 of 2007 and June 4-5 of 2008. The highest N2O fluxes in marsh were appeared at 9:00 on August 4-5 of 2007 and June 4-5 of 2008, and appeared at 3:00 on September 24-25 of 2007. The lowest N2O fluxes in marsh were appeared at 21:00 on June 4-5 of 2008 and September 24-25 of 2007, and appeared at 18:00 on August 4-5 of 2007. The highest N2O fluxes in shrub swamp were appeared at 15:00 on August 4-5 of 2007 and appeared at 6:00 on September 24-25 of 2007, and appeared at 9:00 on June 4-5 of 2008. The lowest N2O fluxes in shrub swamp were appeared at 21:00 on August 4-5 of 2007, and appeared at18:00 on September 24-25 of 2007 and appeared at 3:00 on June 4-5 of 2008. Two kinds of marshes were the absorption sinks of N2O on June 4-5 of 2008, and were the weak emission sources on August4 -5 and September 24 to 25, 2007. The diurnal variation N2O fluxes of shrub swamp were higher than those of marsh. The daily N2O emission flux of two kinds of marshes were negatively correlated with temperature on September 24-25 of 2007 and June 4-5 of 2008, and were Positive correlation with temperature on August 4-5 of 2007. Among them, the daily N2O emission fluxes of marsh were negatively correlated with 10 cm soil temperature, while that of shrub swamp were negatively correlated with 15 cm soil temperature. The diurnal N2O emission fluxes of marsh were positively correlated with surface temperature, while that of shrub swamp were positively correlated with 40 cm soil temperature. The marsh and shrub swamp in Xiaoxing'an Mountains were weak sources or sinks of N2O emission, the temperature, water level and vegetation types were the main influencing factors of N2O daily emission fluxes.
Key words: N2O fluxes; diurnal variation; Carex schmidtii marshes; Betula ovalifolia-Carex schmidtii shrub swamp; temperature; Xiaoxing'an Mountains
N2O(氧化亞氮)作為大氣中僅次于二氧化碳和甲烷的第三大溫室氣體,因其對全球氣候變暖具有重要的推動作用及對臭氧層的破壞作用,近年來備受關(guān)注[1-3]。濕地N2O排放量約占全球總排放量20%[4,5]。N2O排放通量的日變化研究,以小時間尺度揭示其排放動態(tài)及影響因素,有助于季節(jié)排放規(guī)律探究及年際排放量估算[6]。溫度和土壤含水量是影響N2O通量最主要的因子[7],同時,因環(huán)境條件、植被和季節(jié)的變化,其通量具有很強的時間變異性[8]。有研究認為天然濕地植物生長季N2O通量無明顯的日變化[9,10],也有研究發(fā)現(xiàn)N2O排放日變化明顯,夜晚是排放高峰期[11],還有研究認為午后為排放高峰期[12],說明在不同的季節(jié)、濕地類型或區(qū)域間,N2O日排放通量可能存在較大差異。
小興安嶺是東北三大林區(qū)濕地主要分布區(qū)之一[13],該區(qū)苔草和灌木沼澤N2O排放通量日變化的研究還未見報道。本研究根據(jù)野外實測結(jié)果,分析了小興安嶺典型修氏苔草(Carex schmidtii)沼澤和油樺-修氏苔草(Betula ovalifolia-Carex schmidtii)灌木沼澤N2O排放通量日變化規(guī)律及其與溫度和水位等因子的關(guān)系,以期為山地沼澤N2O季節(jié)排放通量和總量估算及濕地保護提供參考。
1 材料與方法
1.1 研究區(qū)域概況
試驗地點位于小興安嶺中段的黑龍江省伊春市友好林業(yè)局永青林場(48°3′53″N~48°17′11″N,128°30′36″E~128°45′E)。該區(qū)海拔260~500 m,屬于溫帶大陸性濕潤季風氣候,年平均溫度為0.4 ℃,積溫2 000~2 500 ℃。該區(qū)年降水量為630 mm,主要是冬季降雪和7~8 月降水兩個高峰,占全年降水量的70%。該區(qū)地帶性土壤為暗棕壤,占所有土壤類型的71%,草甸土和沼澤土占27%,泥炭土占2%[2]。
參照文獻[14],以優(yōu)勢植被進行分類,確定試驗地的沼澤類型分別為季節(jié)性積水的修氏苔草沼澤和油樺—修氏苔草灌木沼澤 [14]。
1.2 數(shù)據(jù)采集
氣體的采集與分析采用靜態(tài)暗箱—氣相色譜法[2,15]。采樣時間為生長季初期(2008年6月4~5日)、中期(2007年8月4~5日)和末期(9月24~25日)。觀測日天氣晴朗,開始取樣時間為上午9:00,3 h取樣1次,一天共取樣8次。氣體采樣的同時原位同步測定空氣溫度、采樣箱內(nèi)溫度、地表溫度和地下5、10、15、20、30、40 cm土壤溫度及地下水位 [2,6]。
苔草沼澤和灌木沼澤的草本生物量分別為(466±61) g 和(218±78) g。生長季初期、中期和末期苔草沼澤的平均水位為6.4、-15.7、-8.7 cm;灌木沼澤為0.5、-45.0、-23.8 cm[2,6,15]。
1.3 統(tǒng)計分析
應(yīng)用單因子方差分析(LSD法)進行三樣本間差異性檢驗;選擇獨立樣本T檢驗和成對樣本T檢驗進行相同月份和不同月份雙樣本的差異性檢驗;采用Pearson相關(guān)分析進行溫度與排放通量的相關(guān)性分析,所有過程均由SPSS 19.0軟件完成,采用Excel 2003軟件作圖。
2 結(jié)果與分析
2.1 苔草和灌木沼澤N2O排放通量日變化
由圖1可知,小興安嶺典型苔草沼澤N2O日變化規(guī)律表現(xiàn)為:生長季中期排放通量具有比較明顯的晝高夜低規(guī)律,生長季初期和末期,排放規(guī)律性不明顯。其中,在苔草沼澤生長季中期,最高值出現(xiàn)在9:00,為0.030 mg/(m2·h),之后迅速下降,至18:00達到最低值-0.008 mg/(m2·h),21:00至第二日6:00左右表現(xiàn)為波動上升;在生長季末期,N2O排放通量由9:00開始逐漸降低,至18:00降至最低,為-0.005 mg/(m2·h),由21:00又迅速升高,至第二日3:00達到最高值0.008 mg/(m2·h);生長季初期最高值出現(xiàn)在9:00,為0.002 mg/(m2·h),最低值出現(xiàn)在21:00,為-0.014 mg/(m2·h),其他時間表現(xiàn)為不規(guī)律的波動。
由圖2可知,灌木沼澤在生長季中期N2O排放通量在9:00至15:00為排放峰值期,峰值出現(xiàn)在15:00,為0.017 mg/(m2·h),21:00以后呈現(xiàn)波動性升高趨勢,最低值出現(xiàn)在21:00,為0.002 mg/(m2·h);生長季末期N2O排放通量在6:00達到最高值0.021 mg/(m2·h),然后逐漸降低,至18:00達到全天最低值-0.003 mg/(m2·h),21:00至第二日3:00出現(xiàn)不規(guī)則波動;生長季初期,9:00達到高峰值0.005 mg/(m2·h),3:00達到最低值-0.015 mg/(m2·h),其他時段表現(xiàn)為不規(guī)律波動。
2.2 苔草和灌木沼澤N2O日排放通量及其差異
兩沼澤在生長季中期和末期為N2O的弱排放源,初期為N2O的吸收匯。其中,苔草沼澤在生長季中期的N2O日排放通量平均值為0.008 0 mg/(m2·h),日變幅為200.0%~262.5%;末期為0.000 9 mg/(m2·h),日變幅為655.6%~788.9%;初期為-0.005 5 mg/(m2·h),日變幅136.4%~154.5%。單因素方差分析可知,3個時期的日排放通量間具有顯著的差異(P<0.05),成對樣本T檢驗結(jié)果表明,2008年6月4~5日與2007年8月4~5日排放通量間差異極顯著(P<0.01),2008年6月4~5日與2007年9月24~25日間差異顯著(P<0.05)。
[9] 王毅勇,鄭循華,宋長春,等.三江平原濕地CH4、N2O的地-氣交換特征[J].地理研究,2006,25(3):457-467.
[10] HIROTA M, SENGA Y, SEIKE Y, et al. Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan[J].? Chemosphere, 2007(68): 597-603.
[11] CHEN G C, TAMA N F Y, YE Y. Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China[J]. Science of the total environment, 2010,408(13):2761-2767.
[12] 王德宣,宋長春,王躍思,等. 若爾蓋高原沼澤濕地N2O排放通量研究[J]. 生態(tài)科學,2005,24(3): 193-196.
[13] 國家林業(yè)局. 全國首次濕地資源調(diào)查[J]. 新安全,2004,2(9): 24-25.
[14] 郎惠卿. 中國濕地植被[M]. 北京:科學出版社, 1999. 35-74.
[15] 牟長城,石蘭英,孫曉新. 小興安嶺典型草叢沼澤濕地CO2、CH4和N2O的排放動態(tài)及其影響因素[J]. 植物生態(tài)學報,2009, 33(3):617-623.
[16] FRENEY J R, DENMEAD O T, WATANABE I, et al. Ammonia and nitrous oxide losses following applications of ammonium sulfate to flooded rice[J]. Australian journal of agricultural research, 1981, 32(1):37-45.
[17] 鄭循華,王明星,王躍思,等. 溫度對農(nóng)田N2O產(chǎn)生與排放的影響[J]. 環(huán)境科學,1997,18(5):1-5.
[18] BAGGS E M, BLUM H. CH4 oxidation and emissions of CH4 and N2O from Lolium perenne swards under elevated atmospheric CO2[J]. Soil biology & biochemistry,2004,36(4):713-723.
[19] ZHOU C Y,? ZHANG D Q, WANG Y S, et al.Diurnal variations of greenhouse gas fluxes from mixed broad-1eaved and coniferous forest soil in Dinghushan[J]. China forestry science and technology, 2005,4(2):1-7.
[20] 陳全勝,李凌浩,韓興國,等.典型溫帶草原群落土壤呼吸溫度敏感性與土壤水分的關(guān)系[J].生態(tài)學報,2004,24(4):831-836.